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ADJUSTING POPULATION ESTIMATES FOR GENOTYPING ERROR IN NON-
INVASIVE DNA-BASED MARK-RECAPTURE EXPERIMENTS 

 
Shannon M. Knapp and Bruce A. Craig 

Department of Statistics, Purdue University, 250 N. University St., West Lafayette, IN 47906-
2066, USA 

 

Abstract 
 DNA from non-invasive sources is increasingly being used as molecular tags for mark-
recapture population estimation.  These sources, however, provide small quantities of often 
contaminated DNA, which can lead to genotyping errors that will bias the population estimate.  
We describe a novel approach, called Genotyping Uncertainty Added Variance Adjustment 
(GUAVA), to address this problem. GUAVA incorporates an explicit model of genotyping error 
to generate a distribution of complete-information capture histories that is used to estimate the 
population size. This approach both reduces the genotyping-error bias and incorporates the 
additional uncertainty due to genotyping error into the variance of the estimate.  We demonstrate 
this approach via simulated mark-recapture data with a range of genetic information, population 
sizes, sample sizes, and genotyping error-rates.  The bias, variance, and coverage of the GUAVA 
estimates are shown to be superior to those of other available methods used to analyze this type 
of data. Because GUAVA assumes each sample is genotyped only once per locus, it also has the 
potential to save a great deal of time and money collecting consensus molecular information.   
 
Keywords:  DNA markers, genotyping error, mark-release-recapture, microsatellite, non-invasive 
sampling, population size estimation  
 

1. Introduction 
Mark-recapture techniques provide a powerful tool to estimate the number of individuals 

in wildlife populations.  With the increasing accessibility of molecular methods, DNA can now 
be used as a molecular mark in population estimates.  Non-invasive sources of DNA, such as hair 
or scat, are advantageous for species that are secretive, endangered, sparsely distributed, or trap-
shy and, therefore, difficult to study using traditional marks.  Non-invasive DNA has been used 
in population estimates in such varied species as badger, bear, cougar, coyote, elephant, marten, 
otter, seal, whale, wolf, wolverine, and wombat (Waits and Paetkau 2005).   

Unfortunately, DNA marks are subject to pitfalls not found with traditional marks.  First, 
non-invasive sources often provide low-copy and poor-quality DNA, which increase the chances 
of genotyping errors.  As a result, samples from the same individual may have different observed 
genotypes and be treated as if they came from different individuals.  This would result in an 
overestimation of the population size.  Second, when a limited number of loci are examined, 
different individuals can have the same true genotype, a phenomenon known as the shadow 
effect (Mills et al. 2000). This results in an underestimation of the population size.  These 
problems can be minimized by repeat genotyping of each sample and using a larger number of 
loci respectively.  These remedies, however, dramatically increase the cost of the study.  It would 
be more cost-effective to better analyze the data available.   
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Lukacs and Burnham (2005) introduced a mark-recapture-based maximum likelihood 
method to estimate population size and a genotyping-error rate simultaneously.  Their method 
follows the CAPTURE (White, et al. 1982) paradigm, with an additional term to represent the 
probability that a genotype is read correctly.  They assume all individuals in the population have 
a unique genotype (i.e., there is no shadow effect), sampling is done without replacement, and 
that a genotyping error will always lead to a unique observed genotype.   

In this paper, we propose an alternative approach, which we refer to as Genotyping 
Uncertainty Added Variance Adjustment (GUAVA).  This approach takes full advantage of the 
molecular markers used and the information on the genotyping errors.  Unlike the method of 
Lukacs and Burnham (2005), our method is explicitly designed to be used with microsatellites, 
the genetic markers commonly used in non-invasive DNA-based mark-recapture studies, and 
accounts for the two types of genotyping errors found in microsatellites:  misprinting and allelic 
dropout.  Microsatellite alleles vary in their number of motif-repeats, effectively the length of the 
allele.  Misprinting, also known as false alleles, occurs when an allele appears to have more or 
fewer motif-repeats than it truly has.  Allelic dropout occurs when one allele in a heterozygote 
does not amplify, giving the appearance that the individual is a homozygote.  We also relax the 
assumptions of Lukacs and Burnham (2005) that there is no shadow effect and that all 
genotyping errors will lead to a unique genotype.  Additionally, we allow for sampling with 
replacement, which is more realistic for many forms of non-invasive sampling.    

In the next section, we detail the steps to generate our pseudo complete-information 
capture histories based on the observed data.  It is this distribution of capture histories that is at 
the heart of GAUVA method.  This is followed by some discussion of concerns with the Lukacs-
Burnham approach, the other method that incorporates genotyping error.   We then present a 2-
capture session simulation study to compare the resulting population estimates using GUAVA 
with those from Lukacs-Burnham and other commonly-used approaches and conclude with a 
discussion of the advantages and limitations of the GUAVA approach.    

 

2. The GUAVA Approach 
 GUAVA generates a distribution of complete-information capture histories, based on the 
observed data.  For a given population estimator, the population size estimate is the mean from 
this distribution and the uncertainty of this estimate incorporates the variability in the size 
estimates from this distribution.   The underlying driver of this approach is the probability that 
two samples (observed genotypes) come from the same individual.  The derivation of this 
probability is based on two key principles.  First, given the true genotype of an individual, 
GUAVA’s genotyping error model defines a distribution of observed genotypes.  Second, 
GUAVA assumes the population is in Hardy-Weinberg equilibrium so the probability of 
sampling each genotype in the population is assumed known (i.e., genotype frequencies can be 
obtained from allele frequencies).     

