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SELECTION OF BLOCKED TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS 
FOR AGRICULTURAL EXPERIMENTS 

 
 

Weiming Ke1, Cuirong Ren2, and Huitian Lu3 

 
1 Department of Mathematics and Statistics 

2Department of Plant Sciences 
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Abstract 
 

      Blocked two-level fractional factorial designs are a very useful tool for 
efficient data collection in agricultural and other scientific research. In most 
experiments, in addition to the main effects, some two-factor interactions are 
also meaningful and need to be estimated. We propose a method for 
efficiently selecting blocked two-level fractional factorial designs when some 
of the two-factor interactions are non-negligible. We then present some results 
for a design with only 8 or 16 runs to illustrate how to use this method.  
 
 

Key words and phrases: blocking factor; defining contrast subgroup; defining words; minimum 
aberration; resolution; word-length pattern; confounding pattern. 
 
 
1. Introduction 
 
      Two-level fractional factorial (2m-p) designs allow us to study many factors with relatively 
small run size. They are very useful for identifying important factors and are widely used in 
many areas of scientific investigation. The practical and theoretical importance of this class of 
designs has long been established by Box, Hunter, and Hunter (1978). Since the fraction can be 
chosen in many different ways, a key concern is how to choose a fraction of the full factorial 
design for a given run size and the number of factors. Commonly used criterion for 2m-p design 
selection is the minimum aberration criterion proposed by Fries and Hunter (1980). For a small 
number of factors, Box, Hunter, & Hunter (1978) provided a useful catalogue of 2m-p designs 
with minimum aberration. Franklin (1984) constructed more minimum aberration designs. A 
more complete catalogue of 2m-p designs, ordered by the minimum aberration criterion, was 
provided by Chen, Sun, and Wu (1993).  
 
      In agricultural experiments, in order to reduce extraneous error and increase the precision of 
inferences, it is often desirable to group the experimental units into blocks such as different fields 
in a plant study. Hence blocked 2m-p designs are often used in order to make data collection more 
efficient. Work on the criteria of optimal blocking schemes includes: Bisgaard (1994), Sun, Wu, 
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and Chen (1997), Sitter, Chen, and Feder (1997), Chen and Cheng (1999), Cheng and Wu 
(2002), and Cheng, Li, and Ye (2004). Their schemes yield optimal estimation of models 
containing main effects and block effects.  
 
      In some agricultural experiments, in addition to the main effects and blocking effects, some 
2-factor interactions may be important and should be estimated. For unblocked designs, much 
work has been done on constructing designs that allow estimation of a set of specified effects, 
including some 2-factor interactions: Addelman (1962), Greenfield (1976), Franklin (1985), 
Hedayat and Pesotan (1992), Wu and Chen (1992), Tang and Deng (1999), Dey and Suen 
(2002), Ke and Tang (2003), and Ke, Tang, and Wu (2005). 
 
      In this paper, we propose a method to select blocked 2m-p designs for the models containing 
some two-factor interactions. We then discuss how to search for designs using this method and 
present some results for designs of 8 and16 runs. Section 2 of the paper introduces two-level 
fractional factorial designs and blocking. Section 3 introduces and discusses a method for 
selecting blocked 2m-p designs for models containing some non-negligible 2-factor interactions. 
Section 4 examines how to search for designs using this method and presents some results for 
designs of 8 and 16 runs. Section 5 concludes the paper with an illustrative example.  
 
