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PREDICTING SOIL TEMPERATURES IN HIGH TUNNELS USING A DYNAMIC 
MODEL BASED ON NEWTONIAN LAW OF COOLING 

 

Anil K. Jayaprakash1,2, Kent M. Eskridge1, Laurie Hodges2, Daryl A. Travnicek1

(
1

 Dept. of  Statistics, UNL, Lincoln, NE 68583.    
2

Dept of Agronomy & Horticulture, UNL, Lincoln, NE 68583.
 

Abstract 
High tunnels are low cost temporary greenhouses that are often used to extend the 

growing season for high value crops such as tulips, muscari, sweet pea cultivars, and hyacinth 
beans. Profitability depends on selection and timing of crops to optimize use of these structures. 
Predicting soil temperatures in high tunnels as a function of outside temperature is a critical 
factor in crop selection and timing. However, predicting soil temperatures is difficult because air 
temperatures constantly change from hour to hour and day to day. We develop a model to 
account for temperature dynamics in high tunnels by modifying the fundamental differential 
equation in Newtonian law of cooling. We fit the model to data from high tunnels located in two 
states - Nebraska, Kansas and predict soil temperature as a function of external air temperatures. 
The model fits reasonably well at all high tunnel stations with most predictions being within 2° C 
of the observed value. We also found that the model could be used to adequately predict soil 
temperatures at one site based on parameter estimates of another nearby site. Thus we conclude 
that the model is an adequate tool in making high tunnel placement decisions and is useful for 
selection and timing of crops within established high tunnels.  

 

1. Introduction       
                High tunnels, unlike greenhouses, are temporary structures with manual operation. A 
simple supporting structure is built high enough to allow a person and equipment to work inside.  
The structure is covered with a plastic film to retain heat and protect crops from wind and rain. 
The sidewalls are rolled up manually for ventilation and to regulate internal temperatures. In the 
simplest form, there is no supplemental heat provided. All heat is provided through solar gain. 
Extensively used throughout the world, the primary purpose often is for season extension, i.e., 
earlier maturity in the spring and protection from frost in the fall.  

The weather in the Central Great Plains is characterized by extreme variability over 
relatively short time intervals, as much as 20 degrees C in a few hours.  Growers would benefit 
from knowing beforehand the likely soil temperatures inside the high tunnel especially under 
extreme weather conditions.  

Most growers will have outside air temperature data but few will have soil temperature 
data. Predicting high tunnel soil temperature without measuring soil temperature requires a 
mathematical model that uses air temperature from the grower’s site and model parameter 
estimates from nearby sites. Unlike models for greenhouses where inside and outside solar 
radiation (El-Shobokshy and Hussein, 1993) or measured solar intensity (Garzoli and Skinner, 
1990) is used, solar radiation is not used as input for prediction equations. Thus the model 
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developed here is simpler in terms of input variables.  This is the first study on the mathematical 
modeling of air and soil temperatures in high tunnels. 

 

2. Literature Review 
 
  Greenhouse climate control has seen great improvement in the last 60 years. Throughout 

the 1940’s and 1950’s, primitive systems consisted of on-off switches with heating and 
ventilation determined by separate thermostats. Analog controls gradually developed during the 
Second World War. It consisted in the use of electrical circuitry inputs from measurements of the 
environment to calculate the output to a machine that controlled heating and cooling (Carr, 
1984). Hammer and Langhans (1978) suggested a model that controlled for 24 environmental 
parameters. 

  
 Use of Lagrange multipliers (Seginer et al., 1986; Gal et al., 1984) and Hamiltonian 

functions (Challa, 1993; Seginer, 1993; Ponrtyagin et al., 1962) sought to optimize greenhouse 
operation. The ability to apply mathematical techniques with the help of computers made climate 
greenhouse modeling a reality in the past decade.  

 Udink ten Cate (1983; 1987), Udink ten Cate and van de Vooren (1984a; b) and Tantau 
(1980; 1985) developed controllers where staging of several exhaust fans, unit heaters, or 
ventilators were used. This led to temperature regulation in conventional greenhouses. These 
regulating systems are often computerized and responsive to existing conditions, rather than 
predictive. The conventional greenhouse operator seeks to minimize variation in crop growth by 
precise control of the crop environment. High tunnels, unlike greenhouses, are passive and use a 
lower level of technology appropriate for low-cost structures. These tunnels are beneficial to 
growers interested in moderation of climate extremes in protected culture systems rather than 
precise control of the microclimate. They purely depend on architectural design that can be used 
to maximize solar gain in the winter (and minimize them in summer) to reduce heating (and 
cooling) loads.  

