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A BAYESIAN AND COVARIATE APPROACH TO
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2 Current address: Dept. of Mathematics and Statistics, Utah State University, Logan, UT
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Abstract

The growing popularity of microarray technology for testing changes in gene expression has
resulted in multiple laboratories independently seeking to identify genes related to the same
disease in the same organism. Despite the uniform nature of the technology, chance variation
and fundamental differences between laboratories can result in considerable disagreement be-
tween the lists of significant candidate genes from each laboratory. By adjusting for known
differences between laboratories through the use of covariates and employing a Bayesian
framework to effectively account for between-laboratory variability, the results of multiple
similar studies can be systematically combined via a meta-analysis. Meta-analyses yield ad-
ditional information not available from any single study and provide a clearer understanding
of each gene’s true relationship to the disease of interest. A simulation model based on the
Barley Affymetrix GeneChip microarray demonstrates the utility of this approach. Further
illustration is provided from a mouse model for multiple sclerosis.

Keywords: microarray, meta-analysis, hierarchical Bayes linear model

1 Introduction

The use of microarrays (Lockhart et al. 1996; Craig et al. 2003) has become increas-
ingly common in agricultural research, as evidenced by the recent growth of public reposito-
ries of microarray data such as BarleyBase, a “community resource for cereal microarrays”
(www.barleybase.org) (Shen et al. 2005). Microarray technology allows researchers to
better understand the expression (transcript) levels of individual genes under different con-
ditions by taking advantage of the “Central Dogma” (Crick 1970) of molecular biology. A
gene’s expression level in a tissue sample can be measured by the level of corresponding
mRNA abundance in the sample. Individual laboratories can estimate the level of gene
expression in specific tissue samples and compare these expression levels for the purpose of
estimating the degree and significance of differential expression. Differences in experimental
specifics and chance variation can affect the results from different laboratories even though
they are studying the same disease in the same organism.
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1.1 Microarray Technology

Affymetrix (www.affymetrix.com) produces the GeneChip microarray which is a small chip
containing a grid of hundreds of thousands of features or spots. Each feature, also called a
probe, represents a segment of a gene in a species. The length of these segments are typically
25 nucleotides, where nucleotides are the building blocks of DNA (Campbell 1995). There are
four possible nucleotides at each position in DNA: cytosine (C), thymine (T), adenine (A),
and guanine (G). A single gene may be thousands of nucleotides long. Each probe consists
of a specific ordered sequence of 25 nucleotides that is referred to as a 25-mer oligonucleotide
sequence, or a 25-mer (“oligo” means “few”). Features come in perfect-match and mismatch
pairs, called probe pairs. Each perfect-match (PM) probe contains millions of copies of the
same 25-mer segment of a specific gene fixed to the chip, while the corresponding mismatch
(MM) probe contains millions of copies of a 25-mer oligonucleotide sequence identical to
the perfect-match sequence except for a single substitution at position 13 (i.e., the middle
position).

In order to determine which genes are expressed or transcribed in a given sample of tissue, the
sample is prepared so that mRNA sequences in the tissue are labelled with fluorescent tags.
This prepared sample is then washed across the microarray. Genes that are indeed expressed
or transcribed will be represented by mRNA in the tissue sample. This mRNA will hybridize
(i.e., find its match) to its corresponding feature(s) on the microarray. The motivation for
the use of mismatch (MM) probes is to allow for adjustments for cross-hybridization, i.e.,
to control for “hybridization specificity” (Lockhart et al. 1996). Once the array has been
hybridized, it is scanned, and those features with hybridized mRNA will fluoresce at an
intensity proportional to the mRNA abundance level. The image of the scanned array is
recorded, and intensities for individual features are used as raw data in subsequent analyses.
The raw data consists of the intensities of the individual spots (features) on the array. These
intensities come in pairs for each probe, with PM denoting the intensity of a perfect-match
probe and MM denoting the intensity of the corresponding mismatch probe.