2. Two-level fractional factorial designs and blocking  
 
2.1 Two-level fractional factorial designs 
 
      A regular two-level fractional factorial design is commonly referred to as a 2m-p design. It has 
m two-level factors with 2m-p runs, and is completely determined by p independent defining 
relations. When p = 0, a full factorial 2m design is produced. A defining relation is given by a 
word of letters which are labels of factors denoted by 1, 2, …, m. The number of letters in a word 
is called its word-length. The group of defining words generated by the p independent defining 
words is called the defining contrast subgroup for the design. The length of the shortest word in 
the defining contrast subgroup is called the resolution of a design. The vector W(d) = (A1(d), 
A2(d), …, Am(d)) is called the word-length pattern of the design d, where Ai(d) is the number of 
words of length i in the defining contrast subgroup. The resolution of a design is the smallest r 
satisfying Ar ≥ 1. The resolution criterion proposed by Box and Hunter (1961) selects 2m-p 
designs that have highest resolution. Since two designs having the same resolution may have 
different word-length patterns and may not be equally good, Fries and Hunter (1980) proposed 
the minimum aberration criterion to further discriminate among 2m-p designs. For two designs d1 
and d2, suppose r is the smallest value such that Ar(d1) ≠ Ar(d2). We say that d1 has less aberration 
than d2 if Ar(d1) < Ar(d2). If no design has less aberration than d1, then d1 is said to have minimum 
aberration. The minimum aberration criterion which selects 2m-p designs with minimum 
aberration is a commonly used criterion for 2m-p design selection (Wu and Hamada, 2000). 
 
Example 2.1.1 – The 24-1 Minimum Aberration Design: 
 
      Suppose we wish to perform an experiment with 8 runs and several factors at two levels, 
labeled +1 and −1. Table 1 gives the columns of an 8-run saturated design with its columns 
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arranged in Yates’ order, with the generating independent columns 1, 2, and 4, in boldface. The 
Yates’ order of the columns of an 8-run saturated design can be written as (a1, a2, a1a2, a3, a1a 3, 
a2a 3, a1a2a3) where a1, a2, and a3 are three independent columns. Hence columns 3, 5, 6, and 7 
can be obtained by multiplying columns 1 and 2, 1 and 4, 2 and 4, and 1, 2, and 4, respectively. 

 
      If we use columns 1, 2, and 4 in Table 1 to set the levels of three factors A, B, and C, 
respectively, then y1 through y8 represent the responses at the 23 = 8 possible combinations of 
factor settings. This gives a 23 = 8 run, two-level, three-factor, full factorial design. By using this 
23 full factorial design, the main effects of A, B, and C, as well as their interactions AB, AC, BC, 
and ABC can be estimated. If we would like to study one more factor D using the 8-run design, 
we have different choices. For design d1, we assign the levels of factor D to column 7. This gives 
a 24-1 fractional factorial design. Since 7 = (1)(2)(4) or I = (1)(2)(4)(7) where I denotes the column of 
+1’s, the estimate for the main effect D could not be separated from the effect of the interaction 
between A, B, and C. That is D = ABC, or I = ABCD. Here I = (1)(2)(4)(7) is the defining relation 
or defining word of the 24-1 design. The resolution of the design is 4 and the word-length pattern 
W(d1) = (0, 0, 0, 1). For design d2, we assign factor D to column 6 = (2)(4). The defining word is 
I = (2)(4)(6) and the resolution is 3. The word-length pattern W(d2) = (0, 0, 1, 0). Obviously, d1 is 
better than d2 because it has higher resolution and minimum aberration: A3(d1) = 0 < A3(d2) = 1. 
Both definitions of resolution and minimum aberration are based on the hierarchical assumption: 
(i) lower order interactions are more important than higher order interactions, (ii) effects of the 
same order are equally important. The advantage of d1 is obvious based on the resolution 
principle, because the main effects in d1 are confounded with three-factor interactions whereas 
the main effects in d2 are confounded with two-factor interactions. The 8-run 2m-p designs can be 
used to study up to seven factors by assigning these factors to all the seven columns. This design 
is denoted by 27-4, and called a saturated design. 
 
