
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2005 - 17th Annual Conference Proceedings 

BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION 

CURVES CURVES 

William J. Price 

Bahman Shafii 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Price, William J. and Shafii, Bahman (2005). "BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION 
CURVES," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1135 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansas State University

https://core.ac.uk/display/267195733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2005
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2005%2Fproceedings%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2005%2Fproceedings%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2005%2Fproceedings%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1135
mailto:cads@k-state.edu


BAYESIAN ANALYSIS OF DOSE-RESPONSE CALIBRATION CURVES

William J. Price, Bahman Shafii
Statistical Programs

College of Agricultural and Life Sciences
University of Idaho, Moscow, ID

The statistical analysis of dose-response experiments typically models observed responses
as a function of an applied dosage series. The estimated "dose-response curve" is used in
predicting future responses, however, it is also commonly rewritten in an inverted form where
dose is expressed as a function of the response. This modified "calibration curve" is useful in
cases where observed responses are available, but their associated dosages are unknown.
Traditional statistical techniques for the estimation of unknown doses from the dose-response
curve are problematic, involving approximate solutions and methods. Alternatively, this type of
inverse calibration problem naturally falls into the framework of Bayesian analysis. That is, one
wishes to estimate the probability of an unknown dose value at an observed value of the response
given the underlying relationship between the dose and response. This paper examines some
potential Bayesian solutions to the calibration problem under various assumptive conditions. 
The required methodology in each case will be outlined for a dichotomous response variable and
a logistic dose-response function. Empirical results will be demonstrated using data from an
organic pesticide dose-response trial.

Keywords: Binomial Response, Logistic Function, Bayesian Estimation

I. INTRODUCTION

Dose-response problems are common in agricultural and biological research and can
readily be found in plant, soil, entomological, and animal sciences as well as microbiology,
clinical, and pharmaceutical fields.  Defining dose-response relationships is useful for assessing
the effects of controlled experimental factors (dose) on measured responses.  These problems can
be generalized to include the effects of time on a response, e.g. seed germination, insect
emergence; or chemical degradation as well as the more obvious settings which describe the
effects of chemical exposure rates on a response.  In most situations, analyses include modeling
the response as a function of the dosage factor.  The function chosen is typically nonlinear and
usually drawn from the family of  increasing or decreasing sigmoidal curves (probit, logistic, and
Gompherz, for example), although asymptotic curves such as exponential or hyperbolic forms are
also employed.  Measured responses may be either continuous or discrete and parameter
estimation is accomplished by using either linearized models or iterative nonlinear methods.

A problem related to the dose-response estimation is the bioassay.  Bioassays typically
involve the development of a standard or calibration curve which is subsequently used to adjust
previously measured values or determine unknown quantities.  For the later case, the researcher
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measures a response for which the associated dose is unknown.  Of practical concern is
determining what dose generated the observed response.  This question can be naturally posed in
terms of Bayes Theorem: “What is the probability of a specified dose given the observed
response and the dose-response curve?”    This paper will outline and compare two Bayesian
methods for estimating an unknown dose given a response assuming: 1) That the dose-response
curve is known (deterministic) and 2) that the dose response curve is estimated.  Although the
general methods outlined below are applicable to any dose-response function, the material given
will concentrate on a binomial response in conjunction with a logistic dose-response model.

II. METHODS

Bayesian Dose-Response Estimation
The logistic model, introduced by Berkson (1944), provides an easily interpreted

framework for dose-response modeling and is commonly used in such analyses.  In this case, the

ijresponse of the j  replication for the i  level of dose, y , is assumed to be distributed as ath th

11 12 IJbinomial variate.  The entire data vector is denoted by y where y = (y , y , ..., y  ) and the

iproportion of success for the i  dose, x ,  is given by:th

                                                    (1)

where b is a rate related parameter and g is the dose for which the proportion of success is 0.5.
The posterior distribution for q = [b, g] is given by Bayes formula:

