Kansas State University Libraries
New Prairie Press

THE USE OF PSEUDO FACTORS IN $4^{n}, 8^{n}, 2^{m} \times 4^{n}, 2^{n} \times 8^{n}$ FACTORIAL DESIGNS

Md Shamsuddin
Mian A S Adnan

Follow this and additional works at: https://newprairiepress.org/agstatconference
Part of the Agriculture Commons, and the Applied Statistics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

Shamsuddin, Md and Adnan, Mian A S (2005). "THE USE OF PSEUDO FACTORS IN $4^{n}, 8^{n}, 2^{m} \times 4^{n}, 2^{n} \times 8^{n}$ FACTORIAL DESIGNS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/ 2475-7772.1145

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

THE USE OF PSEUDO FACTORS IN $4^{\mathrm{n}}, 8^{\mathrm{n}}, 2^{\mathrm{m}} \mathrm{X} 4^{\mathrm{n}}, 2^{\mathrm{n}} \mathrm{x} 8^{\mathrm{n}}$
FACTORIAL DESIGNS
By
Md Shamsuddin
Professor of Statistics
University of Chittagong
Chittagong 4331, Bangladesh
\&
Mian A S Adnan
Dept of Statistics
Jahangirnagar University
Savar, Dhaka, Bangladesh

Abstract

The confounded factorial designs of the experiments $4^{\mathrm{n}}, 2^{\mathrm{m}} \mathrm{X} 4^{\mathrm{n}}, 8^{\mathrm{n}}$, etc, and their different fractions can be constructed and analyzed using a suitable method of pseudo factors known as Rotation-Conversion Method. An example is shown.

INTRODUCTION

Pseudo factors are generally used in social science, when any alternative approach is required. The approach of pseudo factors is also used in constructing and analyzing indirectly factorial designs whose levels are in prime power. When the number of level is prime power, the direct approach for construction is very difficult. Because when the level of any factor is the power of the prime like $4=2^{2}$ (or like $8=2^{3}, 9=3^{2}$, etc), the finite field formed by the 2^{2} classes residues, called Galois Field of order 2^{2} and denoted by $\operatorname{GF}\left(2^{2}\right)$ is used. The field exerts the roots or elements $\mathrm{u}_{0}=0, \mathrm{u}_{1}=1, \mathrm{u}_{2}=\mathrm{x}, \mathrm{u}_{3}=\mathrm{x}+1$ of the minimum function or modulus polynomial $\mathrm{Q}(\mathrm{x})=$ $x^{2}+x+1$. It is not easy to manipulate these numbers $u_{0}, u_{1}, u_{2}, u_{3}$ of $\operatorname{GF}\left(2^{2}\right)$ like the numbers 0 and 1 of GF (2).

Many authors have used the pseudo factor technique for constructing the symmetrical factorial designs of levels of prime powers. Yates (1937), Raghvarao (1971), John (1970, 71), Kempthorne (1952) used pseudo factors showing the relation of a real factor at 4 levels and two pseudo factors of two levels. Shamsuddin (1987, 90, 94), Shamsuddin and Aggarwal (1987) used the pseudo factors in symmetrical row-column designs. The technique of pseudo factors has also been used by Nath (1993) and Hossain (1995) respectively in $4^{\mathrm{n}}, 4^{\mathrm{n}-\mathrm{k}}$ and 8^{n} designs. Farid (1994) has constructed and analyzed the asymmetrical factorial design like $2^{m} \times 4^{n}$ factorials by use of pseudo factors and Haque (1996) used the same in their regular and irregular fractions. We like to discuss in details the different steps of construction and analysis patterns used in these factorial designs and their fractions by use of pseudo factors through the conversion rule.

INDIRECT CONSTRUCTION.