2.2 Blocking and its applications 
 
      Blocking is a commonly used technique to control systematic variation in experiments. Such 
variation might occur from field-to-field, day-to-day, or batch-to batch. Without blocking, the 
systematic variation can influence the accuracy and efficiency of effect estimation. Blocking can 
effectively eliminate the systematic variance by grouping the runs of an experiment into blocks. 
In a blocked design, the variance due to blocks is modeled. Hence it is removed from the residual 
variance; thereby effectively reducing the magnitude of the estimated experimental error. Criteria 
for the choice of blocks are most frequently different settings or environments for the conduct of 
the experiment. In any case, blocks should be chosen so that the units within blocks are as 
homogeneous as possible. Blocking can be accomplished through the use of blocking factors in a 
design. For 2m-p designs, since there are many choices to assign blocking factors to the unused 
columns of a saturated design, blocking schemes and methods are needed to select columns that 
reduce the bias (as one did in the selection of unblocked designs). In blocked 2m-p designs, 
interactions between treatment and blocking factors are assumed to be non-existent, a necessary 
condition for the effectiveness of blocking. See Box, Hunter, & Hunter (1978) for the principles 
and assumptions in the construction of block designs. For the models including only main effects 
and blocking effects, many blocking schemes for 2m-p designs have been discussed in the 
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literature. In this article, we discuss the blocking schemes for the models that include some 
important two-factor interactions in addition to the main effects and the blocking effects.  
 
3. A method for selecting blocked 2m-p designs 

 

3.1 The criterion for selecting blocked 2m-p designs 
 
      For unblocked 2m-p designs, Ke and Tang (2003) proposed a minimum N-aberration criterion 
to select designs by systematically minimizing the bias of all effects in the model caused by other 
effects. This criterion was further studied and summarized by Cheng and Tang (2005). In this 
article, we consider blocked 2m-p designs that allow estimation of some 2-factor interactions. 
Suppose we wish to estimate main effects and some important 2-factor interactions using a 
blocked 2m-p design. The fitted model should include all main effects, blocking effects, and the 
important 2-factor interactions. If the effects not in the postulated model cannot be completely 
ignored (i.e., are non-negligible), they will bias the estimates of the effects in the model. To 
solve this problem, the key issues are to permit estimation of the main effects, blocking effects, 
and the important 2-factor interactions in the model and to minimize the bias caused by the other 
effects not included in the model. The optimal design should be selected to minimize 
contamination of effect estimates by any unknown non-negligible effects excluded from the 
model. The proposed criterion is given below: 
 
Optimal design selection criterion: Suppose that the postulated model includes main effects, 
blocking effects, and some important two-factor interactions. Let Nj, j = 2, 3, …, m, be the 
number of j-factor interactions not in the model confounded with the effects in the model. We 
select optimal blocked 2m-p designs by sequentially minimizing N2, …, Nm.   
 
      To gain further insight into the criterion, we now examine the criterion in detail. When some 
2-factor interactions need to be estimated, the postulated model should consist of all main 
effects, blocking effects and these important 2-factor interactions. Those 2-factor interactions not 
in the model and other higher-order interactions generally cause a bias on the estimation of the 
effects in the model. The measure of this bias, as given by Nj, is the number of the j-factor 
interactions outside the model that are confounded with the effects in the model. Under the 
hierarchical assumption that lower-order effects are more important than higher-order effects 
(Wu and Hamada (2000)), to minimize the bias, we should sequentially minimizing N2, N3, …, 
Nm. The vector (N2, N3, …, Nm) is called the confounding pattern of a design. Hence this criterion 
selects as optimal the design that has minimum N2. If several designs have the same number of 
N2, we select as optimal the design that has minimum N3 among the designs that have minimum 
N2, and so on. Note that N3 is the total number of 3-factor interactions that are confounded with 
the effects in the model.  
 
