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EVALUATING LINEAR AND NONLINEAR MODELS FOR THE RESPIRATION 
RATE OF FOUR BREEDS OF HEAT STRESSED FEEDLOT HEIFERS 

 
Q. Huang1, A. M. Parkhurst1, T.M. Brown-Brandl2, R.A. Eigenberg2, and J.A. Nienaber2 

1. Department of Statistics, University of Nebraska at Lincoln 
2. U.S. Meat Animal Research Center 

 
ABSTRACT 

Heat stress is a factor that causes loss of production and even death in cattle.  Animals differ in 
vulnerability to heat stress.  One reason for the difference may be the coat color associated with 
different breeds or genotypes.  A good measure of the heat stress is respiration rate which 
increases in response to increasing ambient temperature.  The objective of this study is to 
characterize the respiration rates of four genotypes of heat stressed feedlot heifers.  Linear and 
nonlinear models will be compared to find an appropriate method of detecting differences among 
genotypes. 
 
1. INTRODUCTION 
Heat stress in cattle has a negative impact on animal performance and well-being. Frequently, 
losses in production are reported due to decreases in feed intake, growth and efficiency (Hahn, 
1999).  In extreme cases, heat stress can even result in death of vulnerable animals (Hahn and 
Mader, 1997).   Coat color is one characteristic of vulnerable animals (Busby and Loy, 1996; 
Hungerford et al., 2000; Mader et al., 2001).  The coat color associated with different breeds or 
genotypes may be one of the factors that causes differences in response to heat stress.  Animals 
with dark hides are thought to be more vulnerable than light-hided animals due to the adsorption 
of solar radiation.  In a study by da Silva et al. (2003), adsorption of solar radiation from a black-
hided animal was 93%, while a light-hided animal was only 27%.  Another characteristic of 
vulnerability to heat stress is the availability of shade.  Busby and Loy (1996) reported results of 
a producer’s survey taken to identify factors contributed by a 1995 heat wave in western Iowa.  
They found that producers with non-shaded lots had the highest death loss in dark-hided animals. 
 
Respiration rate (RR) has been shown to be a good indicator of thermal stress (Brown-Brandl et 
al., 2002; Gaughan et al., 2000; Hahn et al., 1997).   Several authors (Eigenberg et al., 2002; 
Hahn et al., 1997) have shown respiration rate increases in a non-linear fashion in response to 
increasing ambient temperature (Ta).  One advantage of using respiration rate as an indication of 
stress is that it is readily observable in a production setting (Hahn et al., 1997).  
 
In this study, we will attempt to characterize the non-linear relationship between RR and Ta by a 
quadratic regression and an exponential regression model.  The quadratic regression is an 
empirical model that is linear in its parameters.  We will examine the fixed effects and mixed 
model versions of this linear model.  Similarly, we will examine fixed and mixed model versions 
of the nonlinear exponential model.  We will also recommend a model that can address the 
question of whether or not dark-hided heifers become more heat stressed than light-hided ones; 
that is, does RR increase more rapidly for dark-hided heifers than for light-colored heifers during 
periods of heat stress?   To strengthen our recommendation, after fitting the fixed and mixed 
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model versions of the quadratic and exponential, we will repeat the process incorporating the 
experiment treatment factor of genotype and shade.   
 
2. MATERIALS AND METHODS 
2.a Experimental Design 
A study of four genotypes of heifers, Angus (A), Charolais (C), Gelbvieh(G), and MARC III 
crossbred (M), was conducted over two consecutive summers (2002 - 2003) in the USDA-ARS-
MARC feedlot.  The Angus heifers were all solid black.  The Charolais heifers were solid white. 
The MARC III crossbred heifers were mostly dark red (three of 64 were black; some were solid, 
while others had white tailheads and/or white faces).  The Gelbvieh heifers were solid tan.  The 
feedlot was a block of four adjacent pens.  Shade was 
available in half of each pen.  Each year heifers were 
assigned to one section of the eight pen-sections by 
genotype                (16 heifers/pen-section).  These 
arrangements resulted in a single level hierarchical 
design.  Sixteen heifers of the same genotype are nested 
in one of the 8 pen-sections.  Hence, the experiment treatment factor (shade-genotype) is un-
replicated and is confounded with pen-section.   Only data from the first summer (2002) was 
used in this study.   
 