First the conversion method of pseudo factors into the real factors through their level correspondence is discussed so that it can be used to construct the confounding structure of both symmetrical and asymmetrical factorial designs composed of prime power of levels partly or fully. The levels of a real factor of a $4^{\text {n }}$ design belong to the elements $u_{0}, u_{1}, u_{2}, u_{3}$ of Galios Field $\left(2^{2}\right)$ and those of pseudo factors of 2^{n} designs belong to elements 0,1 of GF(2). So, in order to correspond between their levels, we are to replace the level 0 of 4^{n} design by 00 of $2^{2 \mathrm{n}}$ design, the level 1 by 10 , the level x by 01 and $1+x$ by 11 . In the same way we can correspond the levels between 8^{n} and $2^{3 n}$ designs. As $G F\left(2^{3}\right)$ having the minimum function $f(x)=x^{3}+x^{2}+1$ possesses the elements $u_{0}=0, u_{1}=1, u_{2}=x, u_{3}=x^{2}, u_{4}=x^{3}=1+x^{2}, u_{5}=x^{4}=x^{3}+x=1+x+x^{2}, u_{6}=$ $x^{5}=x^{3}+x^{2}+x=1+x, u_{7}=x^{6}=x+x^{2}$, we replace the level 0 of 8^{n} design by 000 of $2^{3 n}$ design, the level 1 by 100 , the level x by 010 , the level x^{2} by 001 and similarly the level $1+x$ is replaced by 110, the level $1+x^{2}$ is replaced by 101, $x+x^{2}$ by 011 and $1+x+x^{2}$ by 111. (Hossain 1995) Accordingly, the level correspondence of real factors with pseudo factors for different factorials of prime power of levels is shown below:

Level Correspondence for 4^{n} Factorials:

Level of a real factor
u_{0}
u_{1}
u_{2}
u_{3}
Level Correspondence for $8{ }^{\mathrm{n}}$ Factorials:
Level of a real factor
u_{0}
u_{1}
u_{2}
u_{3}
u_{4}
u_{5}
u_{6}
u_{7}

Level combination of 2 pseudo factors

Level combination of 3 pseudo factors
000
100
010
001

101

111
110
011

Conversion Procedure:
In the conversion procedure it is shown how the real factors and their interactions are being replaced by their pseudo factors components. This conversion procedure named as RotationConversion Procedure [Shamsuddin (1994)] finalized by trial and error method consists of two table: Rotation Table and Conversion Table.

Rotation-Conversion Procedure for 4^{n} factorials:

Let a real factor A at u_{1} level be replaced by the pseudo factors $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{1} \mathrm{~A}_{2}$ and the real factor B at u_{1} level by $B_{1}, B_{2}, B_{1} B_{2}$ then, in a rotation table, B at the power level u_{2} written as $B^{u_{2}}$ is replaced respectively by the pseudo factors $B_{2}, B_{1} B_{2}, B_{1}$, and B at the power level u_{3} denoted as $B^{u_{3}}$ is replaced by $B_{1} B_{2}, B_{1}, B_{2}$ (as the different power levels of B are changing rotationally the positions of the pseudo factors $B_{1}, B_{2}, B_{1} B_{2}$) for multiplying with other pseudo factors A_{1}, A_{2}, $\mathrm{A}_{1} \mathrm{~A}_{2}$ of A in order to get, in the conversion table, the interactions $A B, A B^{u_{2}}, A B^{u_{3}}$ of A and B. These are shown below in details in rotation and conversion tables for 4^{n} factorials:

Table 1:Rotation table for 4^{n} factorials

	Real Factors at different power levels							
	A	B	$B^{u_{2}}$	$B^{u_{3}}$	C	$C^{u_{2}}$	$C^{u_{3}}$
PSEUDO	A_{1}	B_{1}	B_{2}	$B_{1} B_{2}$	C_{1}	C_{2}	$C_{1} C_{2}$	
FACTOR	$\begin{gathered} A_{2} \\ A_{1} A_{2} \end{gathered}$	$\begin{gathered} B_{2} \\ B_{1} B_{2} \end{gathered}$	$\begin{gathered} B_{1} B_{2} \\ B_{1} \end{gathered}$	$\begin{aligned} & B_{1} \\ & B_{2} \end{aligned}$	$\begin{aligned} & C_{2} \\ & C_{1} C_{2} \end{aligned}$	$\begin{aligned} & C_{1} C_{2} \\ & C_{1} \end{aligned}$	$\begin{aligned} & C_{1} \\ & C_{2} \end{aligned}$	

Table 2: Conversion table for 4^{n} factorials

	REAL FACTOR INTERACTIONS 4					
	$A B$	$A B^{u_{2}}$	$A B^{u_{3}}$	\ldots	\ldots	\ldots
PSEUDO	$A_{1} B_{1}$	$A_{1} B_{2}$	$A_{1} B_{1} B_{2}$	\ldots	\ldots	\ldots
FACTOR	$A_{2} B_{2}$	$A_{2} B_{1} B_{2}$	$A_{2} B_{1}$	\ldots	\ldots	\ldots
INTERACTION	$A_{1} A_{2} B_{1} B_{2}$	$A_{1} A_{2} B_{1}$	$A_{1} A_{2} B_{2}$	\ldots	\ldots	\ldots

