Kansas State University Libraries New Prairie Press

Conference on Applied Statistics in Agriculture

2005 - 17th Annual Conference Proceedings

THE USE OF PSEUDO FACTORS IN 4ⁿ, 8ⁿ, 2^mX4ⁿ, 2ⁿx8ⁿ FACTORIAL DESIGNS

Md Shamsuddin

Mian A S Adnan

Follow this and additional works at: https://newprairiepress.org/agstatconference

Part of the Agriculture Commons, and the Applied Statistics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

Shamsuddin, Md and Adnan, Mian A S (2005). "THE USE OF PSEUDO FACTORS IN 4ⁿ, 8ⁿ, 2^mX4ⁿ, 2ⁿx8ⁿ FACTORIAL DESIGNS," *Conference on Applied Statistics in Agriculture*. https://doi.org/10.4148/2475-7772.1145

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

THE USE OF PSEUDO FACTORS IN 4ⁿ, 8ⁿ, 2^mX4ⁿ,2ⁿx8ⁿ FACTORIAL DESIGNS By Md Shamsuddin Professor of Statistics

Professor of Statistics University of Chittagong Chittagong 4331, Bangladesh & Mian A S Adnan Dept of Statistics Jahangirnagar University Savar, Dhaka, Bangladesh

ABSTRACT

The confounded factorial designs of the experiments 4^n , 2^mX4^n , 8^n , etc, and their different fractions can be constructed and analyzed using a suitable method of pseudo factors known as Rotation-Conversion Method. An example is shown.

INTRODUCTION

Pseudo factors are generally used in social science, when any alternative approach is required. The approach of pseudo factors is also used in constructing and analyzing indirectly factorial designs whose levels are in prime power. When the number of level is prime power, the direct approach for construction is very difficult. Because when the level of any factor is the power of the prime like $4 = 2^2$ (or like $8 = 2^3$, $9 = 3^2$, etc), the finite field formed by the 2^2 classes residues, called Galois Field of order 2^2 and denoted by $GF(2^2)$ is used. The field exerts the roots or elements $u_0=0$, $u_1=1$, $u_2 = x$, $u_3 = x + 1$ of the minimum function or modulus polynomial $Q(x) = x^2 + x + 1$. It is not easy to manipulate these numbers u_0 , u_1 , u_2 , u_3 of $GF(2^2)$ like the numbers 0 and 1 of GF (2).

Many authors have used the pseudo factor technique for constructing the symmetrical factorial designs of levels of prime powers. Yates (1937), Raghvarao (1971), John (1970, 71), Kempthorne (1952) used pseudo factors showing the relation of a real factor at 4 levels and two pseudo factors of two levels. Shamsuddin (1987, 90, 94), Shamsuddin and Aggarwal (1987) used the pseudo factors in symmetrical row-column designs. The technique of pseudo factors has also been used by Nath (1993) and Hossain (1995) respectively in 4ⁿ,4^{n-k} and 8ⁿ designs. Farid (1994) has constructed and analyzed the asymmetrical factorial design like 2^mx 4ⁿ factorials by use of pseudo factors and Haque (1996) used the same in their regular and irregular fractions. We like to discuss in details the different steps of construction and analysis patterns used in these factorial designs and their fractions by use of pseudo factors through the conversion rule.

INDIRECT CONSTRUCTION.