Measurements of RR were made twice daily (0800 and 1430) on ten heifers per genotype during 
six 5-day periods between June 24 and August 9 in 2002. On scheduled experimental days, two 
observers worked independently.  Each randomly selected five animals per pen and recorded RR, 
by visual observation of flank movement, timing 10 breaths with a stopwatch.  The average Ta 
was calculated based on weather data recorded prior to and immediately after animal 
observations. 
 
2.b Statistical Models 
When choosing a regression model to characterize how the RR response (Y) varies with Ta (X), 
we have the option of choosing a polynomial which is linear in its parameters.   The quadratic 
polynomial we choose is an empirical model, devoid of theoretical assumptions, based only on 
the data.  The physical meaning of the parameters is irrelevant.  We also choose a mechanistic 
model which is based on theoretical considerations. These considerations endow the parameters 
with a natural physical interpretation.  The nonlinear exponential regression is derived from a 
differential equation which is based on the assumption that the rate of change in RR is 
proportional to the current RR, i.e., ∂Y/∂X = kappa*Y.   For the resulting exponential regression,  
y= alpha * e –kappa*X  , the parameter alpha is the respiration rate when Ta is 0ºC (32ºF), and 
kappa is the rate constant in units of reciprocal Ta.   Other issues to consider when using 
nonlinear models are the intrinsic and parameter-effects nonlinearity (Bates and Watts, 1988).  
Preliminary analyses to check for nonlinear behavior showed the percent excess variance for all 
parameters was greater than 1%.  Thus, we re-parameterized the model using log (alpha) = beta.  
The exponential model y = ebeta-kappa*x passed the checks for parameter-effects nonlinearity.  In 
fact, this parameterization is described by Ratkowsky (1990) as having close-to-linear behavior 
and is called the exponential offset regression, with beta being referred to as the offset. Note: 

                       Pen 
Environment.............   1 2 3 4 

Shade A M G C 
 

No Shade M C A G 
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Another parameterization with poorer close-to-linear behavior but with an interesting 
interpretation is obtained if we let beta=tau/kappa. In this case, tau is the lag in Ta, that is, the 
setback in Ta to reach 0C. 
 
Since animal studies are notable for substantial variability in animals, we group the observations 
by heifer and employ mixed model methods to incorporate both fixed-effects terms and random-
effects terms.  The fixed-effects terms describe the behavior of the entire population of heifers in 
a pen-section.  The random-effects terms describe the behavior of the individual heifers in the 
pen-section.  Thus, we use the linear mixed models to fit the quadratic regression to the data and 
the nonlinear mixed model to fit the exponential regression.   The analyses were preformed in R, 
a free software environment for statistical computing and graphics.  The linear and nonlinear 
mixed models were fit using the lme and nlme functions, respectively, in the nlme library in  
version 2-1.1 of R.  Additional powerful diagnostic graphics come from the trellis library.  
 
