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Abstract 
 This study derived the equations for computing the spatial variability in the aggregation 
of original maps of continuous attributes. The derivation of the equations is based on traditional 
statistical and geostatistical principles. The derived equations can be used to compute the 
variance, covariance, and spatial (auto-/cross-) covariance of the aggregated pixels and sub-areas 
in a given study area. Using the derived equations, the total uncertainty within a study area will 
not change after aggregation. For a case study, it has been shown that aggregation will reduce the 
values of variance/covariance and spatial covariance of the aggregated individual pixels. It was 
also verified that the original semivariogram models should not be used for the aggregated maps 
to compute spatial covariances. It is suggested to use the original scales in geostatistical analyses 
to produce maps and then produce courser scaled maps through aggregation.    
 
1. Introduction  

Aggregation of spatial data, that is, inferring spatial information from a finer spatial scale 
to a courser scale, is routinely performed in Geographic Information Systems (GIS), cartographic 
mapping, and image processing. There are a number of reasons for this. They include the fact 
that the spatial feature of an attribute or one kind of natural resource can be accurately mapped 
and displayed at a specific scale or spatial resolution, and thus multiple scales exist for a 
complex natural scene and ecologic system (Hay et al., 1997; King, 1991; Myers, 1997; Wang et 
al., 2001b). On the other hand, the maps at different spatial resolutions need to be overlapped to 
derive a product that is useful to make management plans for natural resources and ecologic 
systems.  
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Many scale-related studies have been conducted (Hay et al., 1997; King, 1991; O’Neill, 
1989; Myers, 1997; Townshend and Justice, 1988; Turner et al., 1989; Turner et al., 1991; 
Woodcock and Strahler, 1987). These studies mainly deal with how to determine appropriate 
spatial resolutions and how to infer spatial data from one scale to another. For example, a widely 
used method for data aggregation is window averaging. In addition to estimated maps, the data 
aggregation from a finer to a coarser resolution will result in changes of spatial variation and 
spatial correlation within/among pixels/sub-areas, and corresponding uncertainties of estimates. 
Furthermore, these changes will affect decision-making for managing natural resources and 
ecological systems.  However, this has only been suggested in the literature and the topic has 
been studied by only a few authors (Gertner et al., 2002; Wang et al., 2001a; Zhang et al., 1990). 

In spatial statistics (geostatistics), spatial variability of a study area is measured using 
semivariograms. Theoretically, a regular or point semivariogram of an attribute should exist 
regardless of spatial resolution. In fact, it is usually estimated based on field observations. The 
semivariogram thus reflects the average spatial variability in the study area, and it varies 
depending on plot size of the ground observations or pixel size of images or maps (Wang et al., 
2001a; Zhang et al., 1990). On the other hand, a map is often derived using either a traditional 
regression and classification method based on sample variation or a geostatistical method based 
on a sample semivariogram. The estimates used to generate the maps have uncertainty.  When 
spatial data of a map are aggregated, the uncertainties of pixel values at the finer spatial 
resolution will be propagated to the estimates at the coarser resolution. Up to now, however, we 
have not found any discussions on the derivation of uncertainties of the estimates for the 
aggregation of spatial data. 

This study applies traditional statistical and geostatistical principles to derive the 
uncertainties of map estimates when spatial data are aggregated. A case study was conducted to 
explore the changes of spatial variability corresponding to scales used in the aggregation.  
2. Spatial Variability 
 At a particular point in a study area, the values of attributes of interest can be obtained 
from ground measurements, by remotely sensed information, or estimated using spatial statistical 
methods. For continuous attributes, the obtained values are usually not true values, since there 
are always errors due to sampling, measurement, processing, etc. In remote sensing, geostatistics, 
and GIS, the concept of “point” is different from its mathematical definition. In the three map-
oriented disciplines, each “point” in the study area occupies a certain area, which is called a 
pixel, cell, or support unit. The values of the attributes of interest at a pixel are often the average 
values over the area of the pixel. Therefore, at each point, i.e., pixel, the attributes of interest are 
random variables and they have their own distributions. In the whole study area, the attributes 
have a spatial distribution, which is produced by the intrinsic variation of the attributes. Spatial 
variability is usually modeled in spatial statistical analyses. Isotropic covariance of one attribute 
among pixels is usually denoted as auto-covariance: 