First the conversion method of pseudo factors into the real factors through their level correspondence is discussed so that it can be used to construct the confounding structure of both symmetrical and asymmetrical factorial designs composed of prime power of levels partly or fully. The levels of a real factor of a 4ⁿ design belong to the elements u₀, u₁, u₂, u₃ of Galios Field (2^2) and those of pseudo factors of 2ⁿ designs belong to elements 0,1 of GF(2). So, in order to correspond between their levels, we are to replace the level 0 of 4ⁿ design by 00 of 2²ⁿ design, the level 1 by 10, the level x by 01 and 1+x by 11. In the same way we can correspond the levels between 8ⁿ and 2³ⁿ designs. As GF(2³) having the minimum function $f(x) = x^3 + x^2 + 1$ possesses the elements $u_0=0$, $u_1=1$, $u_2=x$, $u_3=x^2$, $u_4=x^3=1+x^2$, $u_5=x^4=x^3+x=1+x+x^2$, $u_6=x^5=x^3+x^2+x=1+x$, $u_7=x^6=x+x^2$, we replace the level 0 of 8ⁿ design by 000 of 2³ⁿ design, the level 1 by 100, the level x by 010, the level x^2 by 001 and x^2 by 011 and $1+x+x^2$ by 111. (Hossain 1995) Accordingly, the level correspondence of real factors with pseudo factors for different factorials of prime power of levels is shown below:

Level Correspondence for 4ⁿ Factorials:

Level of a real factor	Level combination of 2 pseudo factors
u ₀	00
u ₁	10
u ₂	01
u ₃	11

Level Correspondence for 8ⁿ Factorials: Level of a real factor

of a real factor	Level combination of 3 pseudo factors
u ₀	000
u ₁	100
u ₂	010
u ₃	001
u ₄	101
u ₅	111
u ₆	110
u ₇	011

Conversion Procedure:

In the conversion procedure it is shown how the real factors and their interactions are being replaced by their pseudo factors components. This conversion procedure named as Rotation-Conversion Procedure [Shamsuddin (1994)] finalized by trial and error method consists of two table: Rotation Table and Conversion Table.

Rotation-Conversion Procedure for 4ⁿ factorials:

Let a real factor A at u₁ level be replaced by the pseudo factors A₁,A₂, A₁A₂ and the real factor B at u_1 level by B_1, B_2, B_1B_2 then, in a rotation table, B at the power level u_2 written as B^{u_2} is replaced respectively by the pseudo factors B₂, B₁B₂, B₁, and B at the power level u₃ denoted as B^{μ_3} is replaced by B_1B_2 , B_1 , B_2 (as the different power levels of B are changing rotationally the positions of the pseudo factors B_1, B_2, B_1B_2) for multiplying with other pseudo factors A_1, A_2 , A_1A_2 of A in order to get, in the conversion table, the interactions AB, $A B^{u_2}$, $A B^{u_3}$ of A and B. These are shown below in details in rotation and conversion tables for 4^{n} factorials:

			Real Fa	actors at differen	t power levels			
	Α	В	B^{u_2}	B^{u_3}	С	C^{u_2}	$C^{u_{3}}$	 •••
PSEUDO	A_1	B_1	B_2	$B_1 B_2$	C_1	C_2	$C_{1}C_{2}$	
FACTOR	A_2	B_2	$B_1 B_2$	B_1	C_{2}	$C_{1}C_{2}$	C_1	
	$A_1 A_2$	$B_1 B_2$	B_1	B_2	$C_1 C_2$	C_1	C_2	

Table 1:Rotation table for 4ⁿ factorials

		REAL FACT	OR INTERACTION	ONS		
	AB	AB^{u_2}	AB^{u_3}	•••	•••	•••
PSEUDO	A_1B_1	A_1B_2	$A_1B_1B_2$	•••	•••	•••
FACTOR	A_2B_2	$A_2B_1B_2$	A_2B_1			
INTERACTION	ΛΛΒΒ	ΛΛΒ	ΛΛΒ			

 $A_1A_2B_2$

. . .

. . .

