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Using the Cumulative-Size Mechanistic Model for Analyzing
Insect Data

T.I. Matis∗, J.H. Matis†, G.J. Michels Jr.‡, M.N. Parajulee§

Abstract

Two data sets of aphid abundance are analyzed using a new cumulative-size based mechanistic
model. The first data set pertains to the cotton aphid, and its analysis demonstrates the power
of the mechanistic model-based approach. The second data set pertains to greenbug populations,
and its analysis shows the key role that birth and death rate coefficients may play in predicting
the peak and the cumulative population sizes.

1 Introduction

We have recently investigated a new ‘cumulative-size’ mechanistic model in which the per capita
death rate of a local insect population is proportional to the cumulative past size of the population
(Matis et al. 2005). One form of this model has an analytical solution, a nonlinear regression model,
which is relative easy to fit to data. We have shown previously that this model fits well the observed
abundance curves of the pecan, mustard, and cotton aphids (Matis et al. 2006, Matis et al. 2007a,
Matis et al. 2007e, respectively)

Notwithstanding the previous successful fitting of the data, the model has met with some resistance
among entomologists because of its novelty. The standard approach to population size modeling is
to calculate the ‘intrinsic rate of increase’ from life table data (Wyatt and White 1977). Williams
et al. (1999) suggest that this birth rate coefficient slows down over time, which leads to a general
model for the ascending phase of the growth data. Costamagna et al. (2007) allow the intrinsic rate
to become negative, thus yielding a model for the ascending and descending phases of a population
size curve. To our knowledge, Prajneshu (1999) proposed the first mechanistic model with a birth
and a death rate, in order to describe both the ascending and descending phase of population size
curves. We illustrate a generalized, user-friendly form of his model in this paper.

This paper has two parts. The first uses the new nonlinear regression model to analyze a set
of cotton aphid data. These data have previously been analyzed with a statistically sophisticated
nonlinear mixed effects model, using the nlme routing in R (Matis et al. 2007b), and some ANOVA
results have previously been interpreted in physiological terms (Matis et al. 2007e). The objective of
the first part of this paper is to supplement these analyses with a transparent, textbook-like analysis
which would be readily understood by entomologists. The data are given and interpreted graphically.
The first part shows that the traditional analysis in common usage does not give any statistically
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significant results for these data, whereas an analysis based on the new mechanistic model yields
a number of relevant findings. We suggest that this first part makes a convincing case, with a
straightforwardness not previously presented, for the utility of the new model.

The second part of the paper analyzes some new data on greenbug abundance to show a potential
use of the new model for forecasting future greenbug abundance. The nonlinear models predicting the
peak count and the total cumulative count are linearized using a Taylor series approximation. The
resulting linear regression models for these variables, based on only the estimated birth and death
rate coefficients, are found to be very accurate for describing greenbug abundance data. Such linear
models represent a new approach for predicting population size endpoints directly from growth rate
parameters.

2 Analysis of Cotton Aphid Data

2.1 Experiment and Analysis

A study was conducted in 2003 by the Texas Agricultural Experiment Station in Lubbock, TX, on the
effect of water and of nitrogen on the population size of the cotton aphid. Three water levels, called
Low, Medium, and High, consisting on 65%, 75%, and 85% evapotranspiration replacement, were
applied using pivot irrigation. Also, three nitrogen levels, called Zero, Variable Rate, and Blanket
Rate, were utilized. These nitrogen treatments were applied at planting and at first-square stage of
cotton plant growth. The Blanket Rate treatment applied the same amount of residual nitrate to each
experimental unit to bring the average level to 134 KgN/ha , whereas the Variable Rate treatment
applied the appropriate amount to bring each unit to that desired level.

Twentyseven (27) plots, each of approximate 0.2 ha size, were used in the experiment. The nine
Water x Nitrogen treatment combinations were deployed in a randomized block split-plot design (Ott
and Longnecker 2001) as follows. The 27 plot field was divided into three contiguous blocks, each
consisting of nine plots. Each block was subdivided into three distinct areas, or whole plots, consisting
of three adjacent individual plots. The three irrigation treatments were randomly assigned to these
whole plots within each block. The three nitrogen treatments were then randomly assigned to the
individual plots, i.e. to the split plots, within each whole plot.