 Given the set of probabilities that a specific pair of samples come from the same 
individual, we can match observed genotypes (i.e., declare they are from the same individual) 
and generate a complete-information capture history.  GUAVA does this by permuting the order 
of the samples and then testing each sample against all previous ones.  Testing for a sample ends 
when the sample is matched to a previous sample or after it has been tested against all previous 
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samples (i.e., declared a new individual).   From this generated capture history, a population 
estimate can be obtained using any standard population estimator.   

This process of generating a complete-information capture history is repeated many times 
to obtain an approximate distribution of the population estimate.  As we show in Section 2.1, the 
population size, N, is a term in the probability of a match.  Thus an arbitrary N is used to 
generate the first capture history and subsequent iterations use the population estimate from the 
previous iteration to generate a new capture history.  After a sufficient burn-in period, every kth 
estimate of N is recorded.  The variance in the estimates of N over the iterations of the Markov 
Chain approximates the variance due to genotyping errors.   

To summarize, the GUAVA population estimate is  

                                                         
1

1ˆ ˆ
r

GUAVA i
i

N N
r =

= ∑ ,                                                               (1) 

where r is the number of recorded estimates from burn-in to convergence, and the variance of the 
estimate is  

                               ( ) ( )
2

2

1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
r r r

GUAVA i i
ii i i

V N V N N N
r r r= = =

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= + −⎨ ⎬⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑ ∑ .                                (2) 

The first variance term can be considered the variance due to sampling error and the second term 
can be considered variance due to genotyping error.   

 

2.1 Calculation of the Probability a Pair of Samples Came from the Same Individual, si,j 

Consider the term “Observed Genotype” (GO) to refer to the observed result of 
genotyping a sample, and the term “True Genotype” (GT) to refer to the unobservable, actual 
genotype of a sample.  Given a genotyping error model, it is straightforward to find the 
probability distribution of the observed genotype gl at locus l given the true genotype is tl .  
Based on these probabilities, the unconditional probability that the sample will have observed 
genotype gl at locus l is   

                         ( ) ( )
l

l

l l l l l l t
t

P GO g P GO g GT t PID= = = =∑ ,                                           (3) 

where ( )
lt l lPID P GT t= =  is simply the frequency of the genotype tl, often referred to as the 

probability of identity.  Because errors at one locus are assumed to be independent of errors at 
another locus, the probability of the observed multilocus genotype is  

                                    ( ) ( )
1

L

l l
l

P GO g P GO g
=

= = =∏                                                   (4) 

where L is the number of loci.  

 When considering a pair of samples i and j, the samples either (1) came from the same 
individual, (2) came from different individuals that have the same true genotype, or (3) came 
from different individuals with different true genotypes.  In terms of drawing two individuals 
from the population with replacement, these cases have probabilities N-1

, EPID(N-1)N-1, and (1-
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EPID)(N-1)N-1, respectively, where N is the population size and EPID 2
t

t
PID= ∑  is the expected 

value of the multi-locus PID.   For each case, we now present the probability that the observed 
genotypes are gi and gj.  These probabilities will be combined with the ones above to generate 
the unconditional  probability that two samples, i and j, will have observed multilocus genotypes 
gi and gj.    

 Case 1:  Samples from the same individual.  Because genotyping errors in one sample 
are assumed to be independent from genotyping errors in another sample, the probability that 
two samples, i and j, from the same individual would have observed multilocus genotypes gi and 
gj, respectively, is  

     ( ) ( ) ( )i i j j i i i j j j t
t

P GO g GO g S P GO g GT t P GO g GT t PID= ∩ = = = = = =∑ ,            (5) 

where S is the event that the two samples are from the same individual.  The summation is taken 
over all possible true multilocus genotypes t.  Because the number of multilocus genotypes t is 
prohibitively large in these studies, this term can be more efficiently calculated as the product of 
the per-locus probabilities 

( ) ( ) ( ), , , , , ,
1

l

l

L

i i j j l i l i l i l l j l j l j l t
tl

P GO g GO g S P GO g GT t P GO g GT t PID
=

⎡ ⎤
= ∩ = = = = = =⎢ ⎥

⎣ ⎦
∑∏ .   (6) 

 Case 2:  Samples from different individuals with the same true genotype. In this case, 
the formula is similar except for the fact that we are considering two individuals rather than one.  
That is why we weight each true genotype by 2

tPID EPID  instead of by tPID . 

( )
( ) ( ) 2

,
i i i j j j t

c t
i i j j i j

P GO g GT t P GO g GT t PID
P GO g GO g S GT GT

EPID

= = = =
= ∩ = ∩ = =

∑
 (7) 

 Case 3:  Samples from different individuals with different true genotypes.  In this 
case, we sum over all combinations of different genotypes and weight accordingly.   