Table 2: Conversion table for 4ⁿ factorials

Similar Conversion Procedure for 8ⁿ is as follows:

 $A_1A_2B_1B_2$

Table 3: Rotation Table of 8 Factorials

 $A_1A_2B_1$

	Α	B^{u_1}	B^{u_2}	B^{u_3}	B^{u_4}	B^{u_5}	B^{u_6}	B^{u_7}	
Р	A_{1}	B_1	B_3	B_2B_3	$B_1B_2B_3$	B_1B_2	B_1B_3	B_2	
S	A_3	B_3	$B_{2}B_{3}$	$B_1B_2B_3$	B_1B_2	$B_{1}B_{3}$	B_2	B_1	•••
Е	A_2A_3	$B_2 B_3$	$B_1B_2B_3$	B_1B_2	$B_{1}B_{3}$	B_2	B_{1}	B_3	•••
U	$A_1A_2A_3$	$B_1B_2B_3$	B_1B_2	B_1B_3	B_2	B_1	B_3	B_2B_3	•••
D	A_1A_2	B_1B_2	B_1B_3	B_2	B_1	B_3	B_2B_3	$B_1B_2B_3$	•••
0	A_1A_3	B_1B_3	B_2	B_1	B_3	$B_2 B_3$	$B_1B_2B_3$	B_1B_2	
	A_2	B_2	B_1	B_3	$B_2 B_3$	$B_1B_2B_3$	B_1B_2	$B_{1}B_{3}$	•••

		REAL FACT	ORIAL EFFEC	TS		
AB^{u_1}	AB^{u_2}	AB^{u_3}	AB^{u_4}	AB^{u_5}	AB^{u_6}	AB^{u_7}
p A_1B_1	A_1B_3	$A_1B_2B_3$	$A_1B_1B_2B_3$	$A_1B_1B_2$	$A_1B_1B_3$	A_1B_2
s A_3B_3	$A_3B_2B_3$	$A_3B_1B_2B_3$	$A_3B_1B_2$	$A_3B_1B_3$	A_3B_2	A_3B_1
E $A_2A_3B_2B_3$	$A_2A_3B_1B_2B_3$	$_{3}A_{2}A_{3}B_{1}B_{2}$	$A_2A_3B_1B_3$	$A_2 A_3 B_2$	$A_2 A_3 B_1$	$A_2 A_3 B_3$
$\cup A_1 A_2 A_3 B_1$	$\boldsymbol{B}_2\boldsymbol{B}_3 \boldsymbol{A}_1\boldsymbol{A}_2\boldsymbol{A}_3\boldsymbol{B}_1\boldsymbol{B}_2$	$A_1A_2A_3B_1B_3$	$_{3} A_{1}A_{2}A_{3}B_{2}$	$A_1A_2A_3E$	$B_1 A_1 A_2 A_3 B_3$	$A_1A_2A_3B_2B_3$
d $A_1A_2B_1B_2$	$A_1A_2B_1B_3$	$A_1 A_2 B_2$	$A_1 A_2 B_1$	$A_1 A_2 B_3$	$A_1A_2B_2B_3$	$A_1A_2B_1B_2B_3$
$\circ A_1 A_3 B_1 B_3$	$A_1 A_3 B_2$	$A_1 A_3 B_1$	$A_1A_3B_3$	$A_1A_3B_2B$	$A_1B_1B_2B_3$	$A_1A_3B_1B_2$
A_2B_2	A_2B_1	A_2B_3	$A_2B_2B_3$	$A_2B_1B_2B_1$	$B_3 A_2 B_1 B_2$	$A_2B_1B_3$

Table 4: Conversion table of 8ⁿ Factorials

In an example it is found that the 4^2 design of 4 pseudo factors A₁,A₂,B₁,B₂ confounds A₁B₂, A₂B₁B₂, andA₁A₂B₁ with its 4 blocks [Table 5]. After conversion, this 4^2 design of 2 real factor A and B confounds one effect A B^{u_2} with its 4 blocks [Table 6].

		4 ² design ors in 4 b				design o in 4 bloc	
0000 1101 1011 0110	1010 0111 0001 1100	1111 0010 0100 1001	0101 1000 1110 0011	$u_0 u_0 u_0 u_3 u_2 u_1 u_3 u_2 u_1 u_3 u_2 u_1$	$u_1u_1 u_2u_3 u_0u_2 u_3u_0$	$u_{3}u_{3}$ $u_{0}u_{1}$ $u_{2}u_{0}$ $u_{1}u_{2}$	$u_2 u_2 u_1 u_0 u_3 u_1 u_0 u_3 u_1$

Similarly any 8^n design of n real factor in 8^r (r < n) blocks confounding $(8^r-1)/(r-1)$ effects can made indirectly through 2^{3n} design of 3n pseudo factors in 8^r blocks confounding $(2^{3r}-1)/(r-1)$ pseudo factorial effects (shown in tables 7 & 8).