Cotton aphid abundance was monitored weekly, starting on July 8 with sampling dates of t =
0, 1, 2, 3, and 5 weeks of elapsed time thereafter. Cotton aphids were counted on 10 randomly chosen
leaves from the upper half and 10 leaves from the lower half of plants from each plot. For subsequent
identification, the three water treatment combinations (Low, Medium, and High) are denoted as
i = 1, 2, and 3; the three nitrogen treatments (Zero, Variable Rate, and Blanket Rate) as j = 1, 2, and
3; and blocks for each treatment combinations as k = 1, 2, and 3. The plot with water treatment i
and nitrogen treatment j in block k is denoted plot ijk, and the mean count per leaf from this plot at
time l = 0, . . . , 5 as Xijkl. The complete data set, consisting of 27 observed means for each of the five
sampling times, is illustrated in Fig. 1A and is available in Parajulee (2006). Table 1 gives the means
for each of the nine (i, j) treatment combinations averaged over the three blocks, for each sampling
time.

2.2 ANOVA Analysis of Standard Variables

The standard approach for the analysis of this common type of insect abundance experiment would be
to analyze response variables observed directly from the data. Typically the following three response
variables are used (see e.g. Chattopadhyay et al. 2005): the crop age at which the insect first appears
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on the crop, denoted Y1; the crop age at peak population size, Y2; and the peak number of insects on
the crop in the season, Y3. We call this the ‘model-free’ approach.

Our assumed ANOVA model, letting Yijk denote an individual observation for any one of the three
above response variables of interest, is

Yijk = µ + αi + βj + αβij + ρk + αρik + εijk (1)

where α, β, and ρ denote, respectively, the fixed Water, Nitrogen and Block effects, with αβ and αρ
two-factor interactions, and random error term εijk. In this experiment, the time of first appearance,
Y1, was not observed. The time of peak, Y2, was either the integer 2 or 3, and not surprisingly is
not significant for any effect. For these data, Y3 is the primary standard response variable. It has a
clear Block main effect, which is plainly visible in the graphs in Fig. 1A. Table 2 lists some summary
results from the ANOVA model (1) analysis of various response variables. Note that neither the
Water nor Nitrogen main effect, nor the Water x Nitrogen interaction is significant (at α = 0.05) for
Y2 or Y3. Hence, the analysis based on the standard model-free variables does not appear to yield any
treatment effects of interest.

2.3 New Regression Model for Aphid Abundance

A new nonlinear regression model was recently derived in Matis et al. (2007a) that describes the
abundance of aphids in a local population. Letting N(t) denote the number of aphids at time t, the
model is given by

N(t) = 4Nmaxe
−b(t−tmax)

[
1 + e−b(t−tmax)

]−2
, (2)

where parameter Nmax denotes the peak count, tmax is the time of peak count, and b is an approximate
birth rate. This regression model is the solution to the underlying mechanistic model

N(t) = [λ− δF (t)] N(t) , (3)

which makes certain assumptions about aphid population changes. The population’s ‘birthrate’ at
any time t is assumed to be λN(t), where λ denotes the ‘per capita’ birthrate or the ‘intrinsic rate of
natural increase’. The novelty of the model lies in it’s assumed death rate. In particular, letting F (t)
denote the ‘cumulative density’, which is defined mathematically as

F (t) =

∫ t

0

N(s)ds , (4)

and conceptually as the total area under the N(t) curve in units of insect-time, the population’s per
capita death rate, δF (t) is a function of the cumulative size of past generations of aphids. F (t) may
be regarded as a measure of past environmental degradation associated with the insect.

Once the observed data are fitted to regression model (2), the least squares estimates of Nmax,
tmax, and b may be used to estimate the parameters of mechanistic model (3). In particular, letting

d = e−(btmax) (5)

we have shown (Matis et al. 2007a) that

λ = b(d− 1)/(d + 1)

δ = b2/2Nmax

N0 = 4dNmax(1 + d)−2 (6)
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where N0 is the estimate of the initial population size N(0). Because d in (5) is usually very large,
b may be noted from (6) to be an accurate approximation of the assumed birthrate λ in (3). An

accurate approximation for the final cumulative density in (4), denoted as F̃ (∞), is given by

F̃ (∞) = 4Nmax/λ (7)

2.4 ANOVA Analysis Based on Mechanistic Model

Model (2) was fitted to each of the 27 abundance curves illustrated in Fig. 1 using a standard nonlinear
least squares program (SPSS 2002). We have previously shown that the aphid counts over time in
any given plot are heteroscedastic and have weak serial correlation (Matis et al. 2005). However, for
simplicity as is Matis et al. (2006), we assume that these observations are independent with constant
variances, and so use the simple unweighted least squares option. This choice yields asymptotically
unbiased, though not optimal, estimates (Milliken and Milliken-MacKinnon, 1997).

