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DOSE-RESPONSE MODELING WITH MARGINAL

INFORMATION ON A MISSING CATEGORICAL

COVARIATE

John R. Stevens1 and David I. Schlipalius2

1 Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill,
Logan, UT 84322-3900 USA

2 School of Integrative Biology, Goddard Building (8), St Lucia Campus, The University of
Queensland, Brisbane, Qld 4072 Australia

Abstract

When the relationship between a dosage-type variable and a binary outcome depends on a
categorical variable, a common analysis would employ a dose-response model with the cate-
gorical variable as a covariate. When the level of the categorical variable is not known for all
subjects, however, the standard dose-response model alone cannot provide useful inference.
We present an EM-based approach to account for the missing covariate in a dose-response
model setting when additional knowledge about the marginal distribution of the covariate
is available. This approach is motivated by a study of the beetle Rhyzopertha dominica, a
pest of stored grain in Australia. Certain genotypes of this beetle have developed inheritable
resistance to a widely-used insecticidal fumigant. In this study, the effects of various dosage
levels of the fumigant were considered, and it was feasible to genotype only the surviving
beetles.

Keywords: dose-response, EM algorithm, incomplete data

1 Introduction

The beetle Rhyzopertha dominica (lesser grain borer) is a pest of stored grain and is a year-
round problem in moderate climates such as Australia. Australian grain is a multi-billion
dollar industry with a zero-tolerance policy for insect-infested grain. Phosphine fumigant is
the primary control against beetle-infested grain, but the lesser grain borer has developed
inheritable resistance to phosphine. Previous work (Schlipalius et al. 2002) has identified
two DNA markers (rp6.79 and rp5.11) that are closely linked to two independent resistance
loci that are responsible for the majority of this inheritable resistance in a highly resistant
beetle strain isolated in Australia. That is, the degree of resistance to phosphine seems to
depend on the forms of these two genes in the individual beetle.

As previously reported (Schlipalius et al. 2002), susceptible and resistant beetles were crossed
to produce an F1 generation which was then bred within itself to produce an F2 generation.
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The F2 generation consisted of 104 individuals, 92 of which were sacrificed and used to
estimate a genetic map; the other 12 were bred amongst themselves to produce the F3, F4,
and F5 generations. The F5 individuals were divided into eleven groups, and each group
received a different dosage of phosphine.

After 48 hours exposure to the fumigant, the surviving beetles were genotyped at both the
rp6.79 and rp5.11 loci to determine what forms of the genes were present in each survivor.
The rp6.79 locus was characterized as having two possible genotypes (-,+), while the rp5.11
locus had three (B, H, A). Table 1 shows the observed data. While the dose levels and
exposure time used in these experiments are not the same as those used in field applications,
these data can be used to characterize and better understand the varying degrees of resistance
among the different genotypes.

Of immediate interest here is the relationship between mortality and dosage for each geno-
type. In field applications, the goal is to determine the appropriate dosage of phosphine to
exterminate the beetles with high probability. In choosing the appropriate concentration of
phosphine for fumigating stored grain, several considerations support the use of the lowest
practical dose. Experience has shown that time is more important than concentration, so
that greater exposure time at a consistently maintained lower dose is more successful in
killing the beetles than is a higher dose for a shorter time. Expense is another motivation
for using lower doses. In addition, the difficulty of maintaining a consistent concentration
in a non-air-tight grain silo prevents a high-dose strategy from being successful. Finally,
phosphine can be spontaneously combustible at high concentrations, and so safety issues
also support the use of the lowest practical doses.

Ideally in a study such as this, genotypic (or more generally, classification) information
would have been recorded for all individuals. Then to determine the necessary dosage to
kill a certain percentage of the beetles in each genotype, a dose-response model relating
survival or death to genotype and dose level would be relatively straightforward. However,
in this particular setting, genotyping all beetles was cost-prohibitive. An extraordinarily
large number of beetles was used at the higher dose levels to ensure survivors at each dose
level. At the same time, the large number of beetles at the high dose levels also provided
large numbers of dead beetles to genotype, and resources to genotype all beetles were not
available. The savings in genotyping only the 378 survivors rather than all 10,798 beetles
were substantial.