( )
( ) ( ) 1 2

1 2 1

1 2

1

i i i j j j t t
t t tc

i i j j i j

P GO g GT t P GO g GT t PID PID
P GO g GO g S GT GT

EPID
≠

= = = =
= ∩ = ∩ ≠ =

−

∑ ∑
 (8) 

 From these results,  

    

( ) ( )
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     (9) 

which reduces to  

           ( ) ( ) ( )( )1 11 .i i j j i i j jP GO g GO g S N P GO g P GO g N N− −= ∩ = + = = −              (10) 

Finally with this probability, we can find the probability two samples i and j came from the same 
individual, given their observed genotypes are gi and gj using Bayes Theorem, 
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               ( ) ( ) ( )
( ),

= ∩ =
= = ∩ = =

= ∩ =
i i j j

i j i i j j
i i j j

P GO g GO g S P S
s P S GO g GO g

P GO g GO g
.                    (11) 

This expression can be expanded into the more computationally efficient form 

              
( )

( ) ( ) ( ) ( ), .
1

= ∩ =
=

= ∩ = + − = =
i i j j

i j
i i j j i i j j

P GO g GO g S
s

P GO g GO g S N P GO g P GO g
                    (12) 

 It is this probability that is used to match up the samples and create a pseudo-complete 
information capture history.  Please note that a pair of samples with identical observed genotypes 
will not be matched with probability 1 and that a pair with different observed genotypes may be 
matched.  Most other methods utilize various assumptions to create a single pseudo complete-
information capture history.  This not only leads to bias, if the assumptions are not true, but also 
does not account for the increased uncertainty due to genotyping error.    

 

3. The Lukacs-Burnham Approach 
 In a similar vain, Lukacs and Burnham (2005) specify probabilities for all possible 
capture histories.  There are, however, some concerns with their approach in the non-invasive 
setting.  For illustration, we consider the 2-capture-session case and focus on the potential 
capture histories of a genotype.   

 The capture history [10] occurs when a genotype is observed only during the first capture 
session.  This is defined to have probability p1α(1 - c) + p1(1 - α), where pi is the probability that 
a genotype was first captured during session i; α is the probability that a genotype is identified 
correctly, given it is observed for the first time; and c is the probability of recapture (Lukacs and 
Burnham 2005).  Essentially, this capture history occurs if a genotype is caught during the first 
session, genotyped correctly, and then not recaptured, or if any genotype is captured during the 
first session and genotyped incorrectly.  

 Note that because Lukacs and Burnham (2005) assume there is no shadow effect, a 
genotype is synonymous with an individual in the construction of their probabilities.  Because 
Lukacs and Burnham (2005) assume that any genotyping error will lead to a unique genotype, if 
there is a genotyping error at the initial capture, that genotype will never be observed again.  
Also, in contrast to GUAVA, Lukacs and Burnham assume that if two samples have the same 
observed genotype, they come from the same individual with probability 1. 

 The capture history [01], where the genotype is observed only during the second capture 
session, has probability (1 - p1)[p2α + p2(1 - α)] = (1 - p1)p2.  According to Lukacs and Burnham 
(2005), this capture history can occur if the individual is not captured during the first session, but 
is captured during the second session and is either genotyped correctly or incorrectly at that time. 

 The capture history [11], where the genotype is observed during both the first and second 
capture sessions, has probability p1αc.  This capture history occurs if the genotype is sampled 
during the first capture session, genotyped correctly, then recaptured during the second sampling 
session.  Note that under the Lukacs and Burnham (2005) assumptions, recapture implies the 
genotype was both captured and genotyped correctly.   
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 A final capture history, [00], where the genotype is not observed during either capture 
session, has probability (1 - p1)(1 - p2).  These capture histories are, of course, not observable. 

 Because the parameters p1, p2, c, and α are not simultaneously estimable with only two 
capture sessions, we assumed there was no time effect (i.e., p1 = p2 = p) and there is no behavior 
effect, that is, the probability of first capture is equal to the probability of recapture.  With this 
second assumption, the event a genotype is recaptured is equivalent to the individual being 
captured and genotyped correctly, c = αp, (P. Lukacs, pers. comm., 16 February 2007).  With 
these simplifying assumptions, the MLEs of α and p for the two-capture session are 

                                                      [ ]

[ ] [ ] [ ]

11

10 11 01

ˆ
n

n n n
α =

+ −
                                                       (13) 

and 

                                                      [ ] [ ] [ ]

[ ] [ ]

11 10 01

11 10

ˆ
n n n

p
n n

+ −
=

+
,                                                        (14) 

where n[11], n[10], n[01], are the number of individuals in the study with capture histories [11], [10], 
and [01], respectively.  The population estimate is  

                                                  [ ] [ ] [ ]( )
( )

11 10 01

2

ˆ
ˆ

ˆ1 1LB

n n n
N

p

α + +
=

− −
.                                                   (15) 

A closed-form solution to the associated variance estimator is also available via the method 
suggested in Lukacs and Burnham (2005), but it is rather cumbersome and not presented here. 