2.b.i Linear Mixed Model: Quadratic Regression 
The following linear mixed effects covariance model was considered. 
  Yi = betaI + betaL* Xi  + betaQ * X2 + εi      i = 1, ..., 8                                                      Eq 1. 
where εi ~ N(0, Iσ2),                     
      betaI  = β10 + β11 · C1 + β12 · C2 +  · · · + β17 · C7  + bi, 0 
      betaL  = β20 + β21 · C1 + β22 · C2 +  · · · + β27 · C7  + b i,Ta 
      betaQ = β30 + β31 · C1 + β32 · C2 +  · · · + β37 · C7  + b i,Ta

2 
                                                                    
                  b i, 0                                                                 σ2

0          σ0 Ta        σ0 Ta2 
     bi =    b i,Ta     ~ N(0, Ψ),  where Ψ =     σTa 0       σ2

 Ta        σ Ta
 
Ta2                          

               b i,Ta
2                                        σTa2 0     σ Ta2 Ta     σ2

 Ta2  
 
The C1, C2, … , C7 are dummy variables defined to incorporate the shade-genotype effects.  Both 
the fixed and random effects were considered for betaI, betaL and betaQ, the regression 
coefficients for a second-order polynomial regression of  RR, the response variable (y), on Ta, 
the covariate (x).  The meaning of the fixed-effect coefficients is as follows:  β10, β20 and β30 are 
the means of the first shade-genotype treatment for betaI, betaL and betaQ respectively; β11, β21 
and β31 are the differences of the means between the second and first shade-genotype treatment 
for betaI, betaL and betaQ respectively; and similarly up to the eighth shade-genotype treatment 
level.  The random effects b i,0 represent the deviation from the population mean associated with 
the ith pen and betaI, similarly for the linear, and quadratic regression coefficients.  The bi’s and 
εi are assumed independent of each other. 
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2.b.ii Nonlinear Mixed Model: Exponential Regression 
When respiration was assumed to increase at an exponential rate, the following nonlinear mix 
model was considered.   
    Yi = beta * e –kappa*X

i + εi               i = 1, ..., 8                                                           Eq 2. 
where εi ~ N(0, Iσ2), 
      beta = β10 + β11 · C1 + β12 · C2 +  · · · + β17 · C7  + b i,beta 
  kappa = β20 + β21 · C1 + β22 · C2 + · · ·  + β27 · C7  + b i,kappa 
 
                     b i,beta                                                  σbeta

2          σbeta kappa 
      bi =                   ~ N(0, Ψ),          where Ψ =                         
                  b i,kappa                                                σkappa beta     σkappa

2    
  
The C1, C2, …, C7 are dummy variables defined to incorporate the shade-genotype effects.  Both 
the fixed and random effects were considered for beta and kappa. The meaning of the fixed-
effect coefficients is as follows:  β10 and β20 are the means of the first shade-genotype treatment 
for beta and kappa respectively; β11, and β21 are the differences of the means between the second 
and first shade-genotype treatment for beta and kappa respectively; and similarly up to the eight 
shade-genotype treatment levels.  The random effects bi, beta represents the deviation from the 
population mean associated with the ith pen and beta.  The bi’s and ε are assumed independent of 
each other. 
  
3. RESULTS AND DISCUSSION 
3. a.  Relationship between Respiration Rate and Dry-bulb Temperature 
A popular approach to modeling the relationship between RR and Ta is to fit a linear fixed-
effects model to the entire data set (Figure 1 and Table 1).  If the primary focus is on the effects 
of genotype, it is tempting to fit a separate linear regression for each genotype, Figure 2.  A 
slightly more sophisticated approach is to perform an analysis of covariance which incorporates 
the genotype treatment effects (ignoring availability of shade) with the covariate Ta.  The 
inclusion of genotype effect (model not shown) significantly reduces the residual standard 
deviation of the linear fixed-effect model (p < 0.0001) from 26.02 to 24.26.  None of these 
approaches take into account the curvature in the data. 
 
In an attempt to capture the curvature, two regression fixed-effects models, quadratic and 
exponential, were fit to the data.  The coefficients and residual standard error are given in    
Table 1.  Both models have statistically significant parameter estimates (alpha=0.05).  Thus, both 
models support the assumption of curvature. 
 