Most growers have access to ambient air temperature data and forecasts, either from 
general weather reports or localized agricultural weather reports such as those provided by the 
High Plains Climate Center (http://hprcc.unl.edu/awdn/home.html).  For a grower to predict the 
soil temperature without actually measuring soil temperature in the high tunnel could enable the 
selection of crops appropriate for the high tunnel, especially those crops that would take 
advantage of the season extension capability of the structure.  
 

3. Objectives  

• Develop a mathematical model to predict soil temperatures in High Tunnels using real 
data from two states. 

• Evaluate the fit and usefulness of the model. 
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          MATERIALS AND METHODS 

4. High Tunnels 
               The high tunnels used in this study were constructed at Lincoln, Nebraska. Similar 
tunnels were built by growers in Loth, near Lincoln, Nebraska; and two grower locations – Jozie 
and Bryzinski near Lawrence, Kansas. The tunnels were modified Stuppy Polar Cub structures 
(Stuppy Greenhouse Manufacturing, Kansas City, MO.) covered with a single layer of 
polyethylene greenhouse-grade plastic film (K-50 Clearfilm, Klerk’s Plastic Products 
Manufacturing, Inc., Richburg, S.C.). Modifications consisted of 1.2 m sidewalls, 1.2 m bow 
spacing and 4.8 cm O.D. 14 gauge column steel bows. Dimensions of Lincoln tunnels were: 14.6 
m × 6 m. Lawrence, Kansas had tunnels with dimensions 30 m × 6 m while Loth had tunnels 
spanning 60 m × 8 m. Each high tunnel consisted of half of a 14.6 m × 6 m (or 30 m × 6 m, 60 m 
× 8 m) Polar Cub. End walls were constructed of wooden frames covered with the polyethylene 
film. Each end wall had a sliding door similarly constructed of wood and plastic film. The 
interior area available for planting and walkways was 14.3 m × 5.7 m (or 29.7 m × 5.7 m, 59.7 m 
× 7.7 m). 
 
5. Data 
            Data for air and soil temperatures were recorded at these places. The Lincoln high tunnels 
had Campbell Scientific CR10X microclimate recording systems. The Campbell Scientific 
thermocouples were calibrated to Polynomial Linearization Error: typically <±0.5°C (-35° to 
+50°C), <±0.1°C (-24° to +45°C) and Interchangeability Error: typically <±0.2°C (0° to +60°C) 
increasing to ±0.4°C (at -35°C). Air temperature was measured using temperature probes (Model 
HMP45C, Campbell Sci., Inc., Logan, UT). Soil temperature was measured using temperature 
probes (Model 108, Campbell Sci., Inc., Logan, UT). During the measurements, all data were 
logged every minute, and hourly and daily averages were recorded.  

The remaining locations had HOBO data loggers manufactured by Onset. HOBO sensors 
had an accuracy of ±0.5°F at +70°F or (±0.3°C at +20°C). Both air and soil temperatures for 
HOBO data loggers were measured using sensors (Model S-THA-MOXX, Onset Computer 
Corporation, Pocasset, MA). The HOBO data loggers averaged the data which was recorded 
every 30 minutes. 

 
 
6. Position of Sensors 
 

The Lincoln research station at East Campus, Lincoln NE had 6 high tunnels and the 
external air temperature was measured at a height of 45 cm , 33 m from the high tunnel. The 
remaining sites had one internal and one external sensor for measuring soil and air temperatures. 
The internal soil and air sensors were placed at a depth of 10 cm and at a height of 45 cm 
respectively also at the midpoint of the tunnel sidewall and perpendicular to it. Sensors were 
placed 150 cm (five feet) perpendicular to the midpoint. 
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7. Theory 

         The model is based on the Newtonian law of cooling which states that the rate of heat loss 
of an object/body is proportional to the difference in temperatures between the object/body and 
its surrounding.   
 