 Although the probabilities of the four capture histories, [00], [01], [10], and [11] sum to 
1, we believe there is another possible sample outcome that have been neglected.  Specifically, 
we believe that there is a fifth “capture history” which involves two of the previous capture 
histories.  The “capture history” {[10], [01]} occurs when a genotype is sampled during both 
sessions, but there was a genotyping error in one or both sessions. This fifth capture history has 
probability p(1 - α)pα + p(1 - α) p(1 - α) + pα p(1 - α), which reduces to p2(1 - α2).  The capture 
history {[10], [01]} is not observable, but will add one count to each capture history [10] and 
[01].   

 This additional capture history makes the sum of the probabilities of the possible 
outcomes sum to more than 1.  One could scale the four simple capture history ([00], [01], [10], 
and [11]) probabilities so they sum to one.  The resulting probabilities would then be: 

[ ] [ ]
( ) ( )

( )
2 2

2 2

1 1
10 01

1 1

p p p
P P

p

α

α

− + −
= =

+ −
 

                                                      [ ] ( )
2 2

2 2
11

1 1
pP

p
α

α
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+ −
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[ ] ( )
( )

2

2 2

1
00
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P
p α

−
=

+ −
. 

 The MLEs of α and p are not simultaneously estimable with only two-capture sessions 
under this new formulation.  However, a similar formulation for the three-capture session case, 
does lead to closed form MLEs of both α and p. 

                                                    
( )

2 2
2 3 2 3
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and 

                                               ( )2
3 1 2 3

3 3 2 2
2 3 2 3 2 3

9 2 3
ˆ

27 27 9
n n n n

p
n n n n n n

+ +
=

+ + +
,                                       (18) 

where n1, n2, and n3 are the number of capture histories where the genotype was sampled only 
once ([001], [010], and [100]), twice ([011], [101], and [110]), and three times ([111]), 
respectively.  The population estimate for the three capture session case is then 

                                              ( )
( )

3 1 2 3
modified 3

3

ˆˆ
ˆ1 1LB

n n n
N

p
α

−

+ +
=

− −
.                                            (19) 

We will not pursue this estimator any further but thought some discussion about their specific 
assumptions and this capture history omission may help shed light on the following simulation 
results.   

 

4. Simulations 

 We evaluated the accuracy and precision of GUAVA via simulation studies varying four 
factors:  marker set, population size, sample size, and genotyping error rates.  We ran 1000 
replications of each factor combination.  The levels of each factor are as follows: 

• MARKER SET – Considered marker sets with Poor, Fair, and Good genetic 
information.  Allele frequencies were taken from population I(BR) in Paetkau et 
al. (1997).  The three levels of marker sets used the first 3, the first 5, and all 8 
loci, respectively.  Each locus contained between 7 and 14 alleles.  The EPID for 
the three marker sets were 4.0×10-4, 7.3×10-6, and 7.3×10-9, with EPIDsib (Waits et 
al. 2001) values of 0.05461, 0.01015, and 0.00067.  EPIDsib is the estimated 
probability that a pair of siblings would share a genotype.   

• POPULATION SIZE – Used population sizes of 50, 200, and 1000 individuals. 

• SAMPLE SIZE – Considered 25, 50, 100, 200, and 500 samples per capture 
session.  Because some of these levels are unrealistically large or insufficiently 
small for some levels of population size, only 3 levels of sample size were used 
for each level of population size. For population size of 50, we used sample sizes 
25, 50, and 100.  For population size of 200, we used sample sizes 50, 100, and 
200.  For population sizes of 1000, we used sample sizes 100, 200, and 500. 
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• GENOTYPING ERROR – We used a set of Low and High error rates.  Low had 
a misprint probability of 0.01 per allele and a dropout rate of 0.05 per locus.   
High had a misprint and dropout rates of 0.10 and 0.25, respectively.  The High 
genotyping error rate level was only used with a population size of 200. 

 

Individuals were simulated by randomly assigning an allele size to each allele at a locus 
based on the frequencies of those alleles.  Because of this, it is possible for individuals in the 
population to share the same true genotype (i.e., the shadow effect).  This method of simulation 
assumes Hardy-Weinberg equilibrium, so genotype frequencies could be calculated from allele 
frequencies.  Given the true genotypes of the individuals in the population, samples were 
obtained by first randomly sampling individuals with replacement for each of two capture 
sessions and then imposing genotyping errors.  The method of simulating samples meant that the 
simplifying assumptions for the Lukacs-Burnham method (i.e., that p1 = p2 = p and c = αp) were 
satisfied.  Misprinting errors were randomly imposed on each allele; if misprinting occurred, it 
was equally likely to increase or decrease the allele size by one repeat.  Next dropout was 
simulated with the two alleles at the locus equally likely to be dropped. 

For each replication, capture histories were generated as described above.  For each 
capture history, we used the Bailey’s Binomial estimate of population size and the associated 
estimates of variance (Seber 1982:61).  We also examined the Lincoln-Peterson estimator (Seber 
1982: 60), but initial results suggested the Lincoln-Peterson estimator did not perform as well as 
the Bailey’s estimator (data not shown).  The key difference between the two estimators is that 
the Lincoln-Peterson assumes the second sample is taken without replacement while Bailey’s 
Binomial assumes the second sample is taken with replacement.  Sampling is done with 
replacement in the simulations, and would be expected to be taken with replacement in field 
trials, so the Bailey’s estimator is more appropriate. 