3.b Linear Model: Quadratic Regression 
3.b.i  Linear Fixed Model: Quadratic Regression  
When we compare the quadratic and linear regression fixed models, discussed above, we see the 
residual standard error is reduced as we add the quadratic term.   The F-ratio for reduction in sum 
of squares is significant, p=0.0002961, indicating the quadratic effect makes a contribution to 
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fitting this data.  When the experiment shade-genotype treatment factor is included in the model, 
all the regression coefficients are significant (not shown).   Once again, we compare the 
quadratic and linear regression fixed model, this time including the treatment factor.  For the 
fixed case including treatments, the quadratic is superior to the linear (model not shown).  The 
reduction sum of squares F-ratio is significant (p=0.001091) and residual standard error is 
reduced from 24.46 to 23.76 for the linear and quadratic, respectively. 
 
Recall the primary motivation for this study is to see if there are differences in how genotypes 
react to heat challenges (increases in Ta).  We begin by including the shade and genotype 
treatment factor in the fixed-effects model.  Results for the quadratic linear fixed-effects model 
are listed in Table 2 Model 6.  We compare these results to those for model 1 (quadratic fixed 
effect model without treatment, discussed above) using the SS-reduction F-test.  We find 
inclusion of the treatment effects significantly reduces the residual error (p=0.0006). 
 
3.b.ii Linear Mixed Model: Quadratic - Ignoring Experiment Treatment Factors 
For the mixed models, we consider four random-effects structures: intercept, linear Ta, quadratic 
Ta, and the diagonal (intercept, Ta, Ta2) which assumes the random-effects are independent.  The 
residual standard error, information criteria and log-likelihood are provided in Table 2-Models 2-
5, respectively.  To establish the importance of including random effects in the model, the fixed-
effects for mixed model 2 (quadratic regression with random intercept), are reported in Table 1 
and compared to those for model 1 (quadratic regression: fixed effect model without treatment).  
The standard errors are smaller for all estimates.  The likelihood ratio constructed from Table 2 
(Models 1&2), is significant (p<0.0001). Thus, the inclusion of random-effects significantly 
improves the fit.       
 
To identify which random effects to incorporate in the model and what their covariance structure 
should be, we use the results from 127 heifer individual regressions.  We examine the 95% 
confidence intervals for each heifer, Figure 3 Quadratic, to see how the parameter estimates vary 
among heifers.  While it is clear that random effects are needed to account for heifer to heifer 
variability, the parameter estimates appear to be highly correlated. The scatter plot of the 
correlation among the random effects, Figure 4, suggests the need for a covariance structure.  
 
Plots of the individual and mixed model (3) fixed-effect estimates are displayed in Figure 5.  The 
mixed model estimates are frequently called “shrinkage estimates” (Pinheiro and Bates, 2000) 
because they are “pulled toward” the individual estimates.  They represent a compromise 
between the individual fits and the fixed-effects of the mixed model which are associated with 
the population average.  Again we see substantial variation across heifers. 
 
The random-effects of the four mixed models (2- 5) are reported in Table 3.   There appears to be 
little variability associated with Ta2, while there is a strong relationship between the intercept 
and Ta.   In fact, comparing these models using the information criteria and likelihood ratio tests 
we find model 3 (linear random-effects structure) provides the best fit.  We assess the quality of 
this fit by examining plots of the predicted values from the linear mixed model with the predicted 
values from the individual heifer regressions.  A subset of these plots for 24 heifers is given in 

246 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/14



Figure 6 Quadratic.  Model 3 does appear to account for variability among heifers; but, it fails to 
capture the full extend of the curvature in the data. 
 
 
3.b.iii Linear Mixed Model: Quadratic Including Experiment Treatment Factors 
For the mixed model with treatment factor, the four random-effects structures described above 
are fit to the data.  The information criteria and log likelihood for these models are listed in  
Table 2 (Models 7-10).  The random effects estimates are given in Table 3.  Comparing random-
effects estimates to those from models without the treatment factor (models 2-5), we see the 
quadratic effect, Ta2, becomes even smaller and the correlation between intercept and Ta is 
reduced, although it is still ample.   Comparing the models with the treatment factor (models 7-
10) using the information criteria and likelihood ratio tests, we find model 8 (linear random 
effects) provides the best fit.  The random-effects structure did not change when the treatment 
factor was included.  
 