                                              (2)

where p(y | q) is a likelihood for the data y evaluated over the parameters q, and p(q) is a prior
distribution for the parameters q.  The likelihood, based on the binomial, is given as:

                              (3)

The prior probabilities for b and g must be user-specified, however, the upper bound on b
is open ended, i.e. it can be infinite.  The bounds on g may also be considered unbounded.  In
order to accommodate easier prior specification, the logistic model given in (1) can be
reparameterized (Price, et al., 2003).  Specifically, when the dose level is set to zero or the dose

maxlevel is set to the maximum dose tested, x , the logistic model reduces to:

   and                           (4)

0 max maxwhere q  and q  are the proportions of success at dose = 0 and dose = x , respectively. 
Solving (4) for b and g yields:

 

                          (5)
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0 max 0which can be used to specify the logistic model (1) in terms of q  and q .  The proportions q

maxand q  take on values between 0 and 1.  For prior specification, we can apply the principle of

0 maxmaximum entropy (Jaynes, 2003) to define uniform prior probability distributions for q  and q

0 max 0 maxas p(q ) = p(q ) = beta[1,1].  Furthermore, assuming independence of q  and q  , the joint

 0 maxprobability distribution of q is then p(q) = p(q ) • p(q ).  The reparameterized posterior
distribution (2) can then be written as:

                         (6)

0 maxThe marginal distributions for q  and q  can be found through integration of the posterior
distribution in (6) using numerical or simulation (Monte Carlo) techniques.  Given these
marginal distributions, the associated distributions and point estimates for b and g can also be
found using the relationships in (5).

Estimation of an Unknown Dose
(i)   Dose-response curve with known parameters

Given a new observation of M successes from N trials at an unknown dose, and assuming

0 max the logistic dose-response curve shown in (1) with the parameters q  and q known, the
probability that the unknown dose = x given the observed proportion of success, M/N, is :

   

                                                                                          (7)
where p(x) is a prior probability for x.  Assuming a uniform distribution for x within the
calibration range of doses, a closed form solution for the point estimate of x is:

               

                                                                        (8)

and a (1- a)% credible interval for x can be derived from the posterior distribution (7) using:
 

                                                                          (9)

where L and U are the upper and lower percentiles, respectively, of the posterior distribution
given in (7).

(ii)   Dose-response curve known with estimated parameters
This scenario is similar to (i) above, however it relaxes the assumptions on the dose-

response curve by incorporating its error of estimation into the problem. Hence, we assume that
1) M successes in N trials at an unknown dose have been observed, 2) the logistic model (1) is

0 max ij iused, and 3) the parameters q  and q   are estimated from a set of calibration data, [y , x ].
If the observed M successes are independent of the calibration responses, y, and the

0 maxunknown dose, x, is independent of the parameters,q  and q  , then the posterior density
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0 maxfunction for the unknown dose can be derived from p(M | x) and p(q  , q  | y) as:

                       (10)

i iwhere p(M | x) is given by p (1 - p ) , p(x) is the prior distribution for the unknown dose, x,M N-M

0 max  and p(q , q | y) is the posterior distribution given in (6).  In essence, this filters the posterior
distribution above in (7) through the posterior distribution from the dose-response curve
estimation.

Using a predefined prior distribution for x, a solution for the unknown dose as well as the
associated (1 - a)% credible intervals can be found from (10) using numerical or simulation
techniques.

All programs and graphics were carried out using SAS (2001).  Sample programs and
data are available at: http://www.uidaho.edu/ag/statprog .

III. EMPIRICAL RESULTS

The data used to demonstrate the methods outlined above represent the effects of an
organic pesticide on the egg hatch of black vine weevil (BVW).  This organism provides a good
biological model for assessing the efficacy of the pesticide.  In the dose-response experiment, 20
eggs were placed in a petri dish with a fixed dose of the pesticide.  Nine doses (concentrations)
were used ranging from 0.0 to 0.03 g.  Each dose was replicated 10 times and the experiment was
repeated three times.  The number of eggs failing to hatch (unhatched) out of the 20 possible was
recorded as a success.