Because the total number of individuals at each genotype-dose level combination is unknown,
standard dose-response models can not be used for the analysis of these data. Hence it is
necessary to develop a method for the analysis of these data. This method provides a way to
make inference regarding the effects of different dosages on the mortality of each genotype
in a dose-response model, even though the data are incomplete. One key to this method is
the availability of marginal information on the missing categorical covariate, genotype, as
found in the zero dose level.
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2 Methods

Let N.j be the total number of beetles receiving dose level j (j = 0, ..., 10) and ni,j be the total
number of survivors at dose level j with genotype i (i = 1, ..., 6). Then Table 1 shows that N.j

and ni,j were observed. Let Ni,j represent the unobserved number of beetles receiving dose
level j in genotype i. Let pi,j be the probability of death for genotype i beetles at dose level j;
then if Ni,j had been observed, the traditional model ni,j|Ni,j ∼ Binomial(Ni,j, 1−pi,j) could
have been assumed. Let Nj = (N1,j, ..., N6,j) be the vector of total number of beetles at dose
level j. Although the Ni,j are unobserved here, Nj may be [latently] considered as having
come from a multinomial distribution: Nj ∼ Multinomial(N.j, P ), where P = (P1, ..., P6),
and Pi is the proportion of the beetle population with genotype i.

To place this problem in a maximum likelihood context, let θ = (p, P ) be the parameters
(including pi,j and Pi) in the binomial and multinomial distributions, and let T = (n,N)
be the complete data. Then after some simplification of the joint likelihood f(n,N |θ) =
f(n|N, θ)f(N |θ), the log-likelihood can be written as

l(θ|T) =
10
∑

j=0

[log N.j! +
6

∑

i=1

{Ni,j log Pi − log ni,j! − log (Ni,j − ni,j)!

+ni,j log (1 − pi,j) + (Ni,j − ni,j) log pi,j}]. (1)

In order to understand how genotype and dose level affect the probability of mortality, pi,j

can be parameterized in terms of genotype i and dose level j using, for example, a logit link:

log
pi,j

1 − pi,j

= ηi,j = Gi + Didj (2)

Then parameter estimates can be obtained by maximizing the likelihood in equation 1, and
statistical inference can be made regarding the parameters θ. The exact parameterization
chosen will affect the types of inferences that can be made, and one possible parameterization
is presented in section 2.3 of this paper. For our immediate needs, however, equation 1 is
sufficient to consider the maximization problem.

The likelihood in equation 1 cannot be directly maximized due to the missing data (specifi-
cally, the Ni,j). The mechanism of missing information in the current data, however, suggests
an implementation of the EM algorithm (Dempster et al. 1977) might be appropriate. A
necessary assumption for an EM application is that of “missing at random” or MAR. In
general, suppose that y is the [completely observed] response variable (here, survival/death),
and that covariate x (here, genotype) is at least partially unobserved. Then covariate x is
MAR if and only if the probability of observing x (conditional on y and the other observed
covariates ) does not depend on x or any other unobserved covariate, but may depend on y
and the other observed covariates (Ibrahim 1990). In the current beetle data, genotype (x)
is observed only for survivors (y=“survival”), and for all beetles at zero dosage. As such, the
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categorical covariate genotype is MAR, and an application of the EM algorithm to maximize
equation 1 is appropriate.

The EM algorithm may be summarized using the following formulation (Hastie et al. 2001):

1. Initialization: Select initial guess θ̂(0).

2. Expectation: At iteration k, evaluate Q(k) = Q(θ, θ̂(k)) = E[l(θ,T)|n, θ̂(k)].

3. Maximization: Let θ̂(k+1) be the θ to maximize Q(k).

4. Convergence: Repeat steps (b) and (c) until convergence of Q(k).

2.1 Initialization

It is important to note that there are two classes of marginal information in these data.
First, for all dosage levels j, N.j is observed, providing some marginal information on the
distribution of dosage. More importantly, however, at the zero dose level (j = 0), the Ni,j

are observed (and Ni,0 = ni,0), and this can be used to provide marginal information on the
distribution of the missing categorical covariate genotype. Specifically, the initial estimates
for P can be derived as the MLE’s from the multinomial likelihood at the zero dose level,
producing initial estimates P̂

(0)
i = ni,0/N.0. Initial estimates for the pi,j can be taken to be

0.5. The initial estimates of the pi,j are not critical, but the presence of the zero dosage level
provides the necessary marginal information on genotype to make useful initial estimates for
Pi.