Example 3.1.1 – Selecting a Blocked 24-1 Minimum N-aberration Design 
 
      Suppose that we want to study four factors A, B, C, and D, and two-factor interactions AB 
and AC by using a blocked design of 8 runs. We consider two designs d1 and d2. Using Table 1, 
for d1, we assign the four treatment factors A, B, C, and D to columns 1, 4, 7, and 2, and the 
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blocking factor to column 3b, where b indicates blocking factor. The interactions to be estimated 
should be (1)(4) and (1)(7). Since 7 = (1)(2)(4) and 3b = (1)(2), the defining contrast subgroup of 
the design is given by I = (1)(2)(3b) = (3b)(4)(7) = (1)(2)(4)(7). Hence we have the following 
(model effect = non-model confounded effect) identity pairs: (1)(4) = (2)(7), (1)(7) = (2)(4), 3b = 
(1)(2), 3b = (4)(7), 1 = (2)(4)(7), 2 = (1)(4)(7), 4 = (1)(2)(7), and 7 = (1)(2)(4). Therefore N2 = 4, 
N3 = 4, and N4 = 0. Note that the interactions between blocking factors and treatment factors are 
assumed to be not existent and are not counted here. The confounding pattern of d1 is (4, 4, 0) 
which means that four 2-factor interactions and four 3-factor interactions not in the model are 
confounded with the effects in the model. For d2, we assign the four treatment factors A, B, C, 
and D to columns 4, 2, 3, and 1, and the blocking factor to column 5b. The interactions to be 
estimated should be (4)(2) and (4)(3). Since 3 = (1)(2) and 5b = (1)(4), the defining contrast 
subgroup of d2 is given by I = (1)(2)(3) = (1)(4)(5b) = (2)(3)(4)(5b). Hence we have 1 = (2)(3), 2 
= (1)(3), 3 = (1)(2), 5b = (1)(4), 5b = (2)(3)(4), (2)(4) = (1)(3)(4), (3)(4) = (1)(2)(4), and (4) = 
(1)(2)(3)(4). Hence the confounding pattern of d2 is (4, 3, 1) meaning that four 2-factor 
interactions, three 3-factor interactions, and one 4-factor interaction not included in the model 
are confounded with the effects in the model. Based on our design selection criterion, d2 is better 
than d1 because N2(d1) = N2(d2) and N3(d1) > N3(d2) where N2(d1), N2(d2), N3(d1), and N3(d2) 
denote the N2 and N3 for d1 and d2 respectively.  

 
3.2 Theoretical justification of the criterion 

 
      Suppose that we are interested in estimating all main effects, a set of important two-factor 
interactions by using a blocked 2m-p designs. Then the fitted model is given by 

Y = β0 I + W1λ1 + ε                                                    (1) 
where Y denotes the vector of n observations, β0 is the grand mean, I denotes the vector of n 
ones, λ1 is the vector of parameters containing all main effects, a set of important two-factor 
interactions, and blocking effects, W1 is the corresponding design matrix, and ε is the vector of 
uncorrelated random errors, assumed to have mean 0 and a constant variance. Since other 
interactions among treatment factors may not be negligible, the true model can be written as 

 Y = β0 I + W1λ1 + X2β2 + X3β3 + · · · + Xm βm + ε                              (2) 
where β2 is the vector of remaining two-factor interactions and X2 is the corresponding design  
matrix, βj is the vector of j factors interactions and Xj is the corresponding matrix. The least 
square estimator 1̂λ  = YWWW TT

1
1

11 )( − = YWn T
1

1− from the fitted model in (1) has expectation, 
taken under the true model in (2), of E( 1̂λ ) = λ1 + P2β2 + P3β3 + · · · + Pmβm, where P2 = 

21
1 XWn T− and Pj = j

T XWn 1
1− . So the bias of 1̂λ  for estimating λ1 is given by (Ke and Tang, 

2003) 
    Bias ),ˆ( 11 λλ  = P2β2 + P3β3 + · · · + Pmβm                                   (3) 

Note Pjβj is the contribution of βj to the bias. Because βj is unknown, we have to work with Pj. 

One size measure for a matrix P = (pij) is given by ||P||2
def
= trace(PTP) =∑ ji ijp

,
2 . Under the 

hierarchical assumption that lower order effects are more important than higher order effects, to 
minimize the bias of 1̂λ  we should sequentially minimize ||P2||2, …, ||Pm||2. For regular 2m-p 
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designs, the entries of Pj are 0 or 1, and thus ||Pj||2 is simply the number of j-factor interactions 
aliased with the effects in the postulated model in (1). Now let Nj = ||Pj||2. Based on the above 
results, we can select blocked 2m-p designs by sequentially minimizing N2, …, Nm where Nj is the 
number of j-factor interactions not in the model and aliased with the effects in the model. 
 