In order to apply this principle, let 
T be the temperature of the body/object and T 0  be the temperature of its surrounding.  
Newtonian law of cooling can be expressed as 

 dT
dt

 = k(T0 – T)                                                                                           [1]                  

where k is a constant and dT
dt

 is the rate of change of temperature with respect to time. 

The dynamics described by equation [1] is shown in Figure 1.1  We assume that T  is a 
constant temperature and T < T and that at t=0, the surrounding temperature is decreased to T 0 . 

Initially T quickly decreases as time (t) progresses i.e. T approaches T 0  and the rate 

0

0

dT
dt

 

approaches 0 where a steady state is achieved at T = T 0 . Steady state means that the body/object 
has equilibrated to the surrounding temperature.  

           
The same concept can be applied to a high tunnel. When the sidewalls of a high tunnel 

are closed, as the outside air temperature changes to some constant level, the soil temperature (T) 
will change at least to a short-term new average temperature.  Similarly when the sidewalls are 
kept open, the soil temperature (T) would equilibrate to another level. To apply the Newtonian 
law of cooling to short-term soil temperatures, the model needs to be adjusted to account for the 
difference between soil temperature and its microclimate.   
 
To do this we define two new variables (see Figure 1.2) as:   
T ' = T – A1 
where T ' is the soil temperature computed as the difference between the soil's current 
temperature (T) and it's long-term average (A1)  and 
 
T0

' = T0 – A0 
where T0

' is the outside air temperature computed as the difference between the current air 
temperature (T0) and long-term average air temperature (A0). 
 
                          After the above two defined variables are substituted for T and T0 respectively in 
eq. [1], dT/dt =0 when both T ' and T0' are at their steady state values.  If T0' decreases below 0 
(or T0 < A0) to some constant, T ' will also decrease but it will not decrease to the same value as 
T0' since the high tunnel steady state soil temperature will differ from the steady state outside air 
temperature. In other words, the long term average air temperature A0 will fluctuate at a different 
level and correspondingly, soil’s long term average A1 will depart to a different level. Hence we 
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could assume that the new steady state soil temperature is proportional to the outside air 
temperature say (1-α) T0' . 

Thus   =
dt
dT  k[ ]0(1-α)T ' -T' or in terms of T and T0  

  =
dt
dT  k[ ]0 0 1(1-α)(  T - A )-(T - A )                                        [2] 

where the new term T – A1 is the soil’s shifted temperature and (1-α )(T0 – A0) is the outside air 
temperature shifted to a long-term steady state and re-scaled by (1-α ) to account for the 
adjustment in soil temperature (Fig. 1.2) due to high tunnels. 
Solution to eq. [2] assuming T0 a constant, results in the equation 
T(t) = (1-α )(T0 – A0) + A1 + Ce-kt                                                          [3] 
where C = T(0) – T(∞ ) from equation [3] and C > 0 . i.e. the difference between the soil’s initial 
temperature when T0 = A0  and its new steady state temperature after T0 has decreased below A0.  
The above model is similar to one used in Feng et al (2001) which provided insight into animal 
temperature dynamics of cattle in controlled temperature chambers, illustrating broad 
applicability of the model. The parameter k is the soil temperature adjustment factor and is 
positive. Soils with smaller k values would take longer to adjust to changes in outside air 
temperature. While soils with a higher k would adjust quickly to changes in air temperature, 
parameters  and Aα 1 can be explained if we assume that as t ∞→  then eq. [3] becomes 
T(∞) = (1-α )(T0 – A0) + A1                                                                                [4] 
since the limit of e-kt = 0 as t  ∞.    When T0 = A0, i.e. when the air temperature is at its long-
term average, eq. [4] will be  T(∞ ) = A1 which gives the soil’s long-term average temperature.  
The term (1-α )(T0 - A0) indicates a decrease in soil temperature below its long-term average 
temperature A1 when T0 < A0.  1-  is the proportion of drop in air temperature below Aα 0 that 
directly translates into the corresponding drop in soil temperature below A1. In other words 1-α  
is a scaling factor. Higher A1 values indicate that the tunnel’s soil will maintain a higher 
temperature for a given outside air as opposed to a soil with a lower A1. Furthermore, tunnel soils 
with larger α  values would lose less heat from a drop in air temperature than soils with a smaller 
α . 
 