MAS 5.0 is the commercial statistical analysis software (Affymetrix 2001; Affymetrix 2002)
available from Affymetrix. Individual spot intensities are utilized for the purpose of esti-
mating the true expression levels of individual genes in single samples. These estimated
expression levels for each gene are then compared between different samples (or treatment
conditions). For example, two separate hybridizations, one for a control (or healthy) con-
dition and one for an experimental (or diseased) condition provide respective estimates for
each gene that is represented on the array. A “signal log ratio” (SLR) with 95 percent
confidence bounds is reported. The signal log ratio is the signed log2 of the signed fold
change (FC) familiar to biologists (Affymetrix 2002). That is, FC = 2SLR if SLR ≥ 0 and
FC = (−1)2−SLR if SLR < 0. The fold change is a measure of how much a gene’s expression
level changes from one condition (e.g., control) to another (e.g., experimental). The method
used by Affymetrix to compute the SLR is based on Tukey’s biweight algorithm (Hoaglin
et al. 1983). In addition to the SLR measure of differential expression reported by the MAS
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5.0 software, a variance estimate of the SLR is obtainable from the MAS 5.0 output (Stevens
and Doerge 2005a). In turn, these quantities can be used to test for significant differential
expression (between arrays) using a t-statistic (Affymetrix 2001; Stevens and Doerge 2005a).

When multiple laboratories employ this same microarray technology to estimate the magni-
tude of differential expression, their results will vary due to chance variation and fundamental
differences between experimental conditions. A meta-analytic approach can be used to com-
bine results (i.e., the SLR estimates) across experiments in a well-structured manner for the
purpose of arriving at a clearer understanding of each gene’s relationship to the condition
of interest. Here, we present a Bayesian meta-analysis framework using two examples - a
simulated data set based on barley microarray data, and an actual mouse data set.

1.2 Simulation Data

We simulate an example data set that assumes multiple laboratories are studying differential
expression between healthy and diseased barley using the barley1 Affymetrix microarray.
We also assume that there are two different barley strains that a laboratory could use. The
following model can be used to simulate microarray data from these multiple laboratories
where there is a single covariate (strain) that differs across laboratories:

Yitkl = µ+ Li +Gk + P (G)(k)l + LGik + ρ
(C)
k Ci(m)

+ρk[Tt + LTit + TGtk + LTGitk + TP (G)t(k)l

+ρ
(C)
k (CTit(m) + CTGitk(m))] + ε(itk)l. (1)

Here Yitkl is the log2 of the PM −MM difference for probe l of gene k under treatment t in
lab i with covariate m. Six labs were simulated with each lab using the same two treatments
(healthy and diseased). The term ρk ∼ Bernoulli(p) is 1 if gene k is differentially expressed
between conditions t = 1 and t = 2, and is 0 otherwise. The parameter p corresponds to the
percentage of genes that are differentially expressed, with higher values resulting in more
differentially expressed genes. Similarly, ρ

(C)
k ∼ Bernoulli(p(C)) is an indicator variable for

whether the expression level of gene k is affected by the covariate level (strain). In this model,
Li is the effect of lab i, Tt is the effect of treatment t, Gk is the effect of gene k, P (G)(k)l is
the effect of probe l of gene k, Ci(m) is the effect of covariate (strain) level m in lab i, ε(itk)l

is a random error term, and the remaining terms are the respective interaction effects. To
introduce more between-lab variability, the error variance was allowed to be different in each
lab: ε(itk)l ∼ N(0, σ2

i ) for the error terms in lab i. Each term (X) in the model is assumed to
be a random effect from a N(0, σ2

X) distribution, except for the constant µ, the fixed effect

Tt, ρk, and ρ
(C)
k . The parameters can be adjusted to introduce varying sources of variability

in the “observed” simulated data.

Figure 1 presents a comparison of the SLR estimates from representative of the simulated
labs. If the results from the different labs were the same, then the SLR estimates would be
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equivalent. However, due to chance variation the labs produce different results, even when
they share a common covariate level (barley strain). When there is a covariate difference
between simulated labs, then the results are even more disparate. The meta-analytic ap-
proach presented later combines the results from each individual laboratory analysis using a
Bayesian framework that accounts for such known covariate differences.

1.3 Real Data

One of the many diseases whose genetic basis has been studied in mouse using microarray
technology is experimental autoimmune encephalomyelitis (EAE). Mouse is the model or-
ganism for most human health studies. EAE is a condition similar to multiple sclerosis in
humans, with inflammation in the central nervous system resulting in damage to the myelin
covering the nerve fibers (Ibrahim et al. 2001). The effect of this damage is impaired motor
skills.

Several laboratories throughout the world have used the Affymetrix technology to study
EAE in mouse and have reported their findings (Ibrahim et al. 2001; Carmody et al. 2002;
Matejuk et al. 2002; Mix et al. 2002; Matejuk et al. 2003). Some of these laboratories
used different strains of mouse and studied gene expression in particular tissue sites. Table
1 summarizes the experimental specifics for these laboratories. Figure 2 compares the SLR
estimates from different laboratories. As with the simulated data, the experiments with
greater covariate (strain and tissue) differences tend to produce more disparate results. The
meta-analytic approach presented here accounts for these differences and combines results
in a well-structured manner.