The fitted curves describe the data exceptionally well, as illustrated in Fig. 1B. The modified R2,

R2 = 1− ResidualSS/CorrectedSS ,

for this nonlinear model exceeds 0.99 for each case, and the only visible residuals occur at t=1. These
outstanding fittings may not be surprising in light of the small number (5) of data points. The
parameter estimates for each curve are given in Table 3.

Two of the parameters, Nmax and tmax, have immediate natural interpretation, as the correspond-
ing fitted estimates of the observed Y2 and Y3 variables. Consider introducing these estimates as new
response variables, with Y4 = Nmax and Y5 = tmax. When these variables are analyzed, again using
ANOVA model (1), there are no significant effects for Nmax, however there is a significant (p = 0.02)
Water main effect for tmax, as given in Table 1. The means for the individual Water and Nitrogen
levels are given in Table 4, and a profile plot of the means for tmax is given in Fig. 2A. It’s apparent
both from Table 4 and Fig. 2A that Low water leads to a delayed peak, i.e. to higher mean tmax.

Consider now transforming the estimated parameters to three additional variables of interest,
namely the birth rate coefficient, λ, the death rate coefficient, δ, and the cumulative density, F̃ (∞),
from (6) and (7). We denote these as Y6, Y7, and Y8, respectively. The resulting means of these
variables for the levels of Water and Nitrogen are given in Table 4, from whence it is apparent that
both δ and F (∞) have a significant Water main effect. The profile plots of corresponding means are
illustrated in Figs. 2B and 2C. As water increases, it is clear that the death rate tends to increase
and that the cumulative density tends to decrease. The latter appears to be visible by inspection of
Fig. 1B, though it does not appear to be humanly possible to observe the effect on the death rate
visually in the figure.

2.5 Interpretation of Results for Cotton Aphid Data

Outstanding among the interpretations of these data are the following:

1. The exceptional fitting of model (2) to the data is expected for, as indicated previously, the
model provides an outstanding description also for pecan, mustard, and greenbug aphid data

2. Most aphid field data are observed approximately weekly, as opposed to daily monitoring.
Consequently, the observed time of peak, Y2, is restricted to only values 2 or 3 for these data,
and hence is far less sensitive than the estimated counterpart Y5 = tmax. Similarly, one would
not expect the peak count to occur precisely at time 2.00 or 3.00, and hence the observed peak
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at either one of those exact times is arguably an underestimate of the true peak. By way of
contrast, the estimated peak, Y4 = Nmax, has flexibility to combine mechanistically the data
observed at other times for a more realistic estimate of the peak. Though this data set is
based on only 5 times of observation, a more extensive study of 192 curves for the pecan aphid
observed over 11 weeks (Matis et al. 2006) had the same qualitative finding, namely that the
estimated size and time of peak from the model were more sensitive to treatment effects than the
directly observed size and time of peak. More generally, we submit that this example is a simple,
compelling example of the merits of using a mechanistic model-based analysis. The standard
model-free analysis failed to find any effects of interest, however the model-based analysis not
only detected significant effects, but detected effects on variables which explain the changes
mechanistically.

3. Year 2003 was a relatively dry year, which explains the Water main effect. Matis et al. (2007e)
analyzes data also from year 2004 which had moderate precipitation. No significant Water main
effect is found for any of the variables for 2004, however there are significant Nitrogen main
effects for Y4 = Nmax, Y6 = λ, and Y7 = δ. The paper also gives physiological interpretations
for the main effects on the birth and death rates for both years, and for their relationship to
the peak count.

4. The cumulative density, in this case in units of insect-weeks, is a key endpoint variable of
practical interest. In some cases, one could estimate this integral directly from data using the
trapezoidal rule. However in cases, as in this one, where a point is missing and/or where the
dates are unequally spaced, the trapezoidal rule becomes more difficult computationally. The
model based F̃ (∞) is relatively simple to obtain from model (2) even for unequally spaced data.