Similar Conversion Procedure for 8 is as follows:
Table 3: Rotation Table of $8{ }^{n}$ Factorials

	A	$B^{u_{1}}$	$B^{u_{2}}$	$B^{u_{3}}$	$B^{u_{4}}$	$B^{u_{5}}$	$B^{u_{6}}$	$B^{u_{7}}$	\cdots
p	A_{1}	B_{1}	B_{3}	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	$B_{1} B_{3}$	B_{2}	\cdots
S	A_{3}	B_{3}	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	$B_{1} B_{3}$	B_{2}	B_{1}	\cdots
E	$A_{2} A_{3}$	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	$B_{1} B_{3}$	B_{2}	B_{1}	B_{3}	\cdots
U	$A_{1} A_{2} A_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	$B_{1} B_{3}$	B_{2}	B_{1}	B_{3}	$B_{2} B_{3}$	\cdots
D	$A_{1} A_{2}$	$B_{1} B_{2}$	$B_{1} B_{3}$	B_{2}	B_{1}	B_{3}	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	\cdots
O	$A_{1} A_{3}$	$B_{1} B_{3}$	B_{2}	B_{1}	B_{3}	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	\cdots
	A_{2}	B_{2}	B_{1}	B_{3}	$B_{2} B_{3}$	$B_{1} B_{2} B_{3}$	$B_{1} B_{2}$	$B_{1} B_{3}$	\cdots

Table 4: Conversion table of $8{ }^{n}$ Factorials

	REAL FACTORIAL EFFECTS $^{c \mid}$						
	$A B^{u_{1}}$	$A B^{u_{2}}$	$A B^{u_{3}}$	$A B^{u_{4}}$	$A B^{u_{5}}$	$A B^{u_{6}}$	$A B^{u_{7}}$
P	$A_{1} B_{1}$	$A_{1} B_{3}$	$A_{1} B_{2} B_{3}$	$A_{1} B_{1} B_{2} B_{3}$	$A_{1} B_{1} B_{2}$	$A_{1} B_{1} B_{3}$	$A_{1} B_{2}$
s	$A_{3} B_{3}$	$A_{3} B_{2} B_{3}$	$A_{3} B_{1} B_{2} B_{3}$	$A_{3} B_{1} B_{2}$	$A_{3} B_{1} B_{3}$	$A_{3} B_{2}$	$A_{3} B_{1}$
E	$A_{2} A_{3} B_{2} B_{3}$	$A_{2} A_{3} B_{1} B_{2} B_{3} A_{2} A_{3} B_{1} B_{2}$	$A_{2} A_{3} B_{1} B_{3}$	$A_{2} A_{3} B_{2}$	$A_{2} A_{3} B_{1}$	$A_{2} A_{3} B_{3}$	
U	$A_{1} A_{2} A_{3} B_{1} B_{2} B_{3}$	$A_{1} A_{2} A_{3} B_{1} B_{2}$	$A_{1} A_{2} A_{3} B_{1} B_{3}$	$A_{1} A_{2} A_{3} B_{2}$	$A_{1} A_{2} A_{3} B_{1} A_{1} A_{2} A_{3} B_{3}$	$A_{1} A_{2} A_{3} B_{2} B_{3}$	
D	$A_{1} A_{2} B_{1} B_{2}$	$A_{1} A_{2} B_{1} B_{3}$	$A_{1} A_{2} B_{2}$	$A_{1} A_{2} B_{1}$	$A_{1} A_{2} B_{3}$	$A_{1} A_{2} B_{2} B_{3} A_{1} A_{2} B_{1} B_{2} B_{3}$	
o	$A_{1} A_{3} B_{1} B_{3}$	$A_{1} A_{3} B_{2}$	$A_{1} A_{3} B_{1}$	$A_{1} A_{3} B_{3}$	$A_{1} A_{3} B_{2} B_{3} A_{1} B_{1} B_{2} B_{3}$	$A_{1} A_{3} B_{1} B_{2}$	
	$A_{2} B_{2}$	$A_{2} B_{1}$	$A_{2} B_{3}$	$A_{2} B_{2} B_{3}$	$A_{2} B_{1} B_{2} B_{3} A_{2} B_{1} B_{2}$	$A_{2} B_{1} B_{3}$	

In an example it is found that the 4^{2} design of 4 pseudo factors $A_{1}, A_{2}, B_{1}, B_{2}$ confounds $A_{1} B_{2}$, $\mathrm{A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}$, and $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1}$ with its 4 blocks [Table 5]. After conversion, this 4^{2} design of 2 real factor A and B confounds one effect $A B^{u_{2}}$ with its 4 blocks [Table 6] .