We determined the required burn-in period and number of iterations to skip between 
recorded values of N̂  by examining 10 replicates of each treatment for 10,000 iterations.  Using 
the total number of unique observed genotypes as N0, the burn-in time appeared negligible and 
was set at 100 for all factor combinations.  Autocorrelation of successive estimates was tested 
and the largest significant lag over the 10 replicates for a treatment was used as the lag (range 2 
to 15 iterations, Table 1). The chain was continued until at least 100 values of N̂ were recorded 
and then ceased when the change in the average N̂ , was less than 0.01.  All replications 
converged with no more than 13,577 recorded values, although most converged with less than 
200 recorded values (Table 1).    

For the purpose of comparison, for each replicate, we also calculated population 
estimates for the following methods 

• TRUE - the Bailey’s Binomial population estimates that would result if true identities of 
individuals were discernable. 

• GT - the Bailey’s Binomial population estimates that would result had true genotypes 
been discernable (i.e., if there was no genotyping error).   

• GO - the Bailey’s Binomial population estimates based on the observed genotypes 
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• BC - the Bailey’s Binomial population estimates based on a “biologist-corrected” capture 
history.  For the biologist correction we allow two scats to be a match if they have the 
same observed genotype at all loci or if the observed genotypes are the same at all but 
one locus and the two scats share one allele at the non-matching locus. 

• LB - the population estimates obtained using the Lukacs and Burnham (2005) method.  
These are based on observed genotypes. 

In addition to the population estimates, large-sample confidence intervals were constructed for 
each method.   

 

5. Results and Discussion 

 
 Success rate.  In some replications, a population estimate for a specific method was not 
obtainable.  This was not due to insufficient sample size as population estimates were obtained in 
100% of the replicates using TRUE.  Other methods that did not struggle were GT and GUAVA.  
For other methods, however, as few as 2.8% of replicates produced estimates using observed 
genotypes (GO) as the data source and as few as 24.3% for the biologist-corrected data (BC) 
(Table 1).  The Lukacs-Burnham method (LB) never produced estimates in more than 60.9% of 
replicates, and for some factor combinations in as few as 2.8% of replicates (Table 1).  Estimates 
are not obtainable if there are no recaptures.  When observed genotypes are used as the data 
source, genotyping errors reduce the number of apparent recaptures.  Recaptures of observed 
genotypes decrease as the probability of genotyping error increases.  As the number of loci used 
in the marker set increases, the probability that there will be an error at one or more loci 
increases, subsequently reducing apparent recaptures.  With the Low error rates, the probability 
of at least one genotyping error is 0.19 with 3 loci, and increases to 0.44 with 8 loci.  With the 
High error rates these probabilities increase to 0.78 and 0.98.  The BC method reduces this 
problem by allowing for some genotyping error, but cannot entirely overcome it.  The LB 
method frequently did not produce estimates because the estimates of the parameters α and p can 
be negative, imaginary, or greater than 1 depending on the relative numbers of each type of 
capture history.  When this occurs, no estimate can be obtained. 

 Bias.  GUAVA estimates had very low bias, ranging from -5.3% to +3.6% (and only -
1.0% to +3.4% under Low combinations).  These levels are very comparable to the TRUE 
estimates (Table 2).    GT estimates, when different from TRUE estimates, are biased low, 
estimating the number of genotypes in the population, instead of the number of individuals in the 
population.  The GT estimates tend to underestimate even the number of genotypes in the 
population.  This is because when there are multiple copies of some genotypes in the population, 
the assumption of equal capture probability inherent in the Bailey’s estimate is violated; a multi-
session estimator that allows for individual heterogeneity, such as models available in 
CAPTURE (White et al. 1982) would be more appropriate, but would still not result in an 
estimate of the number of individuals in the population.  This result indicates that there are still 
estimation problems, even when all genotyping error has been eliminated.   

 The bias of the uncorrected data (GO) is unacceptably high, ranging from -2.7% to 
+8,919.8% (-2.7 to +219.2% when High error factor combinations are excluded).  The bias of 
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GO estimates increase as the number of loci increase, because the probability of a genotyping 
error at one or more loci increases.   

 The BC estimates partially overcome the problems with the GO estimates, but this 
method has its own shortcomings.  When only 3 loci are used, the BC method pairs samples that 
match at only 2 loci, something unlikely to be done in practice, and greatly underestimating the 
population size in these cases.  The bias of the BC estimates ranged from -81.8% to +4,477.1% (-
81.8% to +55.0% when High error factor combinations are excluded). 

 LB estimates were also highly biased, with percent bias ranging from -17.1% to 
+14,539.7% (-17.12% to +245.0% when High error factor combinations are excluded).  As 
previously mentioned, the probability that a multi-locus genotype is read correctly decreases 
with increasing number of loci.  With the Low error rates, the probability a genotype is read 
correctly, α, ranges from 0.81 for 3 loci to 0.56 for 8 loci (with High error, these values reduce to 
0.22 and 0.02).  Lukacs and Burnham (2005), assumed low levels of genotyping error, testing α 
from 0.95 to 0.99.  Several loci are required for the LB method to avoid the shadow effect, which 
the LB method assumes is not present. 