The logistic model given in (1) provided a good fit to the data (Figure 1).  Both

0 maxparameters, q  and q , were significant and the 95% credible regions reasonable.  The rate of

0 maxunhatched eggs at dose = 0.0g, q , was estimated at 0.0175 while the final unhatched rate,q ,
was essentially 100% at 0.9999.  Translated into the natural parameters of the logistic function,
[g, b] gave an inflection point of g = 0.0086g and a rate parameter estimate of b = 466.8 (Table 

1).

(i)   Dose-response curve with known parameters
Assuming the logistic model and the point estimates given above and three “new”

observed unhatched rates (5/20, 10/20, and 19/20), the most probable doses were estimated.  The
prior distribution for the unknown dose in each case was assumed uniform within the range of
doses tested, i.e. U[0.0, 0.03].  The posterior distributions, most probable values, and 95%
credible regions obtained through numerical methods are given in Figure 2.  As the mortality
rates approach 0.0 or 1.0, the posterior distributions for the unknown doses become skewed,
while that of the 50% rate is symmetrical.  Each of these scenarios assumed 20 trials.  The effects
of increasing the number of trials on the posterior distribution is demonstrated in Figure 3, while
maintaining the rate of unhatched eggs at 50%.  As expected, the dispersion of the distribution
decreases as the number of trials increases from 20 to 100.  Hence, increasing the number of
trials used to determine an unknown dose will increase the precision of the final estimate.  Such a
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sensitivity analysis could prove useful for determining desired precision and sample sizes for
estimating unknown doses.

(ii)   Dose-response curve with estimated parameters
While the method demonstrated above provides estimates of the unknown dose, it fails to

account for the variability associated with the calibration curve estimation.  As a means of
incorporating that variability, the estimated posterior distribution of the calibration parameters,
(6), was used as shown in (10) to obtain the unknown dose posterior for 10/20 successes.  The
uniform prior was again assumed for dose.  Figure 4 shows this posterior distribution in
comparison to the previous estimation.  The distribution and point estimate appear similar to the
results above with slightly wider credible limits: 0.0071 to 0.0104.  Although accounting for the
calibration curve error did increase the error of the final dose estimation, the effect was not as
prominent as might be expected.  Examination of the calibration data provides some explanation. 
The calibration data, as shown in Figure 1, represents 1580 trials which leads to a very high level
of precision for the calibration curve.  In order to reduce this precision, data points were
randomly selected from each dose of the original data to give a total of 310 trials.  The dose-
response curve was then re-estimated and the posterior dose distributions above were re-
computed using this subset data.  These results are shown in Figure 5.  The credible regions are
wider when the calibration error is incorporated and the point estimates remain unchanged. 

While interval estimates provide some insight into the difference between the two
distributions, it would be more useful to quantify this difference.  Shannon’s Entropy (Shannon,
1948) provides a measure of information for probability distributions:

                                        (13)

iwhere p(x ) represents the posterior probability of the i  level of dose.  By taking the ratio ofth

entropy values from two distributions, a measure of relative information can be defined as:

2.  If  H  represents the entropy of the “calibration curve known” distribution, i.e.

1 Rmethod (i),  and H  the “parameters estimated” distribution, method (ii),  the value of E  will
measure the relative efficiency or distance from method ii) compared to the “perfect” information

Rof method (i).  For the example of 10/20 successes, the efficiency is E  = 0.939.  As the number
of trials used to determine the unknown dose is increased, however, the efficiency drops (Table
2).  This occurs because the error from the calibration curve estimation eventually becomes larger
relative to the precision in the unknown dose posterior distribution.  Hence, increasing the
sampling effort for the unknown dose can not overcome the underlying variability in the
calibration curve.  Therefore, when estimation of unknown doses is of concern, it is prudent to
focus sampling effort and resources on the development of the calibration curve.