Table 5:The 4^{2} design of 4 pseudo factors in 4 blocks

Table 6:The 4^{2} design of 2 real factors in 4 blocks

0000	1010	1111	0101	$\mathrm{u}_{0} \mathrm{u}_{0}$	$\mathrm{u}_{1} \mathrm{u}_{1}$	$\mathrm{u}_{3} \mathrm{u}_{3}$	$\mathrm{u}_{2} \mathrm{u}_{2}$
1101	0111	0010	1000	$\mathrm{u}_{3} \mathrm{u}_{2}$	$\mathrm{u}_{2} \mathrm{u}_{3}$	$\mathrm{u}_{0} \mathrm{u}_{1}$	$\mathrm{u}_{1} \mathrm{u}_{0}$
1011	0001	0100	1110	$\mathrm{u}_{1} \mathrm{u}_{3}$	$\mathrm{u}_{0} \mathrm{u}_{2}$	$\mathrm{u}_{2} \mathrm{u}_{0}$	$\mathrm{u}_{3} \mathrm{u}_{1}$
0110	1100	1001	0011	$\mathrm{u}_{2} \mathrm{u}_{1}$	$\mathrm{u}_{3} \mathrm{u}_{0}$	$\mathrm{u}_{1} \mathrm{u}_{2}$	$\mathrm{u}_{0} \mathrm{u}_{3}$

Similarly any 8^{n} design of n real factor in $8^{\mathrm{r}}(\mathrm{r}<\mathrm{n})$ blocks confounding $\left(8^{\mathrm{r}}-1\right) /(\mathrm{r}-1)$ effects can made indirectly through $2^{3 n}$ design of $3 n$ pseudo factors in 8^{r} blocks confounding ($\left.2^{3 \mathrm{r}}-1\right) /(\mathrm{r}-1)$ pseudo factorial effects (shown in tables $7 \& 8$).

Table 7: The 2^{6} design of 6 pseudo factors $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ confounding Pseudo factorial effect $A_{1} B_{2}, A_{3} B_{1}, A_{2} A_{3} B_{3}$ with 8 blocks

000000	000001	000100	001000	100000	000110	110000	101000
100010	100011	100110	101010	000010	100100	010010	001010
001101	001100	001001	000101	101101	001011	111101	100101
011100	011101	011000	010100	111100	011010	101100	110100
101111	101110	101011	100111	001111	101001	011111	000111
111110	111111	111010	110110	011110	111000	001110	010110
010001	010000	010101	011001	110001	010111	100001	111001
110011	110010	110111	111011	010011	110101	000011	011011

Table 8: The 8^{2} factorial design of 2 factors A and B confounding factorial effect $A B^{\mu_{7}}$ with 8 blocks