2 Methods

The term “analysis” is used to describe the quantitative approaches that are used to draw
useful information from raw data. The term “meta-analysis” (Glass 1976) refers to the ap-
proaches used to draw useful information from the results of previous analyses. For the
current application, meta-analytic approaches can be employed to combine the results (SLR
measures of differential expression) from several different labs without having access to the
original raw (probe-level) data that yielded the initial results. Such approaches have particu-
lar utility with the results of Affymetrix GeneChip microarrays and other fabricated arrays,
because the results are given in a uniform format that readily lends itself to comparison
between labs and combination across labs. Previous applications of meta-analysis to mi-
croarray data (Rhodes et al. 2002; Choi et al. 2003; Moreau et al. 2003; Parmigiani et al.
2004; Rhodes et al. 2004) have focused on combining significance results such as P-values
and on combining results across technologies without fully accounting for technological dif-
ferences. In particular, a previous Bayesian approach (Choi et al. 2003) combined results
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from multiple microarray studies that used different microarray platforms. More recent work
(Stevens and Doerge 2005a; Stevens and Doerge 2005b) focuses on combining Affymetrix
results across laboratories in fixed and random effects meta-analysis models. The statistical
method proposed here can be used to account for fundamental differences in experimental
conditions by the use covariate information via a Bayesian meta-analysis of results across
laboratories.

2.1 Hierarchical Bayes Linear Model

Consider a single gene k, and its corresponding SLR estimate θ̃i,k as is available from ex-
periment i (of Nk experiments) along with a variance estimate vi,k. Let Xk be the “design
matrix” for gene k with Nk rows and mk columns corresponding to an intercept term and
the covariates that are available for gene k. Notice that Xk, Nk, and mk depend on the
gene k since some genes are not represented in every experiment and may have multiple
representations in a single experiment. Therefore, Xk is an Nk ×mk matrix of rank mk. A
Bayesian framework combines results for gene k across experiments in the following way:

θ̃k = Xβk + δk + εk

= θk + εk

δk ∼ N(0, σ2
kI)

εk ∼ N(0, Vk)

Vk = diag(vk,1, ..., vk,Nk
)

θk|βk, σk ∼ N(Xβk, σ
2
kI)

βk|σk ∼ N(bk, Dk)

Dk = diag(d2
k,1, ..., d

2
k,mk

)

σk ∼ π(σk). (2)

Here θ̃k is the vector of Nk SLR estimates for gene k, θk is the vector of the underlying effect
sizes being estimated in each experiment, δk is the vector of random deviation of Xkβk from
θk, and εk is the vector of sampling error in each lab (Cooper and Hedges 1994). Then δk
represents between-experiment error, and εk represents within-experiment error. The level
of inter-experiment variability for gene k is σ2

k, and π(σk) is the prior distribution of σk. This
is a hierarchical Bayes linear model, or HBLM (DuMouchel 1994; DuMouchel and Normand
2000). Of particular interest in this model for gene k are the parameter (or covariate) effects
βk.

In the absence of prior knowledge about βk (i.e., about the true effects of the covariates
under consideration), let dk,i → ∞. This effectively places a diffuse prior on βk (DuMouchel
and Normand 2000). The elements of βk can be assumed independent; the more general case
can be reduced to this independent case (DuMouchel and Normand 2000).
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When the non-intercept columns of Xk are centered about their means, the intercept term
βk,0 is referred to as the population mean effect size because it represents the predicted effect
size value when each of the covariates are equal to their estimated population means (Cooper
and Hedges 1994). In the context of microarray data, centering the columns of Xk allows
βk,0 to be interpreted as the underlying degree of differential expression (the SLR) for gene
k after accounting for the effects of the covariates. The magnitude of this SLR (βk,0) is of
particular interest when making statements about the degree of differential expression for a
gene (k).

The components of this model (Equation 2) require some additional interpretation. The
ith element of the vector Xkβk is the true measure of differential expression for gene k in
experiment i. Due to (possibly unknown) factors other than the covariates represented in Xk,
experiment i is actually estimating a quantity slightly different, namely θk,i. The estimate
of this quantity is θ̃k,i. Because there are differences between studies, study i is estimating
θk,i, a random effect size from the population of all possible effect sizes. The difference
δk,i is experiment-specific random deviation that represents inter-experiment variability not
accounted for by the covariates. In addition to this random deviation there is sampling error
εk,i within each study. It is generally assumed that εk ∼ N(0, Vk) and δk ∼ N(0, σ2

kI) are
independent, and θ̃k ∼ N(Xβk, Vk + σ2

kI).