5. A statistically more sophisticated analysis of these data was performed using the nonlinear mixed
effects model using the nlme routine in R (Matis et al. 2007b). In the analysis in the present
paper, each of the 27 data sets is fitted separately to nonlinear model (2), and the resulting
estimates of Y4, . . . , Y8 were analyzed using the ANOVA model (1) for each response variable.
Whilst this is valid statistically, the nlme procedure utilizes a nonlinear ANOVA model based
on (2) for the directly observed Xijkl counts with a single combined error assumption. The
results from the nlme analysis are near identical qualitatively to those in this paper. Though it
is more elegant to use the combined model, the nlme procedure requires special software, and
the procedure does not extend to generalizations of (3) which have only numerical solutions,
as opposed to an analytical solution such as (2). A second alternative approach would be to
generalize the use of ANOVA model (1) for comparing the Y4, . . . , Y8 parameters to the ‘beta-hat
model’, in which the observations are assumed to be independent, but their individual standard
errors are incorporated (Milliken and Johnson, 2002). This was not done, but we expect that
the results in Table 2 would not change.

6. Insect management procedures tend to focus on altering the underlying dynamics of the pop-
ulation, e.g. to introduce treatments which would either increase or decrease the birth and/or
death rates as desired. This model based analysis hence addresses the key variables for insect
control. The next section addresses the use of λ and δ for population size prediction.
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3 Analysis of Greenbug Data

3.1 Data and Model

Data were gathered by the Texas Agricultural Experiment Station on greenbug, corn leaf aphid, and
ladybeetle abundance at various irrigated and dryland sorghum fields in a study from 1988 through
2000 (Michels 2007). The fields were sampled approximately weekly, unless there was inclement
weather. At each sampling date, 12 randomly selected 50′ long strips were marked in each field. In
each strip, 12 plants were randomly selected, cut off at ground level, and examined for corn leaf aphid
and greenbugs, hence 144 plants were sampled at each location on each date.

Thirtythree fields were sampled in this study. The most frequent sampling occurred in the irrigated
fields at the Bushland Experiment Station. The mean greenbug counts in these fields are illustrated
in Fig. 3 for the n = 12 available years. Samples were also taken for four years from Bushland
rainfed fields, six years from Etter dryland fields, seven years from Etter rainfed fields, and from two
additional dryland and irrigated fields, for the total of 33 fields. We made the simplifying assumption
that all data were gathered at exact weekly intervals, as indicated in Fig. 3. Hence, the following
results must be regarded as preliminary, and a more extensive analysis using the exact daily sampling
intervals is in progress.

Each individual data set was fitted to model (2). Through the model fitted each case successfully,
six cases were disregarded, as the largest count in these cases was either the first or the last observation,
with resulted in an unreliable estimate of the peak, Nmax. The remaining 27 cases, each case being
data from one field for one year, had modified R2 values ranging from 0.8 to 0.999, with a mean of
0.96. As an illustration, the fitted curves for the 12 years at the irrigated Bushland fields are displayed
in Fig. 3.

3.2 Linear Model Approximations of Key Endpoints

The two primary endpoint variables of interest to entomologists are the peak count and the cumu-
lative density. As noted, both of these may be estimated from Nmax and F̃ (∞) available from (2)
and (7), however the role of growth rate parameters, λ and δ, are not immediately apparent in these
calculations. We have suggested previously (Matis et al. 2007d) that a linear Taylor series approx-
imation be used to estimate the peak size and the cumulative density directly as linear functions of
the birth and death rate coefficients, λ and δ. The accuracy of these approximations is examined in
this section, and its potential use for population size prediction is discussed in the next section.

The three directly observed, model-free response variables from an individual data set were pre-
viously denoted Y1, Y2, and Y3. For present convenience, we let the observed peak counts, previously
Y2, now be called Z1. Let Z2 denote the observed cumulative count, which for equally spaced data
may be calculated using the trapezoidal rule as the sum of all observations in the individual data set.
For example, for the 12 years of data displayed in Fig. 3, the smallest of these responses are Z1 = 14
and Z2 = 25 for year 1999. The largest responses are Z1 = 1665 and Z2 = 2321 for year 1990, which
has a sharp peak. As a contrast, the second largest Z2 is Z2 = 2252 observed in year 1997, which has
a much smaller peak size of Z1 = 829, but also has a much wider spread. The issue is whether one
could describe these attributes of the population size curve directly from a linear model based on λ
and δ.