$\mathrm{u}_{0} \mathrm{U}_{0}$	$\mathrm{u}_{0} \mathrm{U}_{3}$	$\mathrm{u}_{0} \mathrm{U}_{1}$	$\mathrm{U}_{3} \mathrm{U}_{0}$	$\mathrm{u}_{1} \mathrm{U}_{0}$	$\mathrm{u}_{0} \mathrm{U}_{6}$	$\mathrm{u}_{6} \mathrm{U}_{0}$	$\mathrm{U}_{4} \mathrm{U}_{0}$
$\mathrm{u}_{1} \mathrm{u}_{2}$	$\mathrm{u}_{1} \mathrm{u}_{7}$	$\mathrm{u}_{1} \mathrm{u}_{6}$	$\mathrm{U}_{4} \mathrm{U}_{2}$	$\mathrm{u}_{0} \mathrm{U}_{2}$	$\mathrm{u}_{1} \mathrm{u}_{1}$	$\mathrm{u}_{2} \mathrm{u}_{2}$	$\mathrm{U}_{3} \mathrm{U}_{2}$
$\mathrm{U}_{3} \mathrm{U}_{4}$	$\mathrm{u}_{3} \mathrm{U}_{1}$	$\mathrm{U}_{3} \mathrm{U}_{3}$	$\mathrm{u}_{0} \mathrm{U}_{4}$	$\mathrm{U}_{4} \mathrm{Ul}_{4}$	$\mathrm{u}_{3} \mathrm{U}_{7}$	$\mathrm{U}_{5} \mathrm{U}_{4}$	$\mathrm{u}_{1} \mathrm{U}_{4}$
$\mathrm{u}_{7} \mathrm{u}_{1}$	$\mathrm{U}_{7} \mathrm{Ul}_{4}$	$\mathrm{u}_{7} \mathrm{U}_{0}$	$\mathrm{u}_{2} \mathrm{u}_{1}$	$\mathrm{u}_{5} \mathrm{U}_{1}$	$\mathrm{U}_{7} \mathrm{U}_{2}$	$\mathrm{u}_{4} \mathrm{u}_{1}$	$\mathrm{u}_{6} \mathrm{U}_{1}$
$\mathrm{U}_{4} \mathrm{U}_{5}$	$\mathrm{u}_{4} \mathrm{U}_{6}$	$\mathrm{u}_{4} \mathrm{U}_{7}$	$\mathrm{u}_{1} \mathrm{u}_{5}$	$\mathrm{u}_{3} \mathrm{U}_{5}$	$\mathrm{U}_{4} \mathrm{U}_{3}$	$\mathrm{u}_{7} \mathrm{u}_{5}$	$\mathrm{u}_{0} \mathrm{U}_{5}$
$\mathrm{u}_{5} \mathrm{U}_{6}$	$\mathrm{U}_{5} \mathrm{U}_{5}$	$\mathrm{U}_{5} \mathrm{U}_{2}$	$\mathrm{u}_{6} \mathrm{u}_{6}$	$\mathrm{u}_{7} \mathrm{u}_{6}$	$\mathrm{U}_{5} \mathrm{U}_{0}$	$\mathrm{u}_{3} \mathrm{u}_{6}$	$\mathrm{u}_{2} \mathrm{u}_{6}$
$\mathrm{u}_{2} \mathrm{u}_{3}$	$\mathrm{u}_{2} \mathrm{u}_{0}$	$\mathrm{u}_{2} \mathrm{U}_{4}$	$\mathrm{u}_{7} \mathrm{u}_{3}$	$\mathrm{u}_{6} \mathrm{u}_{3}$	$\mathrm{u}_{2} \mathrm{U}_{5}$	$\mathrm{u}_{1} \mathrm{u}_{3}$	$\mathrm{u}_{5} \mathrm{u}_{3}$
$\mathrm{u}_{6} \mathrm{U}_{7}$	$\mathrm{u}_{6} \mathrm{U}_{2}$	$\mathrm{U}_{6} \mathrm{U}_{5}$	$\mathrm{u}_{5} \mathrm{U}_{7}$	$\mathrm{u}_{2} \mathrm{u}_{7}$	$\mathrm{U}_{6} \mathrm{U}_{4}$	$\mathrm{u}_{0} \mathrm{U}_{7}$	$\mathrm{u}_{7} \mathrm{U}_{7}$

The $2^{\mathrm{m}} \mathrm{x} 4^{\mathrm{n}}$ Factorial Designs:
This type of design of m two leveled factors and n four leveled factors can be indirectly constructed by $2^{m+2 n}$ factorials of two leveled m real factors and $2 n$ pseudo factors. Here, as an example, we like to discuss $2^{2} \times 4^{2}$ factorial design. It can be indirectly constructed by 2^{6} factorial of two real factors and four pseudo factors, each at two levels.