Examination of the random-effects produced by model 8, Figure 7 Quadratic, shade is an 
important factor.  Heifers without access to shade have a different pattern then those that do have 
shade available. 
 
Next we examine the within-group (i.e. heifer) residuals.  From the box-plots in Figure 8, we see 
the standardized residuals are centered at zero but there is large within-group variance, that is, 
variability changes with animal.  A few of the intervals do not cover zero and several have an 
outlying observation.  Treatment factor plots of the residuals versus fitted (or predicted) values, 
Figure 9 Quadratic, show only Charolais with/without shade and Gelbvieh-without shade are free 
of outliers.  Variability in RR differs by both genotype and shade.  The assumption of normality 
for the within-group residuals can be assessed with normal probability plots, Figure 10.  The tails 
are heavier than expected under normality. But, the picture changes when viewed by treatment 
factors, Figure 11 Quadratic.  Although there are outliers, the deviations from normality do not 
appear so worrisome. 
 
3.c.i  Nonlinear Fixed Model: Exponential Regression  
The fixed nonlinear exponential regression is another model that captures the curvature in the 
data, Table1.  The information criteria and log-likelihood are reported in Table 2 (Model 11).  
When the data are grouped by heifer, 127 individual regressions can be fit.  The estimated 
within-group standard error 25.98 is slightly larger than the residual standard error in the 
individual regressions, 22.47. Plots of the individual heifer confidence intervals for beta and 
kappa, Figure 3 Exponential, indicate substantial variation among heifers; and, even though the 
parameter estimates are highly correlated (0.98), we elect to keep both parameters in the model 
and proceed to fit the nonlinear mixed-effects version of the exponential model.  
 
3.c.ii Nonlinear Mixed Model: Exponential Ignoring Experiment Treatment Factors 
We consider three mixed models; one with a random effect for beta, another with a random 
effect for kappa and another with random effects for both parameters. All three models indicate a 
very high correlation (~0.92) between fixed effects, beta and kappa.  The residual standard error, 
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information criteria and log likelihood are provided in Table 2 (Models 12 – 14), respectively.  
The mixed models offer significant improvement over the fixed model 11; the p-values for the 
likelihood ratio test were all less than 0.0001.  The estimates of the random effects for the three 
models are given in Table 4.  The low correlation (0.368) between random effects, beta and 
kappa suggests we may not need both parameters in the random-effects structure to fit this data. 
If we restrict our attention to a single random effect, beta is by far the largest. The likelihood 
ratio test indicates that the model with two parameters (model 14) improves the fit compared to 
the model with one random-effect if that effect is kappa (p<0.000); but it offers no significant 
improvement over using beta alone (p=0.1624).  Using the principle of parsimony, we conclude 
model 12, the nonlinear mixed exponential regression with random effect beta is the best choice 
to fit the data ignoring the experiment treatment factor. 
 
An assessment of the quality of the fitted model is provided by the plot of the augmented 
predictions, Figure 6 Exponential.  The fitted values, representing the average of the heifer 
population, track the curvature over the observed Ta range.  Also, the individual heifer 
predictions are in good agreement with the observed variability in RR.   
 