Following the derivation in Proposition 2 of DuMouchel and Harris 1983, the posterior dis-
tribution of σk can be expressed as

π(σk|θ̃k) ∝ π(σk)
|Ψ|1/2

|XT
k ΨXk|1/2

exp
(

−
1

2
θ̃T

k Sθ̃k

)

, (3)

where Ψ = Ψ(σk) = [Vk +σ2
kI]

−1 and S = S(σk) = Ψ−ΨXk[X
T
k ΨXk]

−1XT
k Ψ. This Bayesian

approach (DuMouchel and Normand 2000) estimates the posterior mean and covariance of
βk conditional on σk:

β∗

k(σk) = E[βk|θ̃k, σk]

= [XTψ−1
k X +D−1

k ]−1(XTψ−1
k θ̃k +D−1

k bk),

β∗∗

k (σk) = Cov[βk|θ̃k, σk]

= [XTψ−1
k X +D−1

k ]−1, (4)

where ψk = Vk + σ2
kI. Note that allowing the diffuse prior with dk,i → ∞ will result in

D−1
k → 0. Then the posterior mean and covariance of βk conditional on σk are

β∗

k(σk) = [XTψ−1
k X]−1XTψ−1

k θ̃k,

β∗∗

k (σk) = [XTψ−1
k X]−1. (5)

The posterior mean and covariance of the individual components of βk are estimated as
follows:

β∗

k,j =
∫

σk

β∗

k,j(σk)π(σk|θ̃k)dσk,
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β∗∗

k =
∫

σk

(β∗∗

k (σk) + [β∗

k(σk) − β∗

k ][β
∗

k(σk) − β∗

k ]
T )π(σk|θ̃k)dσk. (6)

Following this, each covariate under consideration (including the intercept term) can be
tested separately for significant differences from zero. The P-value corresponding to the
hypothesis Hk,j

0 : βk,j > 0 is (DuMouchel and Normand 2000)

Pk,j = P (βk,j > 0|θ̃k)

=
∫

σk

Φ





β∗

k,j(σk)
√

β∗∗

k,j(σk)



 π(σk|θ̃k)dσk, (7)

where Φ is the cumulative distribution function of the standard normal distribution. In
the context of a microarray meta-analysis, this P-value corresponds to a test of whether
the covariate j has a significantly positive effect on the reported (or observed) effect size
estimates for gene k. For the intercept term (j = 0), when the columns of Xk are centered,
this corresponds to testing whether the population mean underlying effect size (the SLR)
for gene k is positive, i.e., whether gene k is significantly positively differentially expressed
between the two conditions of interest. If Pk,0 is sufficiently large (close to 1), gene k is
declared significantly upregulated from the control to the experimental condition under con-
sideration. Conversely, if Pk,0 is sufficiently small (close to 0), gene k is declared significantly
downregulated between the conditions.

2.2 Choice and Justification of Priors

As with any Bayesian work, the choice of priors deserves serious consideration and requires
justification in the context of the application. The diffuse prior on βk is chosen because
it is noninformative and computationally convenient. On the other hand, some knowledge
regarding the desired prior on σk is available. It is assumed that each of the experiments
produces effect size estimates relatively close to the “true” effect size estimate for that
experiment. Other than the covariates of interest, there is neither substantial nor systematic
between-labs variability in the effect size estimates. In terms of the prior on σk, this means
that σk is expected to be close to zero, but could vary substantially from zero in instances
where the unexplained between-lab variability is unusually large. One convenient prior that
provides such a distribution for σk is the log-logistic prior:

π(σk) =
ck,0

(ck,0 + σk)2
,

ck,0 =

√

Nk

tr(diag(Vk)−1)
, (8)

where c2k,0 is the harmonic mean of the Nk sampling variances. The log-logistic prior on
σk is chosen for contextual appropriateness and computational convenience. This prior has
quartiles ck,0/3, ck,0, and 3ck,0, and is highly dispersed (with infinite expected values for both
σk and σ−1

k ) (DuMouchel and Normand 2000).
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2.3 Efficient Implementation