Table 7: The 2⁶ design of 6 pseudo factors A₁, A₂,A₃,B₁,B₂,B₃ confounding Pseudo factorial effect A₁B₂, A₃B₁, A₂A₃B₃ with 8 blocks

000000	000001	000100	001000	100000	000110	110000	101000
100010	100011	100110	101010	000010	100100	010010	001010
001101	001100	001001	000101	101101	001011	111101	100101
011100	011101	011000	010100	111100	011010	101100	110100
101111	101110	101011	100111	001111	101001	011111	000111
111110	111111	111010	110110	011110	111000	001110	010110
010001	010000	010101	011001	110001	010111	100001	111001
110011	110010	110111	111011	010011	110101	000011	011011

Table 8: The 8² factorial design of 2 factors A and B confounding factorial effect AB^{u_7} with 8 blocks

$u_0 u_0$	u_0u_3	$u_0 u_1$	$u_3 u_0$	u_1u_0	$u_0 u_6$	$u_6 u_0$	$u_4 u_0$
u_1u_2	u_1u_7	u_1u_6	u_4u_2	u_0u_2	u_1u_1	u_2u_2	u_3u_2
u_3u_4	u_3u_1	u_3u_3	u_0u_4	u_4u_4	u_3u_7	u_5u_4	u_1u_4
u_7u_1	u_7u_4	$u_7 u_0$	u_2u_1	u_5u_1	u_7u_2	u_4u_1	$u_6 u_1$
u_4u_5	u_4u_6	u_4u_7	u_1u_5	u_3u_5	u_4u_3	u_7u_5	u_0u_5
u_5u_6	u_5u_5	u_5u_2	$u_6 u_6$	u_7u_6	$u_5 u_0$	u_3u_6	u_2u_6
u_2u_3	$u_2 u_0$	u_2u_4	u_7u_3	$u_6 u_3$	u_2u_5	u_1u_3	u_5u_3
$u_6 u_7$	$u_6 u_2$	$u_6 u_5$	$u_5 u_7$	u_2u_7	$u_6 u_4$	u_0u_7	u_7u_7

The 2^mx4ⁿ Factorial Designs:

This type of design of m two leveled factors and n four leveled factors can be indirectly constructed by 2^{m+2n} factorials of two leveled m real factors and 2n pseudo factors. Here, as an example, we like to discuss 2^2x4^2 factorial design. It can be indirectly constructed by 2^6 factorial of two real factors and four pseudo factors, each at two levels.

Table 9a: The row-column 2^6 factorial design confounding A_1B_2 , $A_2B_1B_2$ and $A_1A_2B_1$ with 4 blocks

000000	001000	000100	000001
000110	001110	000010	000111
001011	000011	001111	001010
001101	000101	001001	001100
110000	111000	110100	110001
110110	111110	110010	110111
111011	110011	111111	111010
111101	110101	111001	111100
100000	101000	100100	100001
100110	101110	100010	100111
101011	100011	101111	101010
101101	100101	101001	101100
010000	011000	010100	010001
010110	011110	010010	010111
011011	010011	011111	011010
011101	010101	011001	011100