2.2 Expectation

Dropping constants log N.j! and log ni,j!, the expectation quantity of interest is

Q(k) =
∑

i,j

Ñ
(k)
i,j log Pi − L

(k)
i,j + ni,j log(1 − pi,j) + (Ñ

(k)
i,j − ni,j) log(1 − pi,j), (3)

where Ñ
(k)
i,j = E[Ni,j|n, θ̂(k)] and L

(k)
i,j = E[log(Ni,j − ni,j)!|n, θ̂(k)]. In order to evaluate

Ñ
(k)
i,j and L

(k)
i,j , it is first necessary to address the distribution of Ni,j given n and θ, or

the distribution of Nj (the vector of total number of individuals at dose level j) given nj

(the vector of number of survivors at dose level j). With conditional notation temporarily
suppressed, Bayes formula gives

h(Nj|nj) =
f(nj|Nj)f(Nj)

∑

Nj
f(nj|Nj)f(Nj)

=
f(nj|Nj)f(Nj)

∑

N1j

∑

N2j
...

∑

NIj
f(nj|Nj)f(Nj)

, (4)
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where the ith summation term in the denominator can be written as

∑

Nij

=

N.j−
∑

l<i
Nlj−

∑

l>i
nlj

∑

Nij=nij

.

A standard computational package such as Maple can be used to show that this simplifies
to

h(Nj|nj,p,P) = (N.j −
∑

i

ni,j)!
∏

i











(

Pipi,j
∑

l
Plpl,j

)Ni,j−ni,j

(Ni,j − ni,j)!











. (5)

From equation 5, it can be seen that

(Nj − nj)|nj, θ ∼ Multinomial((N.j −
∑

i

ni,j), λj), (6)

where λj is a length six vector with

λi,j =
Pipi,j

∑

l Plpl,j

. (7)

Using this multinomial distribution,

Ñ
(k)
i,j = E[Ni,j|n, θ̂(k)] =

P̂
(k)
i p̂

(k)
i,j

∑

l P̂
(k)
l p̂

(k)
l,j

(N.j −
∑

l

nl,j) + ni,j. (8)

Note that the θ maximizing Q(k) will not depend on L
(k)
i,j = E[log(Ni,j −ni,j)!|n, θ̂(k)], and so

evaluation of L
(k)
i,j is not necessary for the maximization step. In fact, the evaluation of L

(k)
i,j

is only necessary because it will affect the rate of convergence of Q(k). Unlike Ñ
(k)
i,j , L

(k)
i,j has

no closed form, and direct evaluation from the multinomial distribution is computationally
prohibitive. Instead, an approximation strategy is necessary, first making use of Binet’s
formula

log(N − n)! ≈ (N − n + 0.5) log(N − n + 1) − (N − n + 1) + 0.5 log 2π. (9)

A graphical check reveals that as a function of N − n, Binet’s formula is a locally linear
function for N − n ≥ 20, and at most locally quadratic for N − n < 20. As such, the
expected value of Binet’s formula may be approximated using a second-order Taylor series
taken about Ñ

(k)
i,j − ni,j. From the variance of the multinomial distribution of Ni,j − ni,j it

can be shown that

E[N2
i,j|nj, θ] = (N.j −

∑

l

nl,j)λ̂
(k)
i,j (1 − λ̂

(k)
i,j ) + (Ñ

(k)
i,j )2, (10)
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where λ̂
(k)
i,j (1 − λ̂

(k)
i,j ) can be rewritten as

λ̂
(k)
i,j (1 − λ̂

(k)
i,j ) =

P̂
(k)
i p̂

(k)
i,j

∑

l 6=i P̂
(k)
l p̂

(k)
l,j

(
∑

l P̂
(k)
l p̂

(k)
l,j )2

. (11)

Note that if

g(x) = (x + 0.5) log(x + 1) − (x + 1) + 0.5 log 2π, (12)

then g′′(x) can be written as

g′′(x) =
x + 1.5

(x + 1)2
. (13)

Then the second-order Taylor series approximation to Binet’s formula yields

L
(k)
i,j = E[log(Ni,j − ni,j)!|n, θ̂(k)]