Posterior Distribution Behavior
The examples above have concentrated on the case where 50% success is observed. 

Figure 6 demonstrates the differences seen between the methods (i) and (ii) at a higher rate of
success, say 19/20.  Most notable is the increase in the most probable value (point estimate) from
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method (i) to method (ii).  This is due to an increase in distribution skewness, most likely caused

iby the curvature of the likelihood in (6) at higher values of p .  A similar shift in skewness, but in
the opposite direction, can be shown for low success rates.

At more extreme success rates, e.g. 0 % and 100%, the distributional behavior is more
unusual.  Under these conditions, the distributions become open ended with no lower bounds in
the case of 0 successes and no upper bound with 100 % success.  Figure 7 demonstrates the later
case with 20/20 successes.  The unknown dose is estimated at 0.03, the maximum possible, with
a lower 95% credible limit of 0.0138.  This is interpreted as follows: When 100% of the BVW
eggs fail to hatch, the best guess for the associated dose is 0.03g, however, the dose could be as
low as 0.0138g.  In cases with zero successes, the estimated dose would be 0.0g with an upper
bound representing the largest possible dose that could be present.

IV. CONCLUDING REMARKS

Dose-response estimation is widely used in scientific research and often involves
calibration curves used to determine unknown doses through bioassay studies.  The bioassay
problem is naturally posed as a Bayesian estimation problem.   Estimation of an unknown dose
can be carried out using the calibration curve in a deterministic fashion or by incorporating the
error inherent from the estimation.  Using the later approach will decrease the precision of the
final dose estimation. However, the degree to which this may occur will depend on the amount of
information used for estimating the calibration curve.  Increasing sampling effort for the
unknown dose can not overcome the error associated with the calibration curve.  Therefore, it is
important to concentrate sampling resources on development of the calibration curve, rather than
the measurement of the unknown dosages.
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Table 1.  Parameter estimates and 95% credible 
regions for the logistic model fitted to the Black Vine
Weevil data. 

95% Credible Region

Parameter Estimate Lower Upper

0q 0.01750 0.01280 0.02320

maxq 0.99995 0.99990 0.99998

g 0.00864 0.00832 0.00891

b 466.8000 423.547 502.796

RTable 2.  Relative efficiencies (E ) of 
various sample sizes.  Proportion of 
success held is constant at 50%.

Observed

Successes

Total #

RTrials E

10 20 0.939

25 50 0.913

50 100 0.876

400 800 0.670
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Figure 1.  Estimated logistic curve fitted to the Black Vine Weevil data.

Figure 2.  Posterior distributions for an unknown dose given a) 5, b) 10, and c) 19 successes out
of 20 trials.  Lower (L) and upper (U) 95% credible intervals along with most probable values are
also indicated.
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Figure 3.  Posterior distribution for an unknown dose given a 50% success rate under various
sampling intensities.

Figure 4.  Posterior distributions of an unknown dose given a 50% success rate.  Solid curve
represents estimation with the dose-response curve known, while the dashed curve represents
estimation with the dose-response curve estimated.  Estimation is carried out using the complete
Black Vine Weevil data set (1580 observations).
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Figure 5.  Posterior distributions of an unknown dose given a 50% success rate.  Solid curve
represents estimation with the dose-response curve known, while the dashed curve represents
estimation with the dose-response curve estimated.  Estimation is carried out with a partial Black
Vine Weevil data set (310 observations).

Figure 6.  Posterior distributions of an unknown dose given 19/20 successes.  Solid curve
represents the case with the dose-response curve known, while the dashed curve represents the
case where the dose-response curve is estimated. 
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Figure 7.  Posterior distributions of an unknown dose given a 100% success rate.   Lower (L) and
upper (U) 95% credible intervals as well as the most probable value are also provided.
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