3.c.iii Nonlinear Mixed Model: Exponential Including Experiment Treatment Factors 
Using the same three mixed models with the treatment factor further reduces the residual 
standard error, Table 2-Models 15 - 17.  The question is which random effects are important.  A 
plot of the random effects for both parameters by shade and genotype, Figure 7 Exponential, 
indicates the random effects parameters are correlated.  The random effect estimates are given in 
Table 4.  The standard deviation for kappa-alone (model 16) is reduced to 0.00323 and the 
correlation between beta and kappa (model 17) is increased to 0.884.  The reduction in kappa 
implies part of the heifer-to-heifer variation may be explained by the treatment factor.  The 
increase in the correlation between beta and kappa suggests the random effects may be over-
parameterized.  To test these implications, we check the information criteria and likelihood 
ratios. The likelihood test shows two parameters (model 17) are better than kappa alone (model 
16), p<0.0001, but, that may be because beta is one of the random effects.  The two parameter 
structure (model 17) offers no significant improvement to using beta alone (model 15), 
p=0.2042.  Once again, the principle of parsimony is invoked. We conclude that model 15 offers 
a good fit to the data.  The same random effects structure is chosen whether we include or ignore 
the treatment factors.   
 
Model diagnostics were performed by examining the plot of the standardized residual versus the 
fitted values by shade and genotype, Figure 9 Exponential.  The residuals are distributed 
symmetrically around zero, with roughly uniform variance.  Only Charolais-with/without shade 
and Gelbvieh-without shade are free of outliers.  The normal plot of the within-group residuals 
by shade and genotype, Figure 11 Exponential, supports the assumption of normality.   
 
3.d  Comparing Quadratic and Exponential Regressions 
Practical differences favor the quadratic. It is easier to fit and understand.  The exponential 
requires good starting values for convergence and that can be a difficult task; but, the payoff is 
the parameters have a natural physical interpretation; beta is the offset and kappa is the rate 
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constant.  In other respects, the regressions are similar.  Both the quadratic and exponential use 
data grouped by heifer to describe RR as a function of Ta taking into account the correlation 
among observations for a heifer.  Both the quadratic and exponential provide for curvature in the 
relationship between RR and Ta.  For this data, both needed significant random-effects structures 
to represent within-heifer dependence and both affirmed the validity of assumptions on the 
random-effects and residual error.  The main difference is in the quality of fit as assessed by 
Figure 6 Quadratic and Exponential.  The nonlinear exponential model appears to be far superior 
to the quadratic regression.   
 
4. CONCLUSIONS 
Descriptions of the relationship between RR and Ta improve when curvature is built-into the 
model.   Since curvature is a prominent feature of both the quadratic and exponential regressions, 
they showed improvement when compared to the linear regression.  
 
Variability in RR differs by both genotype and shade. Each regression shows considerable 
improvement when the shade-genotype treatment factor is incorporated into the model, attesting 
to the presence of shade-genotype effects. Future studies conducted using a 2-way factorial 
treatment design with replication would allow us to examine the interaction of shade and 
genotype. 
 
Both regressions also show improvement when random effects are used to account for the 
random variation in heifers attesting to the usefulness of mixed models.  The plots of the 
augmented predictions provide a way to assess the quality of fit and a way to compare mixed 
models.   For this data, the exponential regression is the model of choice.  It is clearly superior to 
the quadratic regression both in terms of quality of fit and insightfulness of interpretation. 
 
5. SUMMARY   
In an attempt to characterize heat stress in four breeds of heifers, respiration rate, RR, was 
measured twice daily and recorded along with the computed ambient temperature.  The data was 
gathered from a single level hierarchical design conducted in the USDA-ARS-MARC feedlot.  
Each of four pens was sectioned into shade and no shade areas.  Sixteen heifers from each of 
four genotypes, two dark-hided (Angus and MARC-III) and two light-colored (Charolais and 
Gelbvieh) heifers were assigned to one of the eight pen-sections. The shade-genotype treatment 
factor was un-replicated and confounded with the pen-section.   A linear mixed model analysis 
was performed for a quadratic regression; while, a nonlinear mixed model analysis was 
performed for the two-parameter exponential regression, RR=exp (beta-kappa*Ta).  Both 
regressions verified the assumption of curvature in the RR-Ta relationship.  Both mixed model 
regressions showed improvement over their fixed model counterpart and they both improved 
when the experimental shade-genotype treatment factor was included in the analysis.  The best 
fit for the quadratic came from a mixed model with a linear Ta random-effects structure.  The 
best fit for the exponential came from a mixed model with singe random-effect on beta.  Plots of 
the augmented predictions show the exponential regression is far superior. The parameters of that 
model have a natural interpretation useful for comparing levels of the experiment treatment 
factor with beta being the offset constant and kappa, the RR rate constant. Thus, when 
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investigating shade and genotype effects under the conditions of the motivating experiment, we 
recommend using the nonlinear exponential mixed model with random-effect beta, to analyze the 
data. 
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Table 1. Fixed Estimates and Residual Standard Error for Models Ignoring Experiment 
Treatment Factors 
  