For the implementation of the methods proposed here, it was necessary to analyze Affymetrix
data outside the commercial version MAS 5.0 (Affymetrix 2001) in such a way as to dupli-
cate the Signal Log Ratio (SLR) results reported by MAS 5.0. The Bioconductor project
(www.bioconductor.org) (Ihaka and Gentleman 1996) makes available several free packages
for the R environment (http://cran.r-project.org) (Ihaka and Gentleman 1996) for the
analysis of genomic data such as Affymetrix microarray data. One of these R packages,
the affy package (Gautier et al. 2004), makes a concerted effort to allow for a variety of
analyses of Affymetrix probe-level data. As such the Bioconductor resources were used in
conjunction with separately developed R code that, given the appropriate .cel Affymetrix
data files, will duplicate the SLR estimates and associated confidence intervals reported by
MAS 5.0. This leads to the SLR variance estimate (Stevens and Doerge 2005a) necessary
for the meta-analysis.

The basic details of the methods of numerical integration employed in the implementation
of the hierarchical Bayes meta-analysis are included here. Recall that the prior π on σk for
gene k is the log-logistic prior (Equation 8) and that the quartiles of π are

ck,0

3
, ck,0, and

3ck,0. Therefore, there are equal probability masses for σk in each of the four intervals (0,
ck,0

3
),

(
ck,0

3
, ck,0), (ck,0, 3ck,0), and (3ck,0,∞). The basic strategy followed is to evaluate the integrand

at n steps within each of these intervals; that is, every integration requires the integrand
to be evaluated at 4n points. These n points within each interval are equally spaced. The
fourth interval is taken from 3ck,0 to 3ck,0 + nck,0; note that 3+n

4+n
100% of the area under the

curve of π is in the interval (0, 3ck,0 + nck,0). A Simpsons Rule polynomial approximation
(Fleming and Kaput 1979; Monahan 2001) was used for the numerical integration within
each of the four intervals. This approach considers the integral of a function f(x) from x0

to xn (n even) by equal step sizes ∆x, and estimates the integral as

∫ xn

x0

f(x) ≈
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3)

+2f(x4) + ...+ 4f(xn−1) + f(xn)). (9)

This can be applied to the necessary integrals for the Bayesian meta-analysis (for example,
Equation 7) by considering them integrals of a function of σk.

3 Results

Figure 3 summarizes the results of the Bayesian meta-analysis of the simulated barley data.
A claim of significant differential expression in this Bayesian meta-analysis was based on the
intercept P-value from the centered-columns analysis, with the Bayesian posterior probability
converted to a two-sided probability (Cooper and Hedges 1994), and the false discovery
rate, or FDR (Benjamini and Hochberg 1995), controlled at 0.05. Of the 22,840 genes on
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the barley1 Affymetrix microarray, the Bayesian meta-analysis declared 688 genes to be
significantly differentially expressed between healthy and diseased barley, and 118 genes to
have significant strain effects.

Figure 4 compares the SLR estimates from an individual lab and the Bayesian meta-analysis
with the truth underlying the simulation. Of the 688 genes declared significantly differentially
expressed by the meta-analysis of the simulated data, 687 were truly differentially expressed
(as known from the simulation settings). There were 466 genes that were truly differentially
expressed in the simulation, however the Bayesian meta-analysis failed to identify them as
differentially expressed. Therefore, with these simulated data, the Bayesian meta-analysis
made 1 false positive (type I error) and 466 false negatives (type II errors). Based on these
simulations, the meta-analysis tended to provide results that were closer to the true degree
of differential expression than did the results from any of the individual labs. Furthermore,
the meta-analysis tended to have fewer type I and type II errors than did any single lab.

The Bayesian meta-analysis was also applied to the EAE data that was described earlier.
Figure 5 summarizes the results. Only the 9,948 genes that appeared in more than one ex-
periment were used in this meta-analysis. Based on the intercept P-value from the centered-
columns meta-analysis, the Bayesian meta-analysis identified 1,051 genes as statistically
significantly differentially expressed (controlling the FDR at 0.05). Additionally, there was
1 gene with a significant strain effect and 67 genes with a significant tissue effect.

It is particularly interesting to note that the gene with the largest SLR estimate in the
Bayesian meta-analysis is an Arginase gene. This gene was recently identified as being
strongly up-regulated in the EAE condition (Xu et al. 2003). By pooling results across mul-
tiple experiments, there appears to be substantial additional evidence that suggests Arginase

is strongly related to EAE.