≈ E[g(Ñ
(k)
i,j − ni,j) + g′(Ñ

(k)
i,j − ni,j)((Ni,j − ni,j) − (Ñ

(k)
i,j − ni,j))

+0.5g′′(Ñ
(k)
i,j − ni,j)((Ni,j − ni,j) − (Ñ

(k)
i,j − ni,j))

2|n, θ̂(k)]

= g(Ñ
(k)
i,j − ni,j) + 0 + 0.5g′′(Ñ

(k)
i,j − ni,j)(E[N2

i,j|n, θ̂(k)] − (Ñ
(k)
i,j )2)

= (Ñ
(k)
i,j − ni,j + 0.5) log(Ñ

(k)
i,j − ni,j + 1) − (Ñ

(k)
i,j − ni,j + 1) + 0.5 log 2π

+
Ñ

(k)
i,j − ni,j + 1.5

2(Ñ
(k)
i,j − ni,j + 1)2

×
(N.j −

∑

l nl,j)P̂
(k)
i p̂

(k)
i,j

∑

l 6=i P̂
(k)
l p̂

(k)
l,j

(
∑

l P̂
(k)
l p̂

(k)
l,j )2

= L̃
(k)
i,j . (14)

Thus the expectation step yields

Q̃(k) =
∑

i,j

(

Ñ
(k)
i,j log Pi − L̃

(k)
i,j + ni,j log(1 − pi,j) + (Ñ

(k)
i,j − ni,j) log(1 − pi,j)

)

, (15)

where Ñ
(k)
i,j and L̃

(k)
i,j are calculated from equations 8 and 14, respectively.

2.3 Maximization

The portion of Q̃(k) involving P is

Q̃
(k)
P =

∑

i,j

Ñ
(k)
i,j log Pi. (16)

Using the method of Lagrange multipliers to maximize Q(k) with respect to P , subject to
the constraint that

∑

i Pi = 1, yields

P̂
(k+1)
i =

∑

j Ñ
(k)
i,j

∑

l,j Ñ
(k)
l,j

. (17)
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The portion of Q̃(k) involving p is

Q̃(k)
p =

∑

i,j

(

ni,j log(1 − pi,j) + (Ñ
(k)
i,j − ni,j) log(1 − pi,j)

)

. (18)

Note that this is just the binomial log likelihood, which can be maximized with respect
to p by first specifying a parameterization of p in terms of some vector ϑ of genotype and
dosage effects. There are of course may possible parameterizations, and Table 2 gives one.
The parameter estimates ϑ̂ may be obtained using an approach such as Newton-Raphson
iterations to maximize the log likelihood, producing both p̂

(k)
i,j and ϑ̂(k).

2.4 Convergence

This implementation of the EM algorithm is made in R, and iterations run until Q̃(k) −
Q̃(k−1) < ε. Here, the convergence criterion is chosen to be ε = 1e − 12. Smaller values of ε
do not give substantially different results. The implementation converges in 1639 iterations,
taking 53 seconds.

2.5 Covariance Matrix for Parameter Estimates

Each iteration of the EM algorithm will produce updated estimates of the parameter vector
φ = (P, ϑ), with φ̂ as the estimate at the last EM iteration where convergence is achieved. In
order to make statistical inference about the dose-response model, it is necessary to estimate
V = V ar[φ̂], the covariance matrix of φ̂. The missingness mechanism in the data is not
accounted for by the estimation approaches such as Newton-Raphson in the maximization
step. Various approaches have been proposed for estimating the variance-covariance matrix
in EM applications, such as EM by method of weights (Ibrahim 1990), Supplemented EM
(SEM) (Meng and Rubin 1991), and direct calculation of the information matrix (Oakes
1999). Of these, the direct calculation was found to be the most straightforward for these
data, and the most generalizable to alternative parameterizations ϑ.