 Variance and Standard Errors.  In general, the variance estimate of the Bailey’s 
Binomial estimate is proportional to the estimate, so the standard errors tend to be high when the 
population is overestimated and low when the population is underestimated; this explains much 
of the differences between TRUE standard errors and the standard errors of the GO and BC 
methods (Table 3).   

 The variance (or standard error) of the GUAVA estimate is expected to be at least as 
large as that of the TRUE estimate.  The average GUAVA standard errors were never more than 
32.3% higher than that of the respective TRUE estimate (16.6% when High error factor 
combinations are excluded).  The average GUAVA standard error decreased with increasing 
sample size and with an increase of the number of loci used in the marker set; however, doubling 
the number of samples taken lead to a larger reduction in the average standard error than did a 
doubling of the number of loci used.   

 As with the GUAVA estimates, the average standard error of the LB estimate decreases 
with increasing sample size, but, in contrast to GUAVA, the average standard error of the LB 
estimate increased as the number of loci increased.  Again, this is attributable to the increase of 
genotyping errors (reduction in α) as the number of loci increases.  Lukacs and Burnham (2005) 
realized that their variance term was potentially very large, but only if α was small, which they 
assumed it was not. 

 Coverage.  For each treatment we calculated the percent of replicates where the true 
population size was included in the 95% confidence interval (Table 4).  Ideally this value should 
be close to 95%.  Coverage values less then 93.6% or higher than 96.4% are significantly 
different from 95% (at the 5% level).  Coverage, in part, evaluates the accuracy of the standard 
error.  However, coverage values must be examined in conjunction with the accuracy of the 
estimate and the size of its standard error.  For several factor combinations, the coverage of the 
GO and LB estimates reaches 100% due to astronomically high standard errors. 

 The coverage of the GUAVA estimate ranged from 85.2% to 97.7% (87.4% to 97.7% 
when High error factor combinations are excluded).  Where the GUAVA coverage diverged 
significantly from 95%, the TRUE coverage typically did as well.  This suggests that the 
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normality assumption in the construction of the confidence intervals is more at issue than is the 
accuracy of the estimate or its standard error.  According to Seber (1982:63), the normality 
assumption is appropriate when the sample size and number of recaptures is large; some of our 
factor combinations apparently pushed the boundaries for normality. 

 
6. Summary 

 
 This simulation study demonstrates the potential benefits of GUAVA.  By generating the 
distribution of likely complete-information capture histories, the population estimate had low 
bias with standard errors such that the coverage probability of a standard large-sample 
confidence interval was comparable to estimates based on perfect information (TRUE).  
Furthermore, the accuracy and precision of the GUAVA estimates were comparable whether 3 or 
8 loci were used.  This suggests that fewer loci can be used either to reduce cost or as a trade-off 
to increasing sample size.  Work is ongoing to develop the most efficient “matching” approach 
and expand the algorithm to more than two sessions.  The eventual goal is to incorporate this 
procedure into standard software like CAPTURE (White et al. 1982) since any population 
estimate can be used with the approach.   
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 Table 1.  Lag time, time to convergence, and percent of replications where an estimate was 
obtained for GO, BC, and LB methods.  N is the true population size, Error is the genotyping 
error treatment level, n is the sample size, Markers is the marker set treatment level, k is the lag 
between recorded iterations, and r is the number of recorded estimates until convergence. 

       % reps with estimate 
N Error n Markers k mean r max r GO BC LB 
50 Low 25 Poor 3 111.8 651 100 100 60.9 

   Fair 3 112.8 671 99.6 100 59.1 
   Good 3 101.9 419 98.7 100 60.1 
          
  50 Poor 3 103.9 133 100 100 56.1 
   Fair 3 101.2 119 100 100 53.5 
   Good 2 100.1 109 100 100 54.2 
          
  100 Poor 3 102.4 118 100 100 55.0 
   Fair 3 100.7 112 100 100 52.9 
   Good 2 100.0 103 100 100 53.0 
          

200 Low 50 Poor 5 149.6 2,303 100 100 58.8 
   Fair 3 217.9 4,216 100 100 57.4 
   Good 4 138.1 1,671 98.5 100 59.9 
          
  100 Poor 4 116.8 203 100 100 54.4 
   Fair 3 110.0 190 100 100 54.6 
   Good 2 107.9 303 100 100 55.2 
          
  200 Poor 5 110.4 161 100 100 51.0 
   Fair 3 105.3 141 100 100 51.5 
   Good 4 100.9 127 100 100 53.8 
          
 High 50 Poor 15 163.0 1,960 82.3 100 53.3 
   Fair 6 156.1 2,985 28.0 82.1 24.0 
   Good 4 163.6 3,132 2.8 24.3 2.8 
          
  100 Poor 10 130.8 342 99.8 100 57.3 
   Fair 6 122.8 258 71.8 99.8 49.0 
   Good 4 113.8 192 13.9 63.9 12.7 
          
  200 Poor 10 117.8 193 100 100 52.5 
   Fair 6 113.7 170 99.4 100 59.5 
   Good 4 108.8 152 42.3 98.6 34.8 
          

1000 Low 100 Poor 7 673.8 8,856 100 100 57.6 
   Fair 4 1,281.4 13,577 99.5 100 56.9 
   Good 3 735.3 12,426 97.5 100 59.7 
          
  200 Poor 6 184.3 554 100 100 56.9 
   Fair 4 158.3 480 100 100 56.3 
   Good 3 272.7 2,795 100 100 53.6 
          
  500 Poor 6 145.5 306 100 100 50.5 
   Fair 3 126.1 235 100 100 52.9 
   Good 3 109.1 175 100 100 52.4 
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Table 2.  Average estimate.  N is the true population size, Error is the genotyping error treatment 
level, n is the sample size, Markers is the marker set treatment level, GTN is the average number 
of unique genotypes in the population over the 1,000 replications of the treatment. 