4. Searching for minimum N-aberration blocked 2m-p designs 
 

4.1 Search method 
 
      In this paper, we consider blocked 2m-p designs of 8 runs and 16 runs. For designs of 8 runs, 7 
columns compose a saturated design. The choice of blocked 2m-p designs is limited and the 
optimal design is easy to select according to our criterion. For 16 run, a saturated design 
composes 15 columns, providing many choices of blocked 2m-p designs. The optimal 16 run 
design, using our criterion, is not easy to select. We use a computer program to calculate the 
confounding pattern for each choice of design for a given number of treatment factors, important 
two-factor interactions and blocking factors. Then select the one that has minimum N2. If two 
designs have equal N2, we select the design that has the minimum N3, and so on. Through our 
search effort, we have found all existing minimum N-aberration optimal blocked 2m-p designs of 
8 runs, and optimal designs of 16 runs for the models containing up to three 2-factor interactions 
and one blocking factor. Let k be the number of important 2-factor interactions. For k = 1, there 
is only one model, as represented by Figure 1. Each point represents a factor and connected 
points identify 2-factor interaction in the model. For k = 2, 3, the number of models is 2 and 5 
respectively, and the graphs for these models are given in Figures 2 and 3 respectively. In our 
search effort, we have used (N2, N3, N4) instead of the entire vector (N2, …, Nm) to reduce the 
computing burden. Actually five-factor and higher order interactions are very small and are 
usually negligible in practice. 

 
4.2 Optimal blocked 2m-p minimum N-aberration designs of 8 and 16 runs 
 
      Table 2 presents all existing optimal designs of 8 runs for all. Tables 3-5 present the optimal 
designs of 16 runs for the models containing one blocking factor and one, two, and three 
important two-factor interactions respectively. In these tables, the entries under “mt + mb” give 
the number of treatment factors plus the number of blocking factors, the entries under  “model” 
indicate which model is under consideration, and for example, an entry of 2(a) denotes the model 
represented by Figure 2(a). The entries under “treatment factor” give the additional columns in 
addition to the independent columns (which are 1, 2, and 4 for 8-run designs and 1, 2, 4, and 8 
for 16-run designs) for the main effects in the fitted model. The entries under “block factor” give 
the columns of the blocking factors. Column j in these tables denotes the j-th column in the 
saturated design with its columns arranged in Yates order. The Yates’s order of the columns of a 
16-run saturated design can be written as (a1, a2, a1a2, a3, a1a3, a2a3, a1a2a3, a4, a1a 4, a2a4, 
a1a2a4, a3a4, a1a3a4, a2a3a4, a1a2a3a4) where other columns can be generated from the four 
independent columns a1, a2, a3, and a4. The entries under “2-f interaction” show how to assign 
the factors involved in the important 2-factor interactions. The last column in these tables gives 
(N2, N3, N4).       
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5. An illustrative example for an agricultural experiment 
 
      The optimal blocked 2m-p designs of 8 runs and 16 runs are listed in Tables 2-5. When we 
plan to study several treatment factors and some important 2-factor interactions by using a 
blocked 2m-p design of 8 runs or 16 runs, we can choose an optimal design directly from these 
tables to satisfy our needs. 
 