The estimated birth and death rate coefficients for the above extreme cases are 2.497 and 0.2195
for 1999, 3.728 and 0.0034 for 1990, and 1.479 and 0.0013 for 1997. Fig. 4 illustrates 3-D plots of
log(Z1) and log(Z2) versus estimated λ and log(δ) for all n = 27 cases.
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Consider first simple linear models for log(Z1). Fig. 5A and 5B illustrate the simple linear
regression lines, with log(δ)) and λ as independent variables, and they have R2 = 0.84 and 0.15
respectively. The first-order multiple regression equation model, a plane in space as illustrated in Fig.
6A, has equation

log(Z1) = −0.48 + 0.60λ− 0.48 log(δ)

with R2 = 0.98.
Fig. 5C and 5D illustrate the simple linear regression lines for observed variable Z2 as functions

of log(δ) and λ, and they have R2 = 0.92 and 0.06, respectively. The multiple regression model,
illustrated in Fig. 6B, has equation

log(Z2) = 0.68 + 0.38λ− 0.98 log(δ)

with R2 = 0.99. These are obviously very high R2 values.

3.3 Interpretation of Results for Greenbug Data

Current practice is to predict the population endpoint variables, such as Z1 and Z2, directly through
sophisticated linear regression models based on extensive present and past weather (e.g. Chattopad-
hyay et al. 2005) or through extensive simulation models based on such variables as aphid fecundity,
mortality, effect of temperature, photoperiod, biological control, plant quality, and density depen-
dency (e.g. Parajulee et al. 2004). The results in this paper suggest a different, more mechanistic
approach to prediction, namely using all past and present ambient conditions to predict the birth
and death rates, which then give near perfect predictions of Z1 and Z2. The coefficient λ may be
regarded as a sensitive index to determine the effect of local weather, environmental and management
conditions on aphid reproduction, and the coefficient δ of the effect of local conditions on aphid ‘mor-
tality’ (including emigration). In short, the results suggest that λ and log(δ) are implicit functions
of these local conditions, after all only 2% or less of the variability in log(Z1) and log(Z2) are due to
conditions which are not implicitly incorporated into the birth and death rate coefficients.

At present, these are just conceptual concepts, however we can envision that in time experimenters
could develop regression relationships to predict the growth rate coefficients, λ and δ, from local
ambient conditions. A previous finding in Section 2.4 is strong evidence to support this notion, as
it demonstrates that the death rate coefficient, δ, is a function of water abundance. Research in
currently in progress to relate the λ and δ parameters for these 27 fields 1) to the abundance of the
ladybug predator and the corn leaf aphid competitor and 2) to the recorded weather data. We are not
aware of any previous efforts to use this prediction approach based on these underlying parameters
of population growth.

4 Summary

A new cumulative-size based mechanistic model has recently been developed for describing aphid
population size on the basis of aphid birth and death rates. The model has an analytical solution,
which has been shown to fit abundance curves for a number of aphid species. The analysis of the
data set on the cotton aphid demonstrates that an analysis based on this solution may be far more
informative and explanatory than the current standard model-free analysis. The analysis of the
greenbug data set demonstrates the utility of using linear regression models based on the birth and
death rate coefficients for predicting peak and cumulative aphid population size.
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Some aphid abundance curves are noticeable skewed, which is particularly true when the local
aphid population increases initially due to immigration from other areas rather than from local re-
production. Research is in progress to add an initial immigration component to mechanistic model
(3) (Matis et al. 2007c). Though we have fitted the models only to aphid data, we are confident
that, due to their very general mechanistic nature, the models could describe the abundance curves
for many other insect species as well.
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Table 1: Mean aphid count per leaf, averaged over blocks, for each Water by Nitrogen treatment
combination at each sampling time.