N Error n Markers 
GTN  GUAVA TRUE GT GO BC LB 

50 Low 25 Poor 49.5 50.6 49.6 48.7 72.1 41.2 63.1 
   Fair 50.0 50.2 50.3 50.3 91.2 56.8 80.8 
   Good 50.0 49.5 49.5 49.5 125.3 66.4 121.1 
           
  50 Poor 49.5 50.7 50.0 49.3 75.2 44.0 71.5 
   Fair 50.0 50.0 49.9 49.9 98.0 57.9 92.6 
   Good 50.0 50.2 50.3 50.3 144.9 70.9 133.7 
           
  100 Poor 49.5 51.1 49.9 49.4 81.5 46.7 87.4 
   Fair 50.0 50.1 50.0 50.0 108.0 61.1 116.2 
   Good 50.0 50.0 50.0 50.0 159.6 77.5 172.0 
           

200 Low 50 Poor 192.5 202.9 197.7 185.4 262.1 100.7 225.9 
   Fair 199.8 202.4 201.3 201.1 365.1 219.5 320.0 
   Good 200.0 201.6 201.4 201.4 499.0 268.7 473.4 
           
  100 Poor 192.5 203.3 200.6 188.7 271.9 113.5 247.5 
   Fair 199.9 200.6 200.5 200.3 376.1 222.3 341.6 
   Good 200.0 199.5 199.5 199.5 532.5 268.6 471.6 
           
  200 Poor 192.5 204.6 200.3 190.3 286.6 128.9 287.4 
   Fair 199.9 200.2 199.7 199.5 389.8 228.0 392.1 
   Good 200.0 199.9 199.9 199.9 561.9 280.7 556.2 
           
 High 50 Poor 192.4 207.1 197.2 184.4 876.2 193.2 1,014.3 
   Fair 199.9 206.3 198.0 197.9 1,176.5 886.5 2,006.0 
   Good 200.0 201.4 200.7 200.7 1,244.6 1,189.3 2,410.7 
           
  100 Poor 192.5 199.2 200.1 188.4 1,438.9 228.5 1,271.2 
   Fair 199.8 198.9 200.6 200.3 3,915.2 1,425.0 5,219.3 
   Good 200.0 198.0 199.0 199.0 4,918.6 4,086.5 9,009.0 
           
  200 Poor 192.6 189.4 199.4 189.5 1,499.6 277.2 1,406.2 
   Fair 199.9 195.1 200.0 199.8 7,878.0 1,547.4 6,805.1 
   Good 200.0 197.6 200.0 200.0 18,039.6 9,154.2 29,279.4 
           

1000 Low 100 Poor 853.6 1,033.8 997.6 732.5 973.3 182.2 828.8 
   Fair 996.4 1,001.9 991.2 983.8 1,727.2 944.0 1,420.3 
   Good 1,000.0 1,006.9 1,007.0 1,007.0 2,361.5 1,312.5 2,149.7 
           
  200 Poor 853.8 1,014.8 999.3 745.9 994.1 222.8 912.9 
   Fair 996.5 999.5 993.3 987.0 1,783.3 959.5 1,553.3 
   Good 1,000.0 994.9 995.0 995.0 2,568.7 1,304.7 2,239.4 
           
  500 Poor 854.6 1,007.9 996.5 777.8 1,065.9 298.3 1,084.7 
   Fair 996.4 1,003.3 999.2 993.9 1,842.0 1,003.8 1,775.2 
   Good 1,000.0 1,002.6 1,002.7 1,002.7 2,659.2 1,348.9 2,539.1 
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Table 3.  Average standard error of the estimate.  N is the true population size, Error is the 
genotyping error treatment level, n is the sample size, and Markers is the marker set treatment 
level. 

N Error n Markers GUAVA TRUE GT GO BC LB 
50 Low 25 Poor 12.5 11.6 11.3 21.4 8.7 78.0 

   Fair 12.1 12.1 12.1 30.9 14.8 142.4 
   Good 11.6 11.6 11.6 49.5 18.8 388.1 
          
  50 Poor 5.5 5.3 5.2 10.8 4.3 26.8 
   Fair 5.3 5.2 5.2 16.8 6.8 48.7 
   Good 5.3 5.3 5.3 31.6 9.8 112.9 
          
  100 Poor 2.1 1.9 1.9 5.4 1.8 14.6 
   Fair 2.0 1.9 1.9 8.9 3.0 27.3 
   Good 1.9 1.9 1.9 17.3 4.9 64.0 
          

200 Low 50 Poor 55.6 50.6 45.9 78.7 17.5 354.8 
   Fair 53.5 52.4 52.3 129.9 59.9 850.3 
   Good 52.4 52.3 52.3 204.5 82.2 2240.6 
          