{ } {
m

i i i i i i
i 1

1cov[z(u ), z(u h)] z(u ) E[z(u )] z(u h) E[z(u h)]
m =

+ = − ⋅ + − +∑ }  

where z is the attribute of interest,  is a pixel location, h is the distance between a pair of 
pixels, z( ) is the value of z at , m is the number of pairs of pixels, and E[z] is the 

iu

iu iu
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expectation of z, which can be estimated by its sample mean. Cov[z( ) , z(uiu i+h)] is expressed as 
C(0) and C(h) when h is zero and non-zero, respectively. Another statistic to indicate spatial 
variability is the semivariogram: 

{ }
m

2
i i

i 1

1(h) z(u ) z(u h)
2m =

γ = − +∑  

A semivariogram is usually used to model the relationship between the spatial correlation of 
attributes and the distance of the locations of attributes.  Ignoring the lag effect, the relationship 
between spatial covariance and the semivariogram is (Chilès and Delfiner, 1999; Clark and 
Harper, 2001; Goovaerts, 1997; Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978): 

(h) C(0) C(h)γ = −   
           or 
C(h) C(0) (h)= −γ   (1) 

This relationship is used in estimating the value of the attribute of interest at the non-sampled 
pixels (regionalization). 
 When the attributes of interest are multivariate, spatial variability can be represented as 
auto- and cross-covariance:  

{ } {
m

p i q i p i p i q i q i
i 1

1cov[z (u ), z (u h)] z (u ) E[z (u )] z (u h) E[z (u h)]
m =

+ = − ⋅ + − +∑ }  

 where p and q are subscripts to indicate the individual attributes that are multivariate. When p is 
not equal to q, and h is not equal to zero, then cov[ p i qz (u ), z (ui +h)] is the cross-covariance.  

3. Changes of Spatial Variability in Aggregation 
 When the original pixels are aggregated into a larger unit, the spatial variability of the 
resulting courser map will be different than the original map. 

Assume that the attribute z of interest at an original pixel  has mean E[z( )] and 
variance var[z( )], and a rescaled (aggregated from original pixels) pixel  contains n original 
pixels. The value of attribute z at the rescaled pixel  is the average of the z values that 
included the original pixels: 

iu iu

iu kv

kv

n

k
i 1

1z(v ) z(u )
n =

= ∑ i   

Therefore, its expected value is: 
n

k
i 1

1E[z(v )] E[z(u )]
n =

= ∑ i ,  

and its variance is: 
n n n

k i i2
i 1 i 1 j i

1var[z(v )] var[z(u )] co v[z(u ), z(u )]
n = = ≠

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑ j  (2) 

Derivation of Eq. 2 can be found in Eq. A1 (see Appendix A). For multivariate cases,  
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Z =( )’ is a vector consisting of s attributes, its value (a vector) at the rescaled pixel  is 
still the average value (a vector) from the n original pixels: 

1z , ,zs kv

n

k
i 1

1Z(v ) Z(u )
n =

= ∑ i   

Correspondingly, its covariance matrix is: 

i i i j

n n n

k (u ,u )2
i 1 i 1 j i

1var[Z(v )]
n = = ≠

⎧ ⎫⎪ ⎪⎪= Σ + Σ⎨⎪⎪ ⎪⎩ ⎭
∑ ∑∑ (u ,u )

⎪⎬⎪
 (3) 

where  

j k

1,1 j k 1,2 j k 1,s j k

2,1 j k 2,2 j k
(u ,u )

s 1,1 j k

s,1 j k s,s 1 j k s,s j k

C (u ,u ) C (u ,u ) C (u ,u )
C (u ,u ) C (u ,u )

C (u ,u )
C (u ,u ) C (u ,u ) C (u ,u )

−

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Σ =⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟

 

and  

p,q j k p j q kC (u , u ) cov[z (u ), z (u )]=  

Eq. A2 in Appendix A provided the derivation of Eq. 3. Eq. 3 is very similar to the variance 
estimator of block kriging (Chilès and Delfiner, 1999; Clark and Harper, 2001; Goovaerts, 1997; 
Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978), although their conditions are 
different. 