Sinusoidal form of high tunnel temperature 
                           The above model is based on the assumption of a constant air temperature, 
which is not realistic. Air temperature tends to be cyclic over a 24-hour period, rather than 
constant. If we assume that T0(t) is a sine function with average A0, amplitude φ 0 and shift 
parameter B0 (arbitrary starting point on the sine curve), a 24-hour sinusoidal cycle could be 
written as  
T0(t) = A0 + φ 0 sin(η (t-B0))                                                                     [5] 

where η = 
24
2π  

Substituting T0(t) from eq. [5] in eq. [2] and solving gives us the equation 
T(t)=(1-α )A + A0 1+  Ce-kt + (1- )α 0 0 cos( )sin(η(t B ) θ)φ θ − −                       [6]  
where ( η/k)  -    1tanθ =
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                The term (1- )α 0 0 cos( )sin(η(t B ) θ)φ θ − − in [6] indicates a cycling in the soil 
temperature due to the sinusoidal cycling in the air temperature.  Note that an additional term θ  
is obtained where θ  is the amount of time taken for a change in air temperature to be reflected in 
soil temperature. In other words θ  is the lag, which is an inverse function of k ( (η/k) ). 
Recall that, the larger the value of k, the more rapidly the soil adjusts to the microclimate and 
smaller the time lag term. As t becomes large, Ce

-  1tanθ =

-kt becomes small and reduces to a sinusoidal 
cycling of about (1- )Tα 0 + A1 (Fig. 1.3).  
                                                                                                         
                 Realistically the daily air temperature is not likely to follow a pure sine wave and we 
thus need a more general temperature function to describe the air temperature, namely  

T0(t) = A0 +                                                                     [7] ( ) ( )i 
1

   
p

i
i

[ sin iηt cos iηt ]∑ φ ϕ
=

+

where p is the number of Fourier terms in the model (typically p=8 is used). 
Now, solution to [2] will be 

T(t)=(1-α )A + A0 1+ Ce-kt +(1- )       [8] α ( ) (i    
p

i i i i
i

cos( sin (iηt) -θ cos (iηt) -θ ]
=1
∑ θ )[ φ ϕ+ )

where θ  is related to i as follows : 
iθ  = tan-1(i tan( ))== tan-θ 1(i n / k) and θ is derived from Eq. [6], i.e. .  -1  ( / )tan n kθ =

 
                The parameters from the full model in eq. [6] are useful in characterizing the 
temperature dynamics in different soils.  If we assume that a higher soil temperature is preferred 
to a lower soil temperature in cold environments, then soils with higher A1 values would have 
higher baseline temperatures (at T0 = 0) and thus could lose more heat before freezing.  
                      Higher α  values indicate an increased ability to maintain temperature, as (1-α ) is 
the proportion of each air temperature degree that is lost from the soil. Since k is the soil 
adjustment factor, soils with smaller k values are less responsive to changes in air temperature. 
Thus the three parameters A1,  and k yield a mathematical description of the soil temperature 
dynamics.  

α

 
Fitting the Model 
                        Data from all locations were used to fit the model separately. A two-stage 
approach was used to fit the model (eq. [8]).  In stage I the raw data from both air and soil 
temperatures were used to obtain 24 hour running averages, say T0(t) and T(t) respectively for 
each high tunnel. Using eq. [7], the temperature function T0(t) was estimated to obtain the air 
temperature parameters A0 ,φ i and i ϕ which resulted in the air temperature predictions T0(t)est. 
The soil temperature T(t) was then fitted in eq. [8] assuming that the A0 ,φ i, and i ϕ  estimates 
were the known parameters resulting in estimated soil temperature T(t)est conditioned on t. In 
doing so, long-term trends (i.e. day-to-day) for both

 
T0(t) and T(t) were established.  

       ~            ~
                       ~

                      ~
                    ~

 
                In stage II running averages from stage I (T0(t) and T(t)) were subtracted from T0(t) and

 

T(t) respectively, resulting in a detrending of data. In other words, the second stage is based on 

~ ~
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the residuals of T0(t) and T(t) about the 24-hour running averages. Using eq. [7], the detrended 
air temperature function (T0(t) - T0(t)) was estimated to obtain the air temperature parameters 
A0

*,φ  i
*  and i ϕ *  which gave predicted detrended air temperature values (T (t) -0

 T (t))  The 
detrended soil temperature (T(t) – T(t)) was then fitted assuming that the estimates A

0 est.