Table 9a: The row-column 2^{6} factorial design confounding $\mathrm{A}_{1} \mathrm{~B}_{2}, \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}$ and $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1}$ with 4 blocks

000000	001000	000100	000001
000110	001110	000010	000111
001011	000011	001111	001010
001101	000101	001001	001100
110000	111000	110100	110001
110110	111110	110010	110111
111011	110011	111111	111010
111101	110101	111001	111100
100000	101000	100100	100001
100110	101110	100010	100111
101011	100011	101111	101010
101101	100101	101001	101100
010000	011000	010100	010001
010110	011110	010010	010111
011011	010011	01111	011010
011101	010101	011001	011100

Table 9b: The row-column $2^{2} \times 4^{2}$ factorial design confounding $A B^{u_{2}}$ with 4 blocks

$00 \mathrm{u}_{0} \mathrm{u}_{0}$	$00 \mathrm{u}_{1} \mathrm{u}_{0}$	$00 \mathrm{u}_{2} \mathrm{u}_{0}$	$00 \mathrm{u}_{0} \mathrm{u}_{2}$
$00 \mathrm{u}_{2} \mathrm{u}_{1}$	$00 \mathrm{u}_{3} \mathrm{u}_{1}$	$00 \mathrm{u}_{0} \mathrm{u}_{1}$	$00 \mathrm{u}_{2} \mathrm{u}_{1}$
$00 \mathrm{u}_{1} \mathrm{u}_{3}$	$00 \mathrm{u}_{0} \mathrm{u}_{3}$	$00 \mathrm{u}_{3} \mathrm{u}_{3}$	$00 \mathrm{u}_{1} \mathrm{u}_{1}$
$00 \mathrm{u}_{3} \mathrm{u}_{2}$	$00 \mathrm{u}_{2} \mathrm{u}_{2}$	$00 \mathrm{u}_{1} \mathrm{u}_{2}$	$00 \mathrm{u}_{3} \mathrm{u}_{0}$
$11 \mathrm{u}_{0} \mathrm{u}_{0}$	$11 \mathrm{u}_{1} \mathrm{u}_{0}$	$11 \mathrm{u}_{2} \mathrm{u}_{0}$	$11 \mathrm{u}_{0} \mathrm{u}_{2}$
$11 \mathrm{u}_{2} \mathrm{u}_{1}$	$11 u_{3} u_{1}$	$11 \mathrm{u}_{0} \mathrm{u}_{1}$	$11 \mathrm{u}_{2} \mathrm{u}_{1}$
$11 u_{1} u_{3}$	$11 \mathrm{u}_{0} \mathrm{u}_{3}$	$11 \mathrm{u}_{3} \mathrm{u}_{3}$	$11 \mathrm{u}_{1} \mathrm{u}_{1}$
$11 u_{3} \mathrm{u}_{2}$	$11 \mathrm{u}_{2} \mathrm{u}_{2}$	$11 \mathrm{u}_{1} \mathrm{u}_{2}$	$11 \mathrm{u}_{3} \mathrm{u}_{0}$
$10 \mathrm{u}_{0} \mathrm{u}_{0}$	$10 \mathrm{u}_{1} \mathrm{u}_{0}$	$10 \mathrm{u}_{2} \mathrm{u}_{0}$	$10 \mathrm{u}_{0} \mathrm{u}_{2}$
$10 \mathrm{u}_{2} \mathrm{u}_{1}$	$10 \mathrm{u}_{3} \mathrm{u}_{1}$	$10 \mathrm{u}_{0} \mathrm{u}_{1}$	$10 \mathrm{u}_{2} \mathrm{u}_{1}$
$10 \mathrm{u}_{1} \mathrm{u}_{3}$	$10 \mathrm{u}_{0} \mathrm{u}_{3}$	$10 u_{3} u_{3}$	$10 \mathrm{u}_{1} \mathrm{u}_{1}$
$10 \mathrm{u}_{3} \mathrm{u}_{2}$	$10 \mathrm{u}_{2} \mathrm{u}_{2}$	$10 \mathrm{u}_{1} \mathrm{u}_{2}$	$10 \mathrm{u}_{3} \mathrm{u}_{0}$
$01 \mathrm{u}_{0} \mathrm{u}_{0}$	$01 \mathrm{u}_{1} \mathrm{u}_{0}$	$01 \mathrm{u}_{2} \mathrm{u}_{0}$	$01 \mathrm{u}_{0} \mathrm{u}_{2}$
$01 \mathrm{u}_{2} \mathrm{u}_{1}$	$01 u_{3} \mathrm{u}_{1}$	$01 \mathrm{u}_{0} \mathrm{u}_{1}$	$01 \mathrm{u}_{2} \mathrm{u}_{1}$
$01 \mathrm{u}_{1} \mathrm{u}_{3}$	$01 \mathrm{u}_{0} \mathrm{u}_{3}$	$01 \mathrm{u}_{3} \mathrm{u}_{3}$	$01 \mathrm{u}_{1} \mathrm{u}_{1}$
$01 u_{3} \mathrm{u}_{2}$	$01 \mathrm{u}_{2} \mathrm{u}_{2}$	$01 \mathrm{u}_{1} \mathrm{u}_{2}$	$01 u_{3} \mathrm{u}_{0}$