* Estimate is significant, α=0.05. 
 
 Table 2. Residual Standard Error, Information Criteria and Log Likelihood for Linear 
and Nonlinear Models 

Information Criteria Model Model 
# 

Name Random-effects RSE 
AIC BIC 

Log-
Likelihood 

1 Fixed  lm  None 25.95 20948.31 20971.16 -10470.16 

2 Mixed lme Intercept 22.755 20580.85 20609.41 -10285.42 

3 Mixed lme  Linear Temp 22.357 20527.49 20567.47 -10256.74 
4 Mixed lme QuadraticTemp 22.364 20535.46 20592.59 -10257.73 

Q
ua

dr
at

ic
 

W
ith

ou
t 

Ex
pe

rim
en

t 
Fa

ct
or

 

5 Mixed lme Diag 
(Intercept,Temp,Temp2) 

22.391 20529.73 20569.72 -10257.87 

6 Fixed  lm-trt None 23.76 20649.22 20746.23 -10307.61 
7 Mixed lme-trt  Intercept 21.689 20427.45 20530.16 -10195.72 

8 Mixed lme-trt Linear Temp 21.560 20411.51 20525.64 -10185.75 
9 Mixed lme-trt  QuadraticTemp 21.563 20417.63 20548.89 -10185.82 

Li
ne

ar
 M

od
el

s 

Q
ua

dr
at

ic
 

W
ith

 
Ex

pe
rim

en
t 

Fa
ct

or
 

10 Mixed lme-trt  Diag  
(Intercept,Temp,Temp2) 

21.565 20412.01 20526.14 -10186 

 
11 

 
Fixed  nl  

 
None 

 
25.98 

 
20942.83 

 
20954.26 

 
-10469.42 

12 Mixed nlme  beta 22.475 20530.42 20553.27 -10261.21 
13 Mixed nlme  kappa 22.542 20543.18 20566.03 -10267.59 

Ex
po

ne
nt

ia
l  

W
ith

ou
t  

Ex
pe

rim
en

t  
Fa

ct
or

 

14 Mixed nlme  beta + kappa 22.448 20534.27 20568.55 -10261.13 

15 Mixed 
nlme-trt 

beta  21.667 20350.56 20453.41 -10157.28 

16 Mixed nlme-trt kappa  21.784 20368.92 20471.77 -10166.46 N
on

lin
ea

r M
od

el
s 

Ex
po

ne
nt

ia
l 

W
ith

  
Ex

pe
rim

en
t 

Fa
ct

or
 

17 Mixed nlme-trt beta + kappa 21.6 20350.96 20465.23 -10155.48 

 

LINEAR 
REGRESSION 

MODELS 

NONLINEAR 
REGRESSION  

MODELS 
Linear 
Fixed 

Quadratic 
Fixed 

Quadratic Mixed 
Random Intercept 

Exponential 
Fixed 

Pa
ra

m
et

er
 

Estimates Std 
Error 

Estimates Std 
Error 

Estimates Std 
Error Pa

ra
m

et
er

 