0
* , φ i

* and 

i ϕ * were known parameters which resulted in predicted detrended soil temperature values (T(t) - 
T(t)) . All parameters from stage I and II were estimated using non-linear least squares.  

 

est

~
~

~

 

 ~

                       Adding back the trends to the residuals gives us our final prediction. The predicted 
air temperature would be T0(t)est = T0(t)est + (T0(t) - T0(t))est  and predicted soil temperature would 
be T(t) est = T(t) est +  (T(t) - T(t)) est .  

        ~                     ~ 
~ ~

 
  If a nearby site, say site A, has both air and soil temperature available, then the 
estimated k and α from that site (A) could be used in eq. [8] with air temperature data from, say, 
site B, to predict soil temperature at site B even though soil temperatures at site B are not 
available. This type of prediction is the focus of objective 2.  
 
 
 

RESULTS AND DISCUSSION 
 
 
8. Objective 1 – Model Explanation 
 

 The model (eq. [8]) was implemented using SAS. Predictions, parameter estimates and 
goodness of fit statistics (R2 and Mean Square Prediction Error) were obtained for each location 
and month. MSPE= Σ(Υ-Ϋ)2/(n-1) where 

(1) Υ’s were not used to fit model and 
(2) Ϋ’s are predicted Υ’s, based on the fitted model 

 
Table 1.1 gives the estimates of the model for Lincoln, Nebraska from September 2002 to March 
2004.  

 
Both k and α together reflect the process between external air and internal soil 

temperatures. Consider the month of December in 2002 as an example (Table 1.1). A k of 0.30 
indicated that the rate of change was relatively low while α was 0.42 which was also relatively 
low, meaning that 1-α = 0.58 or 58% of an outside temperature degree was reflected in the tunnel 
soil temperature. The R2 was 78% which indicated that the model fits well for the high tunnel 
soil temperature. An MSPE of 0.87 indicated that about 95% of the observed soil temperatures 
should be within 2* MSPE = 1.86 °C of the estimates for the month of December. Similarly we 
can infer the variation and estimates for other months also from Table 1.1. 
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For most months in Lincoln, the model fits well with R2 ≥ 75%. Only during winter, 
especially the months of February 2003, December 2003 and January 2004, did the R2 fall below 
70%. Also, MSPE was between 1 and 1.5 for most of the months. During the fall months of 
October 2002, September 2003 and November 2003, the MSPE was between 3 and 3.15. In 
Table 1.1, the ½ confidence interval width was smaller for 2002 than 2003, indicating that the 
weather in 2002 was less variable (especially during Fall and Winter) as compared to 2003. The 
k value was high during the summer months (2002) and decreased during the fall (October 2002, 
November 2002) and winter (December 2002, January 2003 and February 2003). Gradually it 
picked up during the spring (March, April and May of 2003) and peaked again during summer. 
Overall, based on R2 and MSPE, the model does a good job in estimating high tunnel soil 
temperature.  
 
Computation of lag times 

 
Using the model we can also determine inside soil temperature using lag times. From eq. 

[6] we know that θ  = (η/k) is the lag or the amount of time for a change in outside air 
temperature to be reflected in the tunnel soil temperature. Substituting the December 2002 value 
of k = 0.12 from the Lincoln results (Table 1.1) we obtain, 

1tan−

θ = ((21tan− π /24)/0.12)=1.14 
radians. Converting radians to hours where 24 hours corresponds to 2*π radians, the estimated 
lag is θ = (1.14*24)/(2*π ) = 4.3 hours. Similarly for other months we can compute the lag time 
in hours. Substituting the k value of 0.22 for February 2004, we get the lag time as 3 hours. With 
an estimate of 4.3 hours for January and a rapid outside temperature drop that likely would drop 
tunnel soil temperatures below a certain threshold, the grower would have approximately 4 hours 
to make management changes before the full effect would be reflected in the high tunnel soil 
temperature. Though the soil may not freeze, low soil temperatures can cause damage. To 
prevent this, management intervention such as installing an artificial heating source, might be 
used to avoid soil temperature dropping below an acceptable level. With our model, the grower 
may obtain a reasonable idea of the tunnel soil temperatures. If a grower has an outside air 
temperature sensor, the grower could use the model to predict soil temperatures based only on 
outside temperatures.  