Spatial (auto-/cross-) covariance of the attributes among the aggregated pixels is also 
aggregated from the original spatial covariance. The aggregated spatial covariance is the average 
of the original spatial covariance among all involved original pixels: 

n n

p k1 q k2 p i q j i k1 j k2
i 1 j 1

1 1cov[z (v ),z (v )] cov[z (u ),z (u )|u v ,u v ]
n n= =

= ∈∑ ∑ ∈  (4) 

where cov[ p k1 q k2z (v ),z (v ) ] is the cross- or auto-covariance (when p equals q) of attributes pz  
and  between aggregated pixels  and , each of which contains n original pixels. Eqs. A3 
to A6 in Appendix B illustrates the derivation of Eq. 4. It is also very similar to the approximate 
of block-to-block variance from block kriging (Goovaerts, 1997; Journel and Huijbregts, 1978). 

qz k1v k2v

When aggregation is based on sub-areas which contain different numbers of original 
pixels, the value in the larger sub-area  (aggregated from smaller sub-areas) is: kv

nk
j

k
j 1

n
Z(v ) (v )

n
Z

=

=∑ j  (5) 

where is the number of the smaller sub-areas, a smaller sub-area  contains  original 
pixels, and n is the total number of original pixels inside . Therefore, the variance of an 

nk jv jn

kv
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attribute of interest in  can be computed using the modified form of Eqs. 2 and 3. The variance 
of attribute 

kv

pz  in  is:  kv

n n n
2k k 1 k

j j j1
p k p j p j2 2

j 1 j 1 j1 j

n n n
var[z (v )] var[z (v )] 2 cov[z (v ),z (v )]

n n

−

= = >

= +∑ ∑∑ p j1  (6) 

The spatial covariance of two attributes pz  and  between smaller sub-areas  and  is 
defined as: 

qz jv j1v

j j1n n

p j q j1 p i q i1 i j i1 j1
i 1 i1 1j j1

1cov[z (v ),z (v )] cov[z (u ),z (u )|u v ,u v ]
n n = =

= ∈
⋅ ∑∑ ∈  (7) 

The details about the derivation of Eqs. 5, 6, and 7 can be found in Appendix C.  
When the areas, instead of the number of original pixels, of sub-areas are provided from a 

map, then in Eqs. 5, 6, and 7, n, , and  can be replaced with s,  and , which are the 
areas of ,  and , respectively.  

jn j1n js j1s

kv jv j1v

Eqs. 5, 6, and 7 are much more flexible and useful in GIS than the equations derived for 
equal-sized sub-areas. In GIS, operations are usually based on irregular and unequal-sized sub-
areas. Under such situations, equations for equal-sized sub-areas could not be used to compute 
uncertainty propagation. 
4. Case Study 

Sand and silt (i.e., very fine sand) are two of essential soil components. Their proportions 
play an important role in determining the structure and characteristics of soil. They are often 
investigated in soil related research. In this study, the proportions of sand (Sand) and silt (Silt) 
were used as two attributes to reveal the changes of spatial variability corresponding to the 
changes of map scale in aggregation.  
4.1 Study Area and Data 

The study area is Fort Hood, which is located on the border of Bell and Coryell Counties 
in central Texas (USA). Its geographical location is between the longitude 97º55’01.1" and 
97º30’01.1" W, and latitude 31º25’00.6" and 31º00’00.7" N. The soil is generally shallow to 
moderately deep, clayey, and underlain by limestone bedrock. The elevation ranges from 180 to 
375 meters above sea level with 90 percent below 260 meters. The slopes are less than 33º, and 
the average slope is 2.66º. The dominant vegetation includes oak-juniper woodlands and 
savannah (Tazik et al., 1993).  