In the direct calculation approach, let the expected log-likelihood Q be reparameterized in
terms of φ = (P, ϑ), so that Q̃(k) = Q̃(φ, φ̂(k)). Then of interest is the variance-covariance
matrix V = V ar[φ̂] = I−1

m , where

Im = −
∂2l(φ̂|T )

∂φ̂2
. (19)

Due to the missing data, the differentiation required in equation 19 is not practical. Instead,
the “direct calculation” approach (Oakes 1999) can be used, with Im expressed in terms of
the expected log-likelihood quantity:

∂2l(φ̂|T )

∂φ̂2
=

[

∂2Q̃(φ, φ̂)

∂φ2
+

∂2Q̃(φ, φ̂)

∂φ∂φ̂

]

φ=φ̂

. (20)
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On the right-hand side of equation 20, the first term is often referred to as the “expected
complete data information,” and the second term is the “missing information.” The differ-
entiation and evaluation required for these two terms is relatively straightforward using a
symbolic computation package such as Maple.

With these data, the resulting Im matrix is not positive definite, which is a necessary condi-
tion for the covariance matrix V to be positive definite (i.e., symmetric and all eigenvalues
positive). However, this non-positive-definiteness could easily be attributed to small numeri-
cal imprecisions, as the sole non-positive eigenvalue is on the order of −1e−13, and there are
slight differences between off-diagonal elements. The smallest absolute diagonal element of
Im was approximately 0.07, and the largest relative difference between off-diagonal elements
was on the order of 1e − 04 (0.0001745709 vs. 0.00017454). The approach employed here
to “force” symmetry was to average the off-diagonal elements, to adjust for differences in
rounding. To “force” positive definiteness, an approach similar to the Levenberg-Marquardt
adjustment in section 4.5.3.3 of Thisted 1988 was adopted, adding a small positive constant
(1e− 08) to the diagonal entries of Im. With the Im thus calculated, the variance-covariance
matrix V = I−1

m can be obtained, and then statistical inferences can be made, with the
missingness of the data appropriately taken into account.

3 Results

As an example of the type of statistical inferences that can be made once the EM parameter
estimates and corresponding covariance matrix have been obtained, consider the standard
errors of the predicted probabilities of mortality. For each of the six genotypes, there is some
vector a such that the predicted probability of death at some dosage d can be expressed as

p̂ =
(

1 + exp(−a′φ̂)
)−1

, (21)

where a involves d, and φ is the vector of EM parameter estimates. Then by the delta
method,

V ar[p̂] = p̂4 exp(−2a′φ̂)a′V a, (22)

where V = V ar[φ̂]. Then the dose-response curves (p̂ as a function of dosage d) for each geno-
type can be visualized, with ± 2 standard errors for approximate pointwise 95% confidence
bounds. These can be seen in Figure 1.

From Figure 1 it can be seen that for genotypes -/B, -/H, +/H, and +/A, there are observed
dosage levels across the regions of dosage where the dose-response curve moves from 0 to 1.
For genotype -/A, the dose-response curve appears to “jump” between observed dosage levels,
and for genotype +/B the dose response curve appears to “jump” at a single observed dosage
level. For these two genotypes, it appears that perhaps an alternative parameterization to
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the one suggested in Table 2 might be more descriptive, such as some kind of “cut-point”
parameterization.

A 95% interval estimation of the LD50, the dosage required to achieve a mortality probability
of 0.5, can be achieved for each genotype using either the asymptotic confidence intervals
via the delta method or the Fieller intervals (Faraggi, Izikson, and Reiser 2003). For each
genotype, the predicted mortality probability can be expressed as a function of dosage d:

p̂ = (1 + exp(−γ̂0 − γ̂1d))−1 , (23)

where

γ̂ = Aφ̂ (24)

for some genotype-specific matrix A. Then using z as a critical value from the standard
normal distribution, the general LDp can be expressed as

LDp =
1

γ̂2
1

(

log

(

p

1 − p

)

− γ̂0

)

. (25)

By the delta method,

V ar[LDp] ≈
1

γ̂
(1 LDp)Σ(1 LDp)

′, (26)

where Σ = V ar[γ̂] = AV A′. Then the approximate (1 − α)100% confidence interval for the
LDp is

LDp ± z1−α/2

√

V ar[LDp]. (27)

Using the same Σ as above, when p = 0.5 the non-symmetric (1− α)100% Fieller interval is

LDp +
C

1 − C

(

LDp +
Σ1,2

Σ2,2

)

±
z1−α/2

γ̂1(1 − C)

√

√

√

√Σ1,1 + 2LDpΣ1,2 + LD2
pΣ2,2 − C

(

Σ1,1 −
Σ2

1,2

Σ2,2

)

, (28)

where C = z1−α/2Σ2,2/γ̂1. In order for the Fieller intervals to be obtained, it is necessary
that C > 1, which is equivalent to having the γ1 term be statistically significant at the α
level for the corresponding genotype.