Fractional Factorial Designs:

In constructing $4^{\mathrm{n}-\mathrm{k}}$ factorial designs or $8^{\mathrm{n}-\mathrm{k}}$ designs indirectly we can use the pseudo factorial like $2^{2 n-2 k}$ or $2^{3 n-3 k}$ designs respectively through the relations shown in the conversion table. Thus, as for example, the 4^{3-1} design containing one block defined by $1=A B^{u_{2}} C^{u_{3}}$ can be made using 2^{6-2} pseudo factorial design defined by $1=\mathrm{A}_{1} \mathrm{~B}_{2} \mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{C}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{C}_{2} \ldots \ldots$.(i). And the 8^{3-1} factorial design containing one block defined by $1=A B^{u_{2}} C^{u_{7}}$ can be done by using the 2^{9-3} pseudo factorial design defined by defining contrast $1=\mathrm{A}_{1} \mathrm{~B}_{3} \mathrm{C}_{2}=\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{C}_{1}=\mathrm{A}_{2} \mathrm{~A}_{3} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{C}_{3}$ $=A_{1} A_{2} A_{3} B_{1} B_{2} C_{1} C_{2}=A_{1} A_{2} B_{1} B_{2} C_{1} C_{2} C_{3}=A_{1} A_{3} B_{2} C_{1} C_{2}=A_{2} B_{1} C_{1} C_{3} \ldots \ldots$.(ii). The same rule is followed for a single block or the odd numbers of blocks of a pseudo factorial design to construct the regular or irregular fraction of a $2^{\mathrm{m}} \mathrm{x} 4^{\mathrm{n}}$ factorial design.

The constructions of different types of full as well as fractions of $2^{m} x 8^{n}, 4^{m} x 8^{n}, 2^{m} x 4^{n} x 8^{n}$ designs will be similarly made.

ESTIMATION and ANALYSIS

We can estimate all factorial effects in all two-leveled full factorials of pseudo factors by direct method or Yates method and in the fractions of pseudo factorials by direct method. Then these estimated values are converted to real factorial effects by conversion procedure shown in the conversion tables. In the fractional factorial the same procedure of conversion is followed as shown in the conversion table required for 4^{n} or 8^{n} factorial. After estimating the pseudo factorial effects (main effect or interaction effect) group-wise, followed by the conversion table, from its alias structure we get the estimates of real main effects and interaction effects by conversion for
the 4^{n} or 8^{n} factorial design. The sum of square of a pseudo factorial effect in these two leveled full or fractional factorials is estimated as usual procedure by [square of total factorial effect / total d.f.]

In analysis the real factor ss or the real factorial effect ss is obtained as the total of the ss's of all pseudo factors or pseudo factorial effects used for conversion of the real factor or real factorial effect. Thus, as for example in calculating the sum of squares of 4^{2} factorials, we see $\operatorname{ss}(\mathrm{A})$ is $\operatorname{ss}\left(\mathrm{A}_{1}\right)+\mathrm{ss}\left(\mathrm{A}_{2}\right)+\mathrm{ss}\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)$ and $\mathrm{ss}\left(A B^{u_{2}}\right)$ is the total of $\operatorname{ss}\left(\mathrm{A}_{1} \mathrm{~B}_{2}\right), \operatorname{ss}\left(\mathrm{A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2},\right)$ and $\operatorname{ss}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1}\right)$ as shown in the conversion table. And similarly in the 8^{2} factorial, as for examples using its conversion table, ss $\left(A B^{u_{2}}\right)=s s\left(\mathrm{~A}_{1} \mathrm{~B}_{3}\right)+\mathrm{ss}\left(\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{~B}_{3},\right)+\mathrm{ss}\left(\mathrm{A}_{2} \mathrm{~A}_{3} \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}\right)+\mathrm{ss}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~B}_{1} \mathrm{~B}_{2}\right)+$ $\mathrm{ss}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{3}\right)+\mathrm{ss}\left(\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~B}_{2}\right)+\mathrm{ss}\left(\mathrm{A}_{2} \mathrm{~B}_{1}\right)$.