Soil samples were collected from 192 plots over the entire area, and the percentages of 
sand and silt were analyzed in a laboratory. The descriptive statistics of the collected soil 
samples are listed in Table 1. 
4.2 Joint Sequential Simulation 

The study area was divided into 440 x 440 original pixels with a pixel size of 100 x 100 
. The joint sequential simulation algorithm (Almeida, 1993; Goovaerts, 1997; Zhu and 

Journel, 1993) (see Appendix D for details) was used for predicting the spatial distribution of 
Sand and Silt. At each pixel, 500 predictions of Sand and Silt were obtained from joint sequential 

2m
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simulation. Across the 500 replications, the expected values and covariance matrix of Sand and 
Silt were estimated at each pixel. 

The omni-directional auto semivariogram models measuring spatial correlation of the two 
attributes were derived based on the field observations using spherical semivariogram models 
(Table 2). Figure 1 shows the sampled and modeled standardized semivariograms of Sand and 
Silt. The cross semivariogram of Sand and Silt was computed using Markov-type approximation 
based on the standardized auto semivariogram model of Silt (see Appendix E for details).  

Spatial distributions of the estimated mean of Sand and Silt are shown in Figure 2. The 
correlation of these two attributes can be seen very clearly in the maps. The locations which had 
a higher proportion of Sand had a lower proportion of Silt, and vice versa (Figure 2).   
4.3 Aggregation 

Besides the original pixel size (100 x 100 m², which was used in semivariogram 
modeling and spatial simulation), four scales were used in aggregation in order to investigate the 
changes of spatial variability due to map scale (Table 3). Eq. 3 was used in computing the 
covariance matrices of the aggregated pixels, which were used to produce the spatial variation 
maps of Sand and Silt at different scales. For comparison, the variance maps of Sand after 
aggregation were also generated using the average of the variance of the original pixels. 

In order to use a common legend for the (co)variance maps with different resolutions, a 
conversion factor (CF) for each (co)variance map was defined as: 

nk nk
nk

n1 n1

max minCF
max min

−
=

−
 ,    n=1,2,3 and  k=1,2, …, 5.  

where the subscripts n and k represents the types of variation (variances of Sand and Silt, and 
their covariance) and scale codes (in Table 3), respectively; max and min are the maximum and 
minimum (co)variance, respectively. Therefore, with a smaller CF, the actual values of a map are 
smaller. The actual value of the (co)variance [v(u i n ] at a pixel u i  of an aggregated map can be 
converted using its minimum and CF and the common legend as following: 

k)

i nk nk nk i nk n1v(u ) = min +CF (v'(u ) min )⋅ −       (8) 

where CF, n, and k has the same meaning as in Eq. 8; and v’(u  is the value of that pixel 
according to the common legend. The minimum (co)variance and CF can be found at the top of 
each (co)variance map (Figures 3 to 6). 

i nk)

Since auto-/cross-covariance after aggregation can not be illustrated on the (co)variance 
maps, the spatial covariance had to be computed for making comparisons. In this case study, the 
influence of aggregation methods and resolutions to spatial covariance of proportions of sand 
and silt within the distance of two pixels was illustrated with graphs. Two methods were used in 
computing spatial covariance. One is the traditional method (see Eq. III.3, p.45 in Deutsch and 
Journel, 1998). The equation is: 

N(h)

p i p i q i+h q i+h
i=1

1 ˆ ˆ( ) {z (u ) E[z (u )]}{z (u ) E[z (u )]}
N(h)

C h = − −∑  (9) 

C(h) is auto- or cross-covariance when subscripts p and q are equal or not equal. In computing 
auto- and cross-covariance of aggregated maps, two directions were selected: along the x axis 
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(horizontal) and horizontal at 45º from y axis, since the longest distance of the two-pixel-unit and 
isotropic covariance were considered in this investigation of spatial variability. The other method 
used in computing spatial covariance of aggregated maps was described in Eq. 4, which 
considered every term of the original spatial covariance inside a pair of aggregated pixels.  
5. Results and Analysis 