      Suppose that in an agricultural experiment, the experimenter wants to study six factors: 
Nitrogen, Phosphorus, Potassium, temperature, moisture, and light. She would like to use a 
blocked 2m-p design of 16 runs with one blocking factor that is the subdivision of the field. In 
addition to the main effects of these factors, she also wants to estimate the three two-factor 
interactions that are between Nitrogen and Phosphorus, between Nitrogen and Potassium, and 
between Phosphorus and Potassium. The graph for this model is 3(e) as in Figure 3. The optimal 
design for this model can be found in Table 5. Now let us look at the row for mt + mb = 6 + 1 and 
model 3(e) in Table 5. We see that the additional columns for treatment factors are 7 and 11 
(together with columns 1, 2, 4, and 8) and the column for blocking factor is 13. To complete the 
specification of the optimal design, we need to appropriately assign the six treatment factors to 
the six columns 1, 2, 4, 8, 7, and 11. The “2-f interaction” column in Table 5 indicates that we 
should assign Nitrogen, Phosphorus, and Potassium to columns 1, 4, and 8 and assign other 
treatment factors to columns 2, 7, and 11. This design has N2 = 3, meaning that three 2-factor 
interactions not in the model are confounded with the effects in the model. This design is the 
minimum N-aberration design. 
 
6. Summary 
 
In this paper, we proposed and studied a method for efficiently selecting minimum N-aberration 
blocked two-level fractional factorial designs when some of the two-factor interactions are 
important. We described how to construct and search for these designs and presented some 
results for designs of 8 and 16 runs. Optimal design tables were provided for the given number of 
treatment factors, blocking factors, and the important two-factor interactions. An example was 
used to illustrate how to apply the optimal design tables to an agricultural experiment. 
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Table 1. Columns of an 8-run saturated design in Yates’s order 
 

Run 1 2 3 
3=(1)(2)

4 5 
5=(1)(4)

6 
6=(2)(4)

7 
7=(1)(2)(4) 

Response 

1 −1 −1 +1 −1 +1 +1 −1 y1 

2 +1 −1 −1 −1 −1 +1 +1 y2 
3 −1 +1 −1 −1 +1 −1 +1 y3 
4 +1 +1 +1 −1 −1 −1 −1 y4 
5 −1 −1 +1 +1 −1 −1 +1 y5 
6 +1 −1 −1 +1 +1 −1 −1 y6 
7 −1 +1 −1 +1 −1 +1 −1 y7 
8 +1 +1 +1 +1 +1 +1 +1 y8 

 
 
 
 

Table 2. Optimal blocked designs of 8 runs for the models 
containing some 2-f interactions and one block factor 

______________________________________________________________________________________     
 mt + mb    treatment factor     2-f interaction    block factor      (N2, N3,  N4) 

--------------------------------------------------------------------------------------------------------------------------------- 
                                4 + 1                7                              (1, 4)                       3                    (3, 4, 0) 
                                5 + 1                3 5                           (2, 5)                       6                    (9, 8, 4) 

                                4 + 1                3                         (2, 4)(3, 4)                    5                    (4, 3, 1) 
--------------------------------------------------------------------------------------------------------------------------------- 

 
 
 
 
 
 
 
 
 
 
 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2007/proceedings/6



 71

Table 3. Optimal blocked designs of 16 runs for the model  
containing one 2-f interaction and one block factor 

______________________________________________________________________________________     
                        mt + mb      treatment factor      2-f interaction    block factor       (N2, N3,  N4) 

---------------------------------------------------------------------------------------------------------------------------------- 
                             5 + 1         7                                         (1, 8)                 11                            (0, 6, 1) 
                             6 + 1         7 11                                    (1, 4)                 13                          (1, 16, 2) 
                             7 + 1         7 11 13                               (1, 2)                 14                          (2, 37, 4) 
                             8 + 1         7 11 13 14                          (1, 2)                 5                           (7, 56, 16) 
                             9 + 1         3 5 9 14 15                         (2, 4)                 7                         (19, 64, 80) 
                           10 + 1         3 5 6 9 14 15                      (2, 8)                 11                     (31, 88, 160) 
                           11 + 1         3 5 6 9 10 13 14                 (1, 6)                 15                   (44, 129, 272) 
                           12 + 1         1 3 5 6 9 10 13 14 15         (1, 6)                 11                   (59, 188, 432) 
                           13 + 1         3 5 6 9 10 11 13 14 15       (1, 6)                 12                   (77, 264, 660) 