As an example we show here the ANOVA table of 4^{2} factorial design of 2 real factors A and B confounding $A B^{u_{3}}$ with 4 blocks using the 2^{4} design of 4 pseudo factors $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ through the conversion rule of 4^{n} factorial.

Table 10. The Analysis of Variance Table of 4^{2} Design

2^{4} factorial design			4^{2} factorial design		
S.V.	D.F.	SS	S.V.	D.F.	SS
A_{1}	1	S(A_{1})			
A_{2}	1	S(A_{2})	A	3	S(A)
$\mathrm{A}_{1} \mathrm{~A}_{2}$	1	$\mathrm{S}\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)$			
B_{1}	1	$\mathrm{S}\left(\mathrm{B}_{1}\right)$			
B_{2}	1	S(B_{2})	B	3	S(B)
$\mathrm{B}_{1} \mathrm{~B}_{2}$	1	$\mathrm{S}\left(\mathrm{B}_{1} \mathrm{~B}_{2}\right)$			
$\mathrm{A}_{1} \mathrm{~B}_{1}$	1	$\mathrm{S}\left(\mathrm{A}_{1} \mathrm{~B}_{1}\right)$			
$\mathrm{A}_{2} \mathrm{~B}_{2}$	1	$\mathrm{S}\left(\mathrm{A}_{2} \mathrm{~B}_{2}\right)$	AB	3	S(AB)
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}$	1	$\mathrm{S}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}\right)$			
$\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{~B}_{2}$	1	$\mathrm{S}\left(\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{~B}_{2}\right)$			
$\mathrm{A}_{2} \mathrm{~B}_{1}$	1	$\mathrm{S}\left(\mathrm{A}_{2} \mathrm{~B}_{1}\right)$	$\mathrm{AB}_{3}{ }^{\text {a }}$	3	$\mathrm{S}\left(\mathrm{AB}^{\mathrm{u}}{ }_{3}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{2}$	1	$\mathrm{S}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{2}\right)$			
Block	3	S_{b}	Block	3	S_{b}
Error	by s	raction	Error	by subt	action

Summary

In constructing and analyzing indirectly the $4^{\mathrm{n}}, 2^{\mathrm{m}} \times 4^{\mathrm{n}}$ and 8^{n} types of designs the pattern of use of pseudo factors are shown here in detail.

REFERENCES:

1 Yates,F. (1937). The Design and Analysis of Factorial Experiments. Imp.Bur. Soc.Sc.Tech.Comm. 35.
2. Shamsuddin, Md. (1994). Suitable confounded 4^{n} factorial schemes by use of pseudofactors. c.u. studies, 14(2), Part-II,Sc.18(1):19-26.
3. Shamsuddin, Md. and Hoque, Z. (1997). Irregular fractions in $2^{m} x 4^{n}$ design. J.Bang. Aca. Sc. 21(2): 137-44.
4. Shamsuddin. Md., Haque, M. E. and Hossain, M. Q. (1996). The confounded 8^{n} factorial design using the rotation-conversion method of pseudofactors. J.Statist. Studies16: 9-15.
5. Kempthorne. O. (1946). The Design and Analysis of Experiments, Wiley, New York
6. John, P.W.M. (1970). A three-quarter fraction of 4^{3} designs. Aus. J. Statist. 12(2): 73.

7 Farid, M.A . The $\mathrm{p}^{\mathrm{m}} \mathrm{xq}^{\mathrm{n}}$ asymmetrical factorial design where $\mathrm{p}=\mathrm{q}^{\mathrm{r}}$ is a prime, by both direct and indirect methods. Unpublished M.Sc.thesis,University of Chittagong1994.
8. Nath, S.K. 4^{n} and $4^{\mathrm{n}-\mathrm{k}}$ Type Factorial Design by Direct and Indirect Methods. Unpublished M.Sc. thesis, University of Chittagong 1993.
9. Anderson, V.L. and McLean, R.A. (1974). Design of Experiments. A Realistic Approach. Mar. Dek. Inc. New York.
10 Hoque,Z. Fractional Factorials in $2^{m} x 4^{n}$ Design. Unpublished M.Sc. thesis. University of Chittagong 1996