4 Summary and Future Work

When multiple laboratories use the same Affymetrix GeneChip technology to quantify dif-
ferential gene expression for the same condition, their results will vary due to both chance
variation and fundamental differences between experimental conditions. The Bayesian meta-
analysis presented in this paper provides a framework to account for both inter-laboratory
variability and known differences between experiments when combining microarray results
across laboratories through the use of a prior distribution on the level of inter-laboratory
variability and the use of covariate information. This approach allows for a clearer under-
standing of each gene’s relationship to the condition (or disease) of interest. The simulation
example given here demonstrated that the meta-analytic results tend to better approximate
the underlying true degree of differential expression than do the results from any single lab-
oratory. The application of this Bayesian meta-analysis to an actual mouse EAE microarray
data set supported the fundamental claim of one of the contributing laboratories, namely
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that the Arginase gene is strongly related to EAE.

As microarray technology is applied on a larger scale in a greater variety of agricultural
research laboratories, it will become increasingly important to have robust meta-analytic
methods that are able to combine results across experiments in order to derive the maxi-
mum amount of information possible about each gene’s relationship to the conditions being
studied. Accounting for chance variation and fundamental differences between experimental
conditions is an important step in developing and refining these meta-analytic methods. As
such it will be necessary to develop robust measures of differential expression that can be
meaningfully combined and compared across microarray platforms so that the approach is
not limited to a single platform, such as the Affymetrix GeneChip.

One of the fundamental assumptions in a typical meta-analysis is the independence of esti-
mates from the several studies. However, when multiple SLR estimates are reported for the
same gene in the same laboratory, the estimates are not necessarily independent, especially
when the estimates are based on comparisons involving the same array. This dependence
structure can be estimated and accounted for in a meta-analysis of results across laboratories
(Stevens 2005). It will be of great interest to account for various covariance structures not
only among estimates for an individual gene, but also among groups or networks of genes.
With the emergence of other technologies such as protein arrays, similar meta-analytic ap-
proaches will need to be developed and refined to combine results across technologies to
better understand fundamental underlying pathways. This can lead to great advancements
in applied statistics in agriculture as well as other biological sciences.
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Figure 1: Comparison of SLR estimates from simulated barley laboratories. As an example,
specific to lab 1 and lab6, each lab estimated the degree of differential expression for each
gene between healthy and diseased barley in a particular barley strain. The dark gray points
correspond to genes declared significantly differentially expressed (controlling the FDR at
0.05) by both labs. The results from labs with the same covariate level (strain) tend to agree
better.

Table 1: Summary of EAE microarray experiments in mouse. The number of experiments
refers to the number of independent array-to-array comparisons (from healthy to diseased
tissue) that could be made in each laboratory.

Number of
Lab Strain Tissue Experiments

Ibrahim C57BL/6 spinal cord 1
Chen C57BL/6 spinal cord 2

Offner(1) BV8S2/Av4 spinal cord 1
Offner(2) BV8S2/Av4 spleen 2
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Figure 2: Comparison of SLR estimates from EAE mouse laboratories. Each lab estimated
each gene’s degree of differential expression between healthy and diseased tissue. The dark
gray points correspond to genes declared significantly differentially expressed (controlling
the FDR at 0.05) by both labs. The lack of agreement between labs provides motivation
for the meta-analytic approach to combine results across laboratories while allowing for
inter-laboratory variability and covariate (such as tissue and strain) differences.

Figure 3: Summary of Bayesian meta-analysis results for simulated barley data. The meta-
analysis provided estimates of both the population mean effect size (the SLR) and strain
effect for each gene. The dark gray points represent genes where the effect (population mean
effect size or strain) was declared statistically significant, controlling the FDR at 0.05. There
were 688 genes (of 22,840) declared significantly differentially expressed (based on the SLR),
and 118 genes found to have significant strain effects.
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Figure 4: Comparison of estimates with truth underlying simulated barley data. The results
of the Bayesian meta-analysis tended to better approximate the true degree of differential
expression than did the results from any individual lab. The meta-analysis also tended to
have fewer type I and type II errors.

Figure 5: Summary of Bayesian meta-analysis results for observed EAE mouse data. The
meta-analysis provided estimates of the population mean effect size (the SLR), strain effect,
and tissue effect. The dark gray points represent genes where the effect (population mean
effect size, strain, or tissue) was declared statistically significant, controlling the FDR at
0.05. The large black triangles represent Arginase genes. Of the 9,948 genes considered,
1,051 genes were declared significantly differentially expressed (based on the SLR), with 1
gene having significant strain effect and 67 genes having significant tissue effect. The largest
SLR (population mean effect size) estimate corresponds to an Arginase gene, recently found
to be highly related to the EAE.
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