Figures 3, 4, and 5 show variance and covariance distribution maps of Sand and Silt 
generated using Eq. 3. They illustrate the changes of spatial distribution of the variances and 
covariance of Sand and Silt when aggregation was conducted using different scales. When pixel 
size was larger, the ranges of variances and covariance of the aggregated maps were smaller and 
the patches of large/small variance/covariance were clearer. The ranges shrank from both ends. 
The maximal absolute value of variance/covariance became smaller as the scale became courser. 
In the aggregated maps, the minimal variance/covariance was larger than that in the original 
maps.  

When the average of variances at the original pixel size was taken as the variance of a 
pixel in a course map, the range of the variance of the aggregated maps also shrank from both 
ends (Figure 6), but much less compared to that generated using Eq. 3. The patterns in the 
variance maps generated using the different methods were very similar (Figures 3 and 6).   

Figure 7 demonstrated the relationship among scale, distance, and spatial covariance in 
aggregated maps. Using both computational methods (Eqs. 4 and 9), spatial covariance 
decreased in absolute value as scale became courser. However, there was a difference in the 
changing rates. When Eq. 4 was used in computing spatial covariance, the effect of scales on the 
auto-/cross-covariance could be seen in the figures. The differences of the (co)variance at two 
distances were smaller when the scale was larger, especially when distance changed from 0 to 1 
(Figure 7, column A). When Eq. 9 was used in computation and average variation was taken as 
the variation at distance of 0, the effect of scales could not be seen in the charts, and the 
difference of variation between distance 0 and 1 was very large (Figure 7, column B). This big 
change indicated losing/gaining variation during aggregation.  
6. Discussion and Conclusion 

This study concentrated on spatial variability of continuous attributes when their values 
are averaged in aggregation. Equations have been analytically derived for computing the spatial 
distribution of variance and covariance, and the spatial covariance after aggregation using 
different scales. Using the derived equations, one can easily and correctly provide the spatial 
variability of aggregated maps using any scale, and the uncertainty inside a study area will not 
change after aggregation. These equations can also be used to compute the spatial variability of 
sub-areas of maps, although the case study only demonstrated their usage in aggregating pixels. 
This makes it possible to compute the spatial variability of a map after GIS analyses. 

In aggregation of maps, the change of scale causes the change of spatial variability of 
individual pixels in two aspects: variance/covariance inside pixels and spatial covariance among 
pixels. As shown in the case study, increasing pixel size will reduce variation inside and among 
individual pixels. This is different from the results of Woodcock and Strahler (1987). Their 
results showed that the variance has an approximately quadratic change when scale increases. 
When the scale is finer than a threshold, the variance increases as the scale becomes courser. 
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After that threshold, the variance tends to decrease. In the case study, the original pixel size is 
100×100 m². It is much courser than most of their tested scales. So, the tested scale in this study 
must have been courser than the threshold. Therefore, only the decreasing trend of variation has 
been shown. At courser scales, Turner (1991) also found a decrease in variance.  

Semivariogram models are established using observations. They can be used to express 
spatial correlation based on the original scale (pixel size). In aggregated maps, the pixel size is 
larger than the original one, which is based on the plot size of the observations. Therefore, the 
original semivariogram models may not be used after aggregation. Since the variance/covariance 
of aggregated pixels is usually smaller than that of the original map, nugget and sill values of the 
semivariogram models need to be modified to fit the aggregated maps. Zhang et al. (1990) 
mentioned that semivariogram models are different when sampling plot size varies. Comparison 
of the spatial covariance computed using different methods verified that finding.  