----------------------------------------------------------------------------------------------------------------------------------- 
   
 
 
 

 
Table 4. Optimal blocked designs of 16 runs for the models containing 

 two 2-f interactions, as in Figure 2, and one block factor  
______________________________________________________________________________________________     
mt + mb     model     treatment factor     2-f interaction    block factor      (N2, N3,  N4) 

--------------------------------------------------------------------------------------------------------------------------------------------- 
                      5 + 1           2(a)        15                                (1, 2)(4, 8)                 5                        (1, 3, 5) 
                      5 + 1           2(b)        7                                  (1, 8)(2, 8)                 11                      (0, 6, 2) 

                      6 + 1           2(a)        7 11                             (1, 4)(2, 8)                 13                    (2, 16, 4) 
                      6 + 1           2(b)        7 11                             (1, 4)(2, 4)                 13                    (2, 16, 4) 

                      7 + 1           2(a)        7 11 13                        (1, 2)(4, 8)                 14                    (4, 35, 8) 
                      7 + 1           2(b)        7 11 13                        (1, 2)(1, 4)                 14                    (4, 35, 8) 

                      8 + 1           2(a)        7 11 13 14                   (1, 2)(4, 8)                  5                  (10, 56, 24) 
                      8 + 1           2(b)        7 11 13 14                   (1, 2)(1, 4)                  6                  (10, 56, 24) 

                      9 + 1           2(a)        3 5 9 14 15                  (2, 4)(3, 8)                  7                  (22, 68, 88) 
                      9 + 1           2(b)        3 5 9 14 15                  (2, 4)(3, 4)                 10                 (22, 68, 88) 

                    10 + 1           2(a)        3 5 6 9 14 15               (2, 8)(3,14)                11               (34, 96, 172) 
                    10 + 1           2(b)        3 5 6 9 14 15               (2, 8)(3, 8)                 12               (34, 96, 172) 

                    11 + 1           2(a)        3 5 6 9 10 13 14          (1, 10)(2, 5)               15              (48, 141, 288) 
                    11 + 1           2(b)        3 5 6 9 10 13 14          (1,13)(2,13)               7                (48, 141, 288) 

                    12 + 1           2(a)        3 5 6 7 9 10 11 12       (1,12)(4,10)               15              (64, 203, 457) 
                    12 + 1           2(b)        3 5 6 7 9 10 11 12       (1,12)(2,12)               15              (64, 203, 457) 

---------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 5. Optimal blocked designs of 16 runs for the models containing  
three 2-f interactions, as in Figure 3, and one block factor 

(A row having entries “–” indicates the situation where the  
specified model does not exist for the given number of factors.) 

_______________________________________________________________________________________________     
mt + mb     model     treatment factor     2-f interaction    block factor      (N2, N3,  N4) 

----------------------------------------------------------------------------------------------------------------------------------------------- 
                      5 + 1         3(a)             –                                       –                         –                           – 

5 + 1         3(b)            15                           (1, 2)(4, 8)(4,15)            5                      (1, 4, 5) 
5 + 1         3(c)             7                            (1, 8)(2, 8)(4, 8)             11                    (0, 6, 3) 
5 + 1         3(d)            15                           (1, 4)(4, 8)(8, 2)             3                      (1, 4, 5) 
5 + 1         3(e)            15                           (1, 2)(1, 4)(2, 4)             7                      (1, 4, 5) 

6 + 1         3(a)            7 11                        (1, 4)(2, 8)(7,11)            13                   (3, 16, 6) 
6 + 1         3(b)            7 11                        (1, 4)(2, 8)(7, 8)             13                   (3, 16, 6) 
6 + 1         3(c)            7 11                        (1, 4)(2, 4)(4, 8)             13                   (3, 16, 6) 
6 + 1         3(d)            7 11                        (1, 4)(4, 8)(8, 2)             13                   (3, 16, 6) 
6 + 1         3(e)            7 11                        (1, 4)(1, 8)(4, 8)             13                   (3, 16, 6) 