Estimates Std Error 

Intercept -39.348* 2.9865 11.577 14.363 14.238 12.961 Beta 3.069* 0.0362 
Temp    4.712* 0.1053  0.924   1.050  0.759   0.946 
Temp2      0.068*   0.019    0.071*   0.017 

Kappa -0.509 * 0.0010 

RSE 26.02 25.95 22.755 RSE 25.98 
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Table 3 Random Effects and Residual Standard Error for Linear Model Quadratic 
Regression and Nonlinear Models Exponential Regression 

Quadratic Regression Model without 
Experiment Factors 

Quadratic Regression Models  
with Experiment Factors 

Mixed  
lme 2 

Intercept 
 

Mixed 
lme  3  
linear 
Temp 

Mixed  
lme 4  

Quadratic 
Temp 

Mixed 
lme 5 
Diag 

 

Mixed  
lme-trt 7 
Intercept 

 

Mixed 
lme-trt 8  
Linear 
Temp 

Mixed 
lme-trt 9 
Quadratic 

 Temp 

Mixed 
lme-trt 10 

Diag 

 
 
 
 
 
 
Parameters Std  

Dev 
Std 
Dev 

Std  
Dev 

Std  
Dev 

Std  
Dev 

Std  
Dev 

Std  
Dev 

Std  
Dev 

Intercept 12.21638 10.3375 3.7209 0.7603 9.90583 2.9843 2.50345 0.18186 
Temp - 0.7607 0.4233 0.2486 - 0.4144 0.39958 0.33637 
Temp2 - - 0.0122 0.0125 - - 0.00084 0.00397 
Intercept & 
Temp 

- -0.92c -0.651c - - -0.636c -0.565c - 

Intercept & 
Temp2 

- - -0.115c - - - 0.007c - 

Temp & Temp2 - - -0.128c - - - -0.04 c - 

RSE 22.755 22.357 22.364 22.391 21.68898 21.5604 21.5625 21.5648 
c denotes correlation.    
 
 
 
Table 4 Random Effects and Residual Standard Error for Nonlinear Models Exponential 
Regression 

Nonlinear Regression Models without 
Experiment Factors 

Nonlinear Regression Models with Experiment 
Factors 

Mixed 
nlme 12 
random 

beta 

Mixed 
nlme 13 
random 
kappa 

Mixed 
nlme 14 
random 

both 

Mixed 
nlme-trt 15 

random  
beta 

Mixed 
nlme-trt 16 

random 
kappa 

Mixed 
nlme-trt 17 

random 
both 

 
 
 
 
 
Parameter 

Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev 
Beta 0.013369 - 0.14303 0.0103366 - 0.18466 
Kappa - 0.00434 0.00225 - 0.00323 0.00346 
Beta & Kappa - - 0.368c - - 0.884c 

RSE 22.47477 22.542 22.448 21.66688 21.7837 21.59978 
c denotes correlation.    
 
 

Conference On Applied Statistics In Agriculture 253

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/14



 
 
Figure 3. Individual Heifer 95% Confidence Intervals for Fixed-effects Parameters  
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Figure 2. Linear Regression Lines for 
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Figure 6 Predictions for population (fixed) and within-group (Individual Heifer) for observed RR 
(circles) versus Ta 
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Figure 5. Individual and Mixed Model 
Fixed-effects:Quadratic(random: linear Ta)  
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Figure 7. Parameter Estimates of Heifer Random Effects by Shade and Genotype from Mixed 
Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Box-plots of Standardized Residuals for Each Heifer Linear Mixed Model        
Quadratic (Random Linear)  
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Figure 9. Plot of Standardized Residuals vs. Fitted Values by Shade and Genotype for Mixed 
Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10. Normal Probability Plot of Standardized Residuals from Mixed Model Quadratic  
 
 
 
 
 
 
 
 
Figure 11. Normal Probability Plots of Residuals by Shade and Genotype from Mixed Model  
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