This study also suggests that it might be better to use the original scale in geostatistical 
analysis when the unified scale is courser. After producing the original maps, multi-scale maps 
can be unified using aggregation techniques. Based on this suggested process, uncertainty within 
study areas will not be changed through unification of scales by aggregation. 
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Tables 
 
Table 1. Descriptive statistics of the observations of sand and silt. 

Statistic Sand (%) Silt (%) 
Mean 13.80 52.48 
Minimum 1.0 30.0 
Maximum 54.0 70.0 
Standard deviation 11.30 7.12 
Coefficient of Correlation -0.3856 
 
 
 
Table 2. Parameters of the standardized semivariogram models of sand and silt. Unit of Range: 
100 meters. 

Parameters 
Variables Nugget Sill  Range 

Sand 0.52137 0.42768 309 
Silt 0.84479 0.19349 230 

 
 
 
 
Table 3. Scales used in aggregation. 

Scale Code Scale Pixel Size 
1 (original) 1 100×100 m² 

2 4 200×200 m² 
3 9 300×300 m² 
4 25 500×500 m² 
5 81 900×900 m² 
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Figure 1. The observed and modeled standardized semivariograms of Sand (a) and Silt (b).  
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Figure 2. Spatial distribution of the expectation (%) of Sand (a) and Silt (b) in soil. Markov 
method was used in the spatial joint simulation. 
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Figure 3. Spatial distribution of the variance of Sand (generated using Eq. 3). The numbers 
within parentheses above each map are (minimum-maximum, conversion factor). The actual 
values of the maps should be converted using these parameters and Eq. 8. From a to e, the pixel 
sizes were 100x100 m², 200x200 m², 300x300 m², 500x500 m², and 900x900 m², respectively. 
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Figure 4. Spatial distribution of the variance of Silt (generated using Eq. 3). The numbers within 
parentheses above each map are (minimum-maximum, conversion factor). The actual values of 
the maps should be converted using these parameters and Eq. 8. From a to e, the pixel sizes were 
100x100 m², 200x200 m², 300x300 m², 500x500 m², and 900x900 m², respectively. 
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Figure 5. Spatial distribution of the covariance of Sand and Silt (generated using Eq. 3). The 
numbers within parentheses above each map are (minimum-maximum, conversion factor).  The 
actual values of the maps should be converted using these parameters and Eq. 8. From a to e, the 
pixel sizes were 100x100 m², 200x200 m², 300x300 m², 500x500 m², and 900x900 m², 
respectively. 
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Figure 6. Spatial distribution of the variance of Sand (generated using average of variance of 
original pixels). The numbers within parentheses above each map were (minimum-maximum, 
conversion factor).  The actual values of the maps should be converted using these parameters 
and Eq. 8. From a to e, the pixel sizes were 100x100 m², 200x200 m², 300x300 m², 500x500 m², 
and 900x900 m², respectively.  
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A  (Eq.4)  B (Eq.9)  

 
                                   a.1                                                      b.1 

 
                                  a.2                                                      b.2 

 
                                  a.3                                                      b.3 

 
Figure 7. Spatial variability computed using Eq.4 (Column A) and Eq.9 (Column B) as distance 
(unit: pixel length) and scale change. When distance was zero, (co)variance is the variance of 
Sand (.1) and Silt (.2), and the covariance of Sand and Silt (.3). When distance was larger than 0, 
in (.1) and (.2), it was auto-covariance of Sand and Silt, respectively. In (.3), it was cross-
covariance of Sand and Silt.  
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Appendix A. Variance of the aggregated pixels 
Assume that the attribute of interest z at an original pixel  has mean E[z( )] and 

variance var[z( )], and a rescaled (aggregated from original pixels) pixel  contains n original 
pixels. The value of attribute z at the rescaled pixel  is the average value of the z values of the 
included original pixels: 

iu iu

iu kv

kv

n

k
i 1

1z(v ) z(u )
n =

= ∑ i   

Therefore, its mean is: 
n

k
i 1

1E[z(v )] E[z(u )]
n =

= ∑ i   

and its variance is: 
n

k i
i 1

1var[z(v )] var z(u )
n =

⎡ ⎤
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∑ ∑∑ l

⎪⎪⎬⎪
  

This equation can be verified by using samples of z( ). Assume that there are m observations of 
attribute z at each of the n original pixels inside of the rescaled pixel . The estimated variance 