$\begin{array}{l} 00u_0u_0\\ 00u_2u_1 \end{array}$	$\begin{array}{c} 00u_1u_0\\ 00u_3u_1 \end{array}$	$\begin{array}{c} 00u_2u_0\\ 00u_0u_1 \end{array}$	$\begin{array}{c} 00u_0u_2\\ 00u_2u_1 \end{array}$
$00u_1u_3\\$	$00u_0u_3$	$00u_3u_3$	$00u_1u_1$
$00u_{3}u_{2}$	$00u_2u_2$	$00u_1u_2$	$00u_{3}u_{0}$
$11u_0u_0$	$11u_{1}u_{0}$	$11u_2u_0$	$11u_0u_2$
$11u_2u_1$	$11u_3u_1$	$11u_0u_1$	$11u_2u_1$
$11u_1u_3$	$11u_0u_3$	$11u_3u_3$	$11u_1u_1$
$11u_3u_2$	$11u_2u_2$	$11u_1u_2$	$11u_{3}u_{0}$
$10u_0u_0$	$10u_{1}u_{0}$	$10u_2u_0$	$10u_0u_2$
$10u_2u_1$	$10u_3u_1$	$10u_0u_1$	$10u_2u_1$
$10u_1u_3$	$10u_0u_3$	$10u_3u_3$	$10u_1u_1$
$10u_3u_2$	$10u_2u_2$	$10u_1u_2$	$10u_{3}u_{0}$
$01u_0u_0$	$01u_1u_0$	$01u_2u_0$	$01u_0u_2$
$01u_2u_1$	$01u_3u_1$	$01u_0u_1$	$01u_2u_1$
$01u_1u_3$	$01u_0u_3$	$01u_3u_3$	$01u_1u_1$
$01u_3u_2$	$01u_2u_2$	$01u_1u_2$	$01u_3u_0$

Table 9b: The row-column $2^2 x 4^2$ factorial design confounding AB^{u_2} with 4 blocks

Fractional Factorial Designs:

In constructing 4^{n-k} factorial designs or 8^{n-k} designs indirectly we can use the pseudo factorial like 2^{2n-2k} or 2^{3n-3k} designs respectively through the relations shown in the conversion table. Thus, as for example, the 4^{3-1} design containing one block defined by $1 = AB^{u_2}C^{u_3}$ can be made using 2^{6-2} pseudo factorial design defined by $1 = A_1B_2C_1C_2 = A_2B_1B_2C_1 = A_1A_2B_1C_2$(i). And the 8^{3-1} factorial design containing one block defined by $1 = AB^{u_2}C^{u_7}$ can be done by using the 2^{9-3} pseudo factorial design defined by defining contrast $1 = A_1B_3C_2 = A_3B_2B_3C_1 = A_2A_3B_1B_2B_3C_3 = A_1A_2A_3B_1B_2C_1C_2 = A_1A_2B_1B_2C_1C_2C_3 = A_1A_3B_2C_1C_2 = A_2B_1C_1C_3.....(ii)$. The same rule is followed for a single block or the odd numbers of blocks of a pseudo factorial design to construct the regular or irregular fraction of a $2^m x 4^n$ factorial design.

The constructions of different types of full as well as fractions of $2^m x 8^n$, $4^m x 8^n$, $2^m x 4^n x 8^n$ designs will be similarly made.

ESTIMATION and ANALYSIS

We can estimate all factorial effects in all two-leveled full factorials of pseudo factors by direct method or Yates method and in the fractions of pseudo factorials by direct method. Then these estimated values are converted to real factorial effects by conversion procedure shown in the conversion tables. In the fractional factorial the same procedure of conversion is followed as shown in the conversion table required for 4^n or 8^n factorial. After estimating the pseudo factorial effects (main effect or interaction effect) group-wise, followed by the conversion table, from its alias structure we get the estimates of real main effects and interaction effects by conversion for

the 4^n or 8^n factorial design. The sum of square of a pseudo factorial effect in these two leveled full or fractional factorials is estimated as usual procedure by [square of total factorial effect / total d.f.]