Table 3 gives the genotype-specific models (the γ̂ and corresponding Σ) as well as the LDp
and corresponding intervals. Note that when the dosage effect is “nonsignificant” (t < 1.96),
the Fieller approach gives no interval. It is important to note that “nonsignificance” can
occur here due to large variance, as seen in the Σ matrices for genotypes -/A and +/B in
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Table 3. In general, the interval estimates for the LD50 tend to agree with the graphical
representation in Figure 1. However, the confidence interval for the -/A genotype’s LD50
is much wider than the other genotypes’, a result of the high variance associated with the
dosage effect for that genotype, which further suggests an alternative parameterization (such
as a cut-point model) for this genotype.

As seen in Figure 1, for the three genotypes -/A, +/B, and +/A the observed dosages did not
occur at levels where the dose-response curve changes most rapidly. In addition, the observed
dosages were insufficiently high to capture the rate parameter (the γ1 term in equation 23)
for genotype +/A. This lack of “support” for the portion of greatest change in the dose-
response curve can lead to high variance of the estimates of dosage effect, resulting in the
“non-significance” of the dosage effect estimates for these three genotypes. Another possible
reason for the non-significance of dosage effect in the three genotypes -/A, +/B, and +/A is
the non-monotonicity of the ratio of genotype survivors to total beetles at each dosage level
(see Table 1). As dosage increases, this ratio is expected to decrease in a monotone fashion,
but for these three genotypes it does not.

Because the +/A genotype has been observed to be the most resistant, its results deserve
a final comment. It has been established by practical experience that there is a synergistic
effect between the two markers (rp6.79, rp5.11) defining the six genotypes. This synergy or
interaction causes the +/A genotype to be highly resistant, much more so than could be
attributed to solely additive effects of the two markers. Based on the parameterization in
Table 2, the null hypothesis of additive marker effects is H0 : g0,2 = g0,3 = β0,2 = β0,3 = 0,
or H0 : a′φ = 0 for a specific vector a. With these data, the value of the test statistic is
t = 0.14, and the null hypothesis is not rejected. One possible reason for this failure to
statistically detect the known interaction is the greater missingness of data for this +/A
genotype – higher numbers of beetles were allocated to the higher dose levels with the sole
purpose of observing surviving +/A beetles at those dose levels (see Table 1). The extent to
which this greater missingness of data, the previously mentioned non-monotonicity, and the
lack of “support” limit the analysis will be the subject of future work involving extensive
simulations and alternative parameterizations.

4 Summary

To control costs, it is often desirable in agricultural settings to eliminate a pest such as the
lesser grain borer using the lowest practical effective dose of a particular fumigant such as
phosphine. In the application presented here, of interest was how beetle genotype affected
resistance to phosphine. However, due to the high expense involved, only surviving beetles
were genotyped. Due to the missing data, then, a simple dose-response model could not
adequately address these data. The two important factors that allowed a useful application of
the EM algorithm to these data were the missingness mechanism (specifically, genotype was
“missing at random”) and the availability of marginal information on the missing categorical
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covariate (genotype was observed at the zero dosage level). The “direct calculation” approach
(Oakes 1999) was found to be the most straightforward method for estimating the variance-
covariance matrix of the final estimates from the EM algorithm.

The greater degree of data missingness for the most resistant genotype, along with non-
monotonicity and lack of dosage “support” in two other genotypes, introduced greater vari-
ance for the corresponding parameter estimates, causing the statistical tests to fail to detect
the marker synergy observed in practice. The main biological conclusion drawn from this
analysis would be a recommendation to consider the dosages along the portions of great-
est change in the dose-response curves of Figure 1 for each genotype. Additional study
of other dosage levels (more “support”) would add greater accuracy and resolution to the
dose-response curve. This will be the subject of future work involving extensive simulations.