of z( ) is 

iu

kv

kv kvar[z(v )] : 
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 (A1) 
Assume that the distance between a pair of original pixels inside of the rescaled pixel is h. Under 
the assumption of homogeneity in geostatistics, then, the estimated covariance of the attribute z 
between a pair of original pixels in Eq. A1 becomes: 

m
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where C(h) is the auto-covariance of the attribute z at the distance between  and . iu lu

 When Z =( )’ is a vector consisting of s attributes, its value (a vector) at the 
rescaled pixel  is still the average value (a vector) from the n original pixels: 
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and its covariance matrix is: 
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p,q j k p j q kC (u , u ) cov[z (u ), z (u )]=  

 Similar to Eq. A1, Eq. A2 can also be derived:   
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where  
  i,j,p,q j,p i p i j,q i q ig {z (u ) E[z (u )]} {z (u ) E[z (u )]}= − ⋅ −

and 
  i,l,j,p,q j,p i p i j,q l q lg' {z (u ) E[z (u )]} {z (u ) E[z (u )]}= − ⋅ −

Change the order of summations as in Eq. A1, the relationship described in Eq. A2 holds.  
 
Appendix B. Spatial covariance among the aggregated pixels 

Based on Eq. A1, Spatial (auto-/cross-) covariance of the attributes among the aggregated 
pixels can also be derived. Assume that there are  aggregated pixels and each one contains  
original pixels. Pixel  is aggregated from the  aggregated pixels and contains a total of n 
(= ) original pixels. Therefore, the variance of an attribute z at rescaled pixel  can be 
calculated using the  aggregated pixels: 

nk kn

kv nk

kn ⋅ nk kv

nk
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or directly using the n original pixels: 
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The variances converted using Eqs. A3 and A4 have to be consistent. Therefore, the spatial 
covariance among the aggregated pixels should be defined to satisfy this restriction.  When the 
auto-covariance of the aggregated pixels is defined as:  
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the variances converted from Eqs. A3 and A4 are equal: 
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In multivariate case, it can be verified that Eq. A5 becomes more general: 
n n

p k1 q k2 p i q j i k1 j k2
i 1 j 1

1 1cov[z (v ),z (v )] cov[z (u ),z (u )|u v ,u v ]
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where cov[ p k1 q k2z (v ),z (v ) ] is the auto-/cross-covariance of attribute(s) pz  and  (p could equal 
to q) between aggregated pixels  and , each of which contains n original pixels.  

qz

k1v k2v
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Appendix C. Spatial variability of aggregated sub-areas 
When aggregation is based on sub-areas which contain different numbers of original 

pixels, the larger sub-area (aggregated from the smaller sub-areas)  has its mean: kv
nkn

j
k i

i 1 j 1

n1E[z(v )] E[z(u )] E[z(v )]
n n= =

= =∑ ∑ j  

where n is the total number of original pixels contained in the larger sub-area ,  is the 
number of the smaller sub-areas, and  is the number of original pixels contained inside smaller 
sub-area . The variance of z( ) is: 

kv nk
jn

jv kv

n n n
2k k 1 k

j j j1
k j2 2

j 1 j 1 j1 j

n n n
var[z(v )] var[z(v )] 2 cov[z(v ),z(v )]

n n

−

= = >

= +∑ ∑∑ j j1  (A7) 

where the auto-covariance of attribute z between smaller sub-areas j and j1 is defined as: 
j j1n n

j j1 i i1 i j i1 j1
i 1 i1 1j j1

1 1cov[z(v ),z(v )] cov[z(u ),z(u )|u v ,u v ]
n n= =

= ∑ ∑ ∈ ∈  (A8) 