In analysis the real factor ss or the real factorial effect ss is obtained as the total of the ss's of all pseudo factors or pseudo factorial effects used for conversion of the real factor or real factorial effect. Thus, as for example in calculating the sum of squares of 4^2 factorials, we see ss(A) is $ss(A_1)+ss(A_2) + ss(A_1A_2)$ and $ss(AB^{u_2})$ is the total of $ss(A_1B_2)$, $ss(A_2B_1B_2)$, and $ss(A_1A_2B_1)$ as shown in the conversion table. And similarly in the 8^2 factorial, as for examples using its conversion table, $ss(AB^{u_2}) = ss(A_1B_3) + ss(A_3B_2B_3) + ss(A_2A_3B_1B_2B_3) + ss(A_1A_2B_1B_3) + ss(A_1A_3B_2) + ss(A_2B_1)$.

As an example we show here the ANOVA table of 4^2 factorial design of 2 real factors A and B confounding AB^{u_3} with 4 blocks using the 2^4 design of 4 pseudo factors A₁, A₂, B₁, B₂ through the conversion rule of 4^n factorial.

2 ⁴ factor	rial desig	gn	4^2 facto	orial des	sign
<u>S.V.</u>	<u>D.F.</u>	<u></u>	<u>S.V.</u>	<u>D.F.</u>	<u>SS</u>
A_1	1	$S(A_1)$			
A_2	1	$S(A_2)$	А	3	S(A)
A_1A_2	1	$S(A_1A_2)$			
B_1	1	S(B ₁)			
\mathbf{B}_2	1	$S(B_2)$	В	3	S(B)
B_1B_2	1	$S(B_1B_2)$			
A_1B_1	1	$S(A_1B_1)$			
A_2B_2	1	$S(A_2B_2)$	AB	3	S(AB)
$A_1A_2B_1B_2$	1	$S(A_1A_2B_1B_2)$			
$A_1B_1B_2$	1	$S(A_1B_1B_2)$			
A_2B_1	1	$S(A_2B_1)$	AB^{u}_{3}	3	$S(AB^{u}_{3})$
$A_1 A_2 B_2$	1	$S(A_1A_2B_2)$	5		× /
Block	3	S _b	Block	3	S_{b}
Error	by sub	otraction	Error	by subt	-

Table 10. The Analysis of Variance Table of 4² Design

Summary

In constructing and analyzing indirectly the 4^n , $2^m \ge 4^n$ and 8^n types of designs the pattern of use of pseudo factors are shown here in detail.

REFERENCES:

- 1 Yates, F. (1937). *The Design and Analysis of Factorial Experiments*. Imp.Bur. Soc.Sc.Tech.Comm.35.
- 2. Shamsuddin, Md. (1994). *Suitable confounded* 4^{*n*} *factorial schemes by use of pseudofactors*. c.u. studies, 14(2), Part-II,Sc.18(1):19-26.
- 3. Shamsuddin, Md. and Hoque, Z. (1997). *Irregular fractions in 2^mx4ⁿ design*. J.Bang. Aca. Sc. 21(2): 137-44.
- 4. Shamsuddin. Md., Haque, M. E. and Hossain, M. Q. (1996). *The confounded* 8ⁿ *factorial design using the rotation-conversion method of pseudofactors*. J.Statist. Studies16: 9-15.
- 5. Kempthorne. O. (1946). The Design and Analysis of Experiments, Wiley, New York
- 6. John, P.W.M. (1970). A three-quarter fraction of 4³ designs. Aus. J. Statist. 12(2): 73.
- 7 Farid, M.A. The $p^m xq^n$ asymmetrical factorial design where $p = q^r$ is a prime, by both direct and indirect methods. Unpublished M.Sc.thesis, University of Chittagong 1994.
- 8. Nath, S.K. 4ⁿ and 4^{n-k} Type Factorial Design by Direct and Indirect Methods. Unpublished M.Sc. thesis, University of Chittagong 1993.
- 9. Anderson, V.L. and McLean, R.A. (1974). *Design of Experiments. A Realistic Approach.* Mar. Dek. Inc. New York.
- 10 Hoque, Z. Fractional Factorials in $2^m x 4^n$ Design. Unpublished M.Sc. thesis. University of Chittagong 1996