Water Nitrogen Sampling Time
Level Level 0 1 2 3 5

1 1 0.56 0.79 9.93 22.76 0.11
1 2 0.44 1.15 11.07 29.99 0.11
1 3 0.53 0.85 10.99 31.11 0.12
2 1 0.29 0.91 11.63 20.59 0.03
2 2 0.42 0.69 10.87 24.97 0.05
2 3 0.57 0.61 11.98 18.48 0.11
3 1 0.70 0.66 10.95 17.81 0.15
3 2 0.32 0.75 10.27 20.96 0.16
3 3 0.45 0.56 9.23 22.48 0.14

Table 2: Significance of Water and Nitrogen main effects and of Water x Nitrogen interaction for
ANOVA on seven individual response variables. (ns denotes nonsignificant)

Variable Water (α) Nitrogen (β) Water x Nitrogen (αβ)
Y2, Obs. Time of Peak ns ns ns
Y3, Obs. Peak Count ns ns ns

Nmax, Est. Peak Count ns (p = .06) ns ns
tmax, Est. Time of Peak p = .02 ns ns

λ, Birth Rate Coeff. ns ns ns
δ, Death Rate Coeff. p = .02 ns ns

F̃ (∞), Est. Cum. Density p = .05 ns ns
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Table 3: Estimates of regression parameters (Nmax, tmax, b) for each of 27 observed curves (3 Water x
3 Nitrogen x 3 Block)

Water Level, i Nitrogen Level, j Block, k Nmax tmax b
1 1 1 15.89 2.57 2.76
1 1 2 32.8 2.62 3.03
1 1 3 33 3 3.06
1 2 1 26.62 2.84 2.69
1 2 2 36.2 2.71 2.88
1 2 3 38.53 2.89 3.03
1 3 1 14.01 2.66 2.64
1 3 2 54.77 2.69 3.38
1 3 3 36.07 2.99 2.67
2 1 1 16.25 2.61 3.22
2 1 2 31.57 2.65 2.72
2 1 3 39.37 2.72 2.81
2 2 1 15.26 2.43 3.39
2 2 2 34.73 2.64 2.98
2 2 3 30.19 2.65 3.32
2 3 1 14.46 2.54 2.96
2 3 2 27.46 2.69 2.89
2 3 3 46.99 2.8 3.13
3 1 1 10.1 2.65 2.39
3 1 2 30.13 2.55 3.21
3 1 3 32.18 2.7 3.07
3 2 1 16.46 2.5 3.94
3 2 2 23.79 2.6 2.81
3 2 3 42.91 2.97 3.07
3 3 1 11.79 2.55 2.55
3 3 2 30.17 2.55 3.29
3 3 3 36.79 2.9 2.99
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Figure 1: Mean aphid counts per leaf in designed cotton aphid study in 2003. The columns identify
the water treatments and the rows the nitrogen treatments. The blocks are identified by the different
lines (solid, dashed, mixed).
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B. Fitted aphid curves
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Figure 2: Profile plots of mean responses for Water x Nitrogen levels
A. Means for tmax, estimated peak time
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B. Means for δ, estimated death rate coefficient
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C. Means for F̃ (∞), estimated cumulative density
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Table 4: Means and standard errors of response variables in 2003 data for each Water and Nitrogen
treatment, with p-value for testing equality

Measure Nmax tmax λ δ F̃ (∞)
A. For Water Levels
Means for Low 31.99 2.771 2.95 0.1491 43.41

Means for Medium 27.36 2.642 3.02 0.2022 36.3612

Means for High 26.04 2.662 3.02 0.2142 34.172

St. Error of Mean 2.27 0.03 0.12 0.018 2.52
p-value 0.18 0.02∗ 0.66 0.05∗ 0.05∗

B. For Nitrogen Levels
Means for Zero 25.7 2.67 2.92 0.188 34.95
Means for Variable 29.41 2.69 3.12 0.200 38.71
Means for Blanket 30.28 2.71 2.94 0.176 40.26
St. Error of Mean 2.27 0.03 0.12 0.018 2.52
p-value 0.34 0.77 0.44 0.65 0.33

* p ≤ 0.05. Means without common superscript are significantly different, α = 0.05 LSD tests.

Figure 3: Observed mean counts and fitted curves for weekly sampling intervals for 12 years of
greenbug data on irrigated fields at Bushland Station
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Figure 4: 3-D plots of aphid population endpoints versus estimated λ and log(δ). A. Plot of log peak
size. B. Plot of log cumulative density
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Figure 5: Scatter plots and fitted linear regression lines. A. Log peak size versus log(δ). B. Log peak
size versus λ. C. Log cumulative density versus log(δ). D. Log cumulative density versus λ.
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Figure 6: 3-D plots of aphid population endpoints and fitted first order model with log(δ) and λ as
independent variables. A. Log peak size. B. Log cumulative density
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