Based on Eqs. A3, A5, A7, and A8, the variances converted using the original pixels and smaller 
sub-areas are consistent: 

n n 1 n

k i2
i 1 i 1 j>i

1var[z(v )] var[z(u )] 2 cov[z(u ),z(u )]
n

−

= =

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑ i j  

n n nk k 1 k
2

j j j j1 j j12
j 1 j 1 j1 j

1 n var[z(v )] 2 n n cov[z(v ),z(v )]
n

−

= = >

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑  

n n n
2k k 1 k

j j j1
j j2 2

j 1 j 1 j1 j

n n n
var[z(v )] 2 cov[z(v ),z(v )]

n n

−

= = >

= +∑ ∑∑ j1  

For multivariate cases, it can be verified that Eqs. A7 and A8 become: 
n n n

2k k 1 k
j j j1

p k p j p j2 2
j 1 j 1 j1 j

n n n
var[z (v )] var[z (v )] 2 cov[z (v ),z (v )]

n n

−

= = >

= +∑ ∑∑ p j1  (A9) 

and 
j j1n n

p j q j1 p i q i1 i j i1 j1
i 1 i1 1j j1

1 1cov[z (v ),z (v )] cov[z (u ),z (u )|u v ,u v ]
n n= =

= ∈∑ ∑ ∈  (A10) 

When the area, instead of the number of original pixels, of the smaller sub-areas are 
provided in a map, the numbers of original pixels, n and , of  and  in Eqs. A7 to A10 can 
be replaced with their corresponding areas. 

jn kv jv
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Appendix D.  Joint sequential simulation 
The joint sequential simulation algorithm is based on Bayes’ conditional probability 

axiom to generate L joint realizations of P variables (attributes) from their Cumulative 
Distribution Functions (CDFs) (Almeida, 1993). A realization implies that each cell of the grid is 
provided with an estimation vector of the variables, derived from the vectors of neighboring field 
plots and the vector of the secondary variables at the location to be estimated. Theoretically, a 
joint P-variable CDF characterizing the P random events can be decomposed into a product of 
(P-1) univariate conditional CDFs and a marginal CDF according to Bayes’ axiom for 
conditional probability. From the decomposition, a general sequential simulation algorithm can 
be developed to jointly simulate the P dependent variables by drawing from the sequence of 
univariate conditional CDFs. 

A joint sequential simulation is completed when all the cells are visited and provided with 
simulated values. Repeating the joint sequential simulation process many times with probable 
different visiting paths leads to a set of estimates at each location for each variable. Finally, an 
expected vector and co-variance matrix for P variables at each location is calculated. 
 
Appendix E.  Calculation of spatial covariance 

Using the standardized semivariogram models, the auto covariance of attributes can be 
computed and the cross covariance of a pair of attributes can be approximated (Goovaerts, 1997). 
The auto covariance of an attribute, (h), is calculated as: 1,1C

1,1 1,1 1,1 1,1C (h) C (0) (h) C (0)= −γ ⋅   

            (A11) 1,1 1,1C (0) [1 (h)]= ⋅ −γ

where (h) is the standardized auto semivariogram given a distance h. When a pair of 
attributes are correlated, their correlogram, (h), is approximately:   

1,1γ

1,2ρ

  1,2 1,2 1,1(h) (0) [1 (h)]ρ ρ ⋅ −γ

where (0) is the coefficient of correlation of that pair of attributes. Their cross covariance, 
(h), is approximately: 

1,2ρ

1,2C

1,2 1,2 1,1 2,2C (h) (h) C (0) C (0)ρ ⋅ ⋅  

           1,1 1,2 1,1 2,2[1 (h)] (0) C (0) C (0)−γ ⋅ρ ⋅ ⋅   

           1,1
1,1 1,2

1,1

C (0)
[1 (h)] C (0)

C (0)
= −γ ⋅ ⋅   

          1,2
1,1

1,1

C (0)
C (h)

C (0)
= ⋅  (A12)  

In the case study of this paper, Silt was taken as the dominant attribute in calculation of 
the cross covariance of Sand and Silt.  
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