7 + 1         3(a)            7 11 13                   (1, 4)(2, 8)(7,11)            14                  (6, 35, 12) 
7 + 1         3(b)            7 11 13                   (1, 2)(4, 8)(7, 8)             14                  (6, 35, 12) 
7 + 1         3(c)            7 11 13                   (1, 2)(1, 4)(1, 7)             14                  (6, 35, 12) 
7 + 1         3(d)            7 11 13                   (1, 4)(4, 8)(8, 2)             14                  (6, 35, 12) 
7 + 1         3(e)            7 11 13                   (1, 2)(1, 4)(2, 4)             14                  (6, 35, 12) 

8 + 1         3(a)            7 11 13 14              (1, 4)(2, 8)(7,11)            3                  (13, 56, 32) 
8 + 1         3(b)            7 11 13 14              (1, 2)(4, 8)(7, 8)             5                  (13, 56, 32) 
8 + 1         3(c)            7 11 13 14              (1, 2)(1, 4)(1, 7)             9                  (13, 56, 32) 
8 + 1         3(d)            7 11 13 14              (1, 4)(4, 8)(8, 2)             3                  (13, 56, 32) 
8 + 1         3(e)            7 11 13 14              (1, 2)(1, 4)(2, 4)             9                  (13, 56, 32) 

9 + 1         3(a)            3 5 9 14 15             (2, 4)(3, 8)(5, 9)             7                  (25, 72, 96) 
9 + 1         3(b)            3 5 9 14 15             (2, 4)(3, 8)(5, 8)             7                  (25, 72, 96) 
9 + 1         3(c)            3 5 9 14 15             (2, 4)(3, 4)(4, 8)            10                 (25, 72, 96) 
9 + 1         3(d)            3 5 9 14 15             (2, 4)(4, 8)(8, 3)             7                  (25, 72, 96) 
9 + 1         3(e)            3 5 9 14 15             (2, 4)(2, 8)(4,8)              7                  (25, 72, 96) 

                   10 + 1         3(a)            3 5 6 9 14 15          (2, 9)(3,14)(4, 8)           10             (37, 104, 184) 
                   10 + 1         3(b)            3 5 6 9 14 15          (4, 8)(2, 9)(3, 9)            13             (37, 104, 184) 
                   10 + 1         3(c)            3 5 6 9 14 15          (2, 8)(3, 8)(4, 8)            13             (37, 104, 184) 
                   10 + 1         3(d)            3 5 6 9 14 15          (2,14)(14,3)(3,8)           10             (37, 104, 184) 
                   10 + 1         3(e)            3 5 6 9 14 15          (2, 5)(2, 8)(5, 8)            11             (38, 104, 180) 

                   11 + 1         3(a)            3 5 6 7 9 10 11       (4, 9)(5,10)(6, 8)           12             (52, 152, 304) 
                   11 + 1         3(b)            3 5 6 7 9 10 11       (6, 8)(4, 9)(5,9)             15             (52, 152, 304) 
                   11 + 1         3(c)            3 5 6 7 9 10 11       (4, 8)(5, 8)(6, 8)            15             (52, 152, 304) 
                   11 + 1         3(d)            3 5 6 7 9 10 11       (4,10)(10,5)(5,8)           12             (52, 152, 304) 
                   11 + 1         3(e)            3 5 6 9 10 13 14     (1, 6)(1,10)(6,10)          15             (52, 153, 304) 

------------------------------------------------------------------------------------------------------------------------------------------------- 
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Figure 1. Graph for model with one 2-factor interaction. 
 
 
 

 
                                                         (a)                                (b) 

  
Figure 2. Graphs for models with two 2-factor interactions. 

 
 
 

 
                             (a)                   (b)                   (c)                   (d)                   (e) 

 
Figure 3. Graphs for models with three 2-factor interactions 

 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2007/proceedings/6


	SELECTION OF BLOCKED TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS FOR AGRICULTURAL EXPERIMENTS
	Recommended Citation

	tmp.1443705846.pdf.VIVFf