  100 Poor 25.7 24.7 22.3 40.4 9.6 122.1 
   Fair 24.8 24.7 24.6 67.5 29.2 250.2 
   Good 24.5 24.4 24.4 115.9 39.6 506.1 
          
  200 Poor 11.5 10.8 9.8 20.3 5.1 53.5 
   Fair 10.8 10.7 10.7 33.7 13.6 105.7 
   Good 10.7 10.7 10.7 60.8 19.5 224.8 
          
 High 50 Poor 66.8 50.5 45.5 444.6 49.6 9,155.9 
   Fair 60.3 50.9 50.9 651.0 450.8 26,954.7 
   Good 53.9 52.0 52.0 699.5 660.3 34,728.5 
          
  100 Poor 26.8 24.6 22.3 523.8 31.0 5,245.4 
   Fair 25.4 24.7 24.7 2,081.3 512.7 79,413.8 
   Good 24.5 24.3 24.3 2,791.9 2,200.7 181,922.4 
          
  200 Poor 10.4 10.6 9.7 279.7 19.5 1,607.2 
   Fair 10.7 10.7 10.7 3,317.3 293.1 54,260.0 
   Good 10.7 10.7 10.7 10,061.4 4,095.4 768,925.2 
          

1000 Low 100 Poor 350.4 300.5 188.7 291.5 21.5 1,753.3 
   Fair 310.8 298.1 294.8 678.9 277.6 6,177.4 
   Good 305.2 304.7 304.7 1,056.6 453.8 15,616.6 
          
  200 Poor 157.7 149.1 94.7 148.2 13.6 628.9 
   Fair 150.1 147.5 146.0 362.5 140.0 1,936.5 
   Good 148.2 148.1 148.1 632.7 225.0 4,303.0 
          
  500 Poor 56.9 55.1 36.8 61.9 7.5 204.3 
   Fair 55.9 55.3 54.8 147.3 55.9 568.6 
   Good 55.7 55.7 55.7 261.2 90.0 1,208.9 

 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2007/proceedings/7



 88

 Table 4.  Percent of replications in which the 95% confidence interval included the true 
population size.  N is the true population size, Error is the genotyping error treatment level, n is 
the sample size, and Markers is the marker set treatment level.   

N Error n Markers GUAVA TRUE GT GO BC LB 
50 Low 25 Poor 90.6 86.7 85.1 99.4 62.6 99.7 

   Fair 90.2 88.6 88.6 99.9 94.6 100.0 
   Good 87.4 86.9 86.9 100.0 98.8 100.0 
          
  50 Poor 94.0 91.8 88.7 29.0 55.9 100.0 
   Fair 92.9 89.9 89.8 0.9 87.5 100.0 
   Good 92.6 92.1 92.1 0.0 40.9 100.0 
          
  100 Poor 97.7 93.0 88.4 0.0 49.1 0.5 
   Fair 95.2 92.8 92.8 0.0 6.7 3.0 
   Good 93.0 93.1 93.1 0.0 0.0 43.6 
          

200 Low 50 Poor 89.2 87.7 81.4 98.6 4.9 100.0 
   Fair 89.6 88.0 87.7 100.0 94.4 100.0 
   Good 88.8 88.4 88.4 100.0 98.4 100.0 
          
  100 Poor 93.8 94.3 84.1 66.7 0.2 100.0 
   Fair 95.0 94.2 94.2 5.8 97.2 100.0 
   Good 93.6 93.4 93.4 0.0 68.9 100.0 
          
  200 Poor 95.9 95.6 76.4 0.0 0.0 99.4 
   Fair 94.6 94.1 94.0 0.0 47.9 85.8 
   Good 94.2 93.9 93.9 0.0 0.0 98.1 
          
 High 50 Poor 85.2 88.2 82.0 100.0 82.2 100.0 
   Fair 88.6 88.0 88.0 100.0 100.0 100.0 
   Good 91.1 90.6 90.6 100.0 100.0 100.0 
          
  100 Poor 90.0 93.7 83.4 3.5 89.8 100.0 
   Fair 93.6 92.9 92.8 79.4 2.8 100.0 
   Good 94.1 93.1 93.1 99.3 85.1 100.0 
          
  200 Poor 86.0 94.8 73.7 0.0 1.4 100.0 
   Fair 95.7 94.4 94.4 4.2 0.0 100.0 
   Good 96.9 94.8 94.8 72.6 8.0 100.0 
          

1000 Low 100 Poor 88.5 89.6 51.4 85.7 0.0 99.1 
   Fair 87.6 87.7 87.3 99.7 82.7 100.0 
   Good 89.9 89.4 89.4 100.0 98.6 100.0 
          
  200 Poor 92.3 94.3 27.8 90.2 0.0 99.8 
   Fair 93.9 94.0 93.3 32.1 90.0 100.0 
   Good 92.8 93.3 93.3 2.0 89.4 100.0 
          
  500 Poor 94.4 95.3 0.1 84.0 0.0 100.0 
   Fair 95.9 94.9 94.5 0.0 93.7 100.0 
   Good 95.8 95.7 95.7 0.0 0.1 100.0 
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