Alternative parameterizations (of mortality probability in terms of genotype and dosage ef-
fects) are possible, and a cut-point model might be reasonable for two of the genotypes.
The methods described in this paper were implemented using both R (for the EM imple-
mentation) and Maple (for the symbolic differentiation required for the variance-covariance
estimation). The adaptation of these methods to other similar data sets should be reasonably
straightforward, and the R code and Maple worksheet are available from the authors.
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Table 1: Distribution of numbers of surviving beetles at various genotypes and dose levels.

Phosphine Total
Dosage Receiving Total Total Observed Survivors at Genotype
(mg/L) Dosage Deaths Survivors -/B -/H -/A +/B +/H +/A
0 98 0 98 31 27 10 6 20 4
0.003 100 16 84 18 26 10 6 20 4
0.004 100 68 32 10 4 3 4 7 4
0.005 100 78 22 1 4 7 2 6 2
0.01 100 77 23 0 1 9 8 5 0
0.05 300 270 30 0 0 0 5 20 5
0.1 400 383 17 0 0 0 0 10 7
0.2 750 740 10 0 0 0 0 0 10
0.3 500 490 10 0 0 0 0 0 10
0.4 500 492 8 0 0 0 0 0 8
1 7,850 7,806 44 0 0 0 0 0 44

10,798 10,420 378

Table 2: Possible parameterization of pi,j, the probability of death at dosage level
j for genotype i, with the logit link log pi,j

1−pi,j
= ηi,j in terms of the vector ϑ =

(µ, g0, g2, g3, g0,2, g0,3, α, β0, β2, β3, β0,2, β0,3). Here, dj corresponds to dosage level j.

Genotype Parameterization
-/B: η1,j = (µ ) + (α ) dj

-/H: η2,j = (µ + g2 ) + (α + β2 ) dj

-/A: η3,j = (µ + g3 ) + (α + β3 ) dj

+/B: η4,j = (µ + g0 ) + (α + β0 ) dj

+/H: η5,j = (µ + g0 + g2 + g0,2 ) + (α + β0 + β2 + β0,2 ) dj

+/A: η6,j = (µ + g0 + g3 + g0,3 ) + (α + β0 + β3 + β0,3 ) dj
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Table 3: Summary of results. P̂i is the final EM estimate of the proportion of each genotype in the population. γ̂ is the
vector of genotype-specific parameter estimates to represent mortality probability in terms of dosage, as in equation 23.

Σ is the estimated covariance matrix of γ̂. The test statistic t = γ̂1/
√

Σ2,2 tests for significance of dosage effect. The LD50

point and 95% interval estimates are also given for each genotype. Note that when the dosage effect is “nonsignificant”
(t < 1.96), the Fieller approach gives no interval.

LD50

Genotype P̂i γ̂ Σ t point 95% Confidence 95% Fieller

-/B 0.362

(

−8.40
2411.99

) (

5.95 −1452.99
−1452.99 363470.80

)

4.00 0.0035 (0.0031, 0.0039) (0.0028, 0.0038)

-/H 0.366

(

−4.36
1325.36

) (

1.05 −261.05
−261.05 70774.20

)

4.98 0.0033 (0.0028, 0.0038) (0.0027, 0.0037)

-/A 0.079

(

−28.43
981.77

) (

12501105.30 −93828.16
−93828.16 58208692.65

)

0.13 0.0290 (-7.1862,7.2441) NA

+/B 0.053

(

−24.78
511.68

) (

80149.44 −1602979.00
−1602979.00 32059577.00

)

0.09 0.0484 (0.0135, 0.0833) NA

+/H 0.118

(

−2.98
44.93

) (

1.36 −11.50
−11.50 114.51

)

4.20 0.0664 (0.0407, 0.0921) (0.0256, 0.0873)

+/A 0.021

(

−2.82
3.82

) (

10.08 −8.85
−8.85 7.88

)

1.36 0.7382 (0.1407, 1.3356) NA
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Figure 1: Estimated dose-response curves, with pointwise approximate 95% confidence in-
tervals. The small hash marks above the dosage axis indicate dosage levels observed in
the experiment. Because the dosage axis is on the log scale here, the zero dose hash mark
does not appear. The apparent erratic behavior of the lower bound for the +/B genotype
at dosage 0.05 mg/L is due to the dramatic jump in the response curve at that dosage.
The curves for genotypes -/A and +/B suggest that alternative parameterizations may be
considered, such as a cut-point model.
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