 
The model can be most useful in predicting tunnel soil temperatures that could result 

from a rapid drop in air temperatures. This information could be used to aid growers in making 
management decisions. The equation for soil temperature can be written as T(t+θ ) = A1 + (T0(t) 
– A0)×(1–α ). For example, assume that an air temperature drop is predicted to occur at Lincoln, 
NE as in Table 1.2. Using the model estimates for March 2003 in Table 1.1, with k = 0.3, α  = 
0.56 and corresponding values of A0 = 5.51 and A1 = 4.93, we can predict what tunnel soil 
temperatures would result given the situation in Table 1.2. Using the above equation, soil 
temperature for March 2003 at 2:00 PM in Lincoln would then be estimated as: 

T(time + lag) = 4.93 + (17 – 5.51) × (1-0.56) = 9.98                     -   [9] 
where lag or  = (η/k) = ((2θ 1tan− 1tan− π /24)/0.3)=1.523 radians. Converting radians to hours 
where 24 hours corresponds to 2π radians, lag = 2 hours 45 min.  If the hypothetical air 
temperature decreases from 17°C at 2:00 PM to 6°C at 9:00 PM then the predicted soil 
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temperature drops from 9.98°C at 4:45 PM to 5.1°C at 11:45 PM. As midnight approaches, the 
hypothetical air temperature drops further and remains around -2°C.  Soil temperature also 
decreases gradually with outside air temperature but despite the drop in external air temperature, 
at 2:45 AM, it stabilizes around 2°C. From Table 1.2, the lag between external air temperature 
(12 AM) and predicted soil temperature (2:45 AM) is around 2.75 hours. Thus, being able to 
predict soil temperature for a predicted air temperature drop could be useful for the grower to 
determine if temporary heating is necessary to maintain soil temperatures. 
 
 
9. Evaluating the model - Predicting one site’s soil temperature using another site’s k and α  
 
          To test the application of the model across locations, grower co-operative sites were 
selected. Here the prediction of Loth from Lincoln and Bryzinski from Jozie is shown. Loth is a 
grower’s location situated 12 miles southwest of Lincoln. As these high tunnels are close to 
Lincoln high tunnels, we used Lincoln’s k and α with Loth’s outside air temperature (T0(t)) to 
estimate Loth’s long term average soil temperature (A1) and to predict Loth’s tunnel soil 
temperature. As described in theory, we obtained the two stage fit process. In a similar manner 
we estimated Bryzinski’s A1 (long term average soil temperature ) using Jozie’s k and α and 
Bryzinski’s A0.  

 
Table 1.3 gives a comparison between the A1 predictions for Loth’s site temperatures 

using Lincoln’s k and α with Loth’s air temperature against A1 estimated using Loth’s air and soil 
temperature data.  Table 1.4 gives a comparison between the A1 predictions for Bryzinski’s soil 
temperatures using Jozie’s k and α with Bryzinski’s air temperature against A1 estimated by 
using Bryzinski’s air and soil temperature data. For both Loth and Bryzinski and for both 
months, the A1 values based on the other locations k and α were almost equal to the A1 values 
estimated only with its own data. 
 

The goodness of fit for each location was also evaluated with R2 and MSPE. The 
predictions for a site based on the k and α from another site fit the data better as indicated by 
higher R2 (from Lincoln, Jozie data) and smaller MSPE. The reasons for better prediction for 
Loth and Bryzinski using Lincoln and Jozie data respectively are likely because, Loth tunnels are 
60 m long with just 1 soil sensor as opposed to Lincoln’s tunnel being 15 m with 4 soil sensors.  
More heat is lost in a tunnel with long sidewalls as compared with shorter sidewalls and there is 
less accuracy due to only 1 soil sensor in Loth compared to 4 in Lincoln. In addition though 
Jozie and Bryzinski have the same length, Jozie has better quality control as its managed by 
professional growers with many clients as opposed to Bryzinski, which is mainly for in-house 
cultivation. 
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10. Summary 
             These results illustrate the ability of the model to accurately predict soil temperature. 
This is useful to a grower in a couple of ways: 
 

1) The usefulness and fit of the model based on data from the Lincoln high tunnel can be 
seen through the tight prediction of soil temperature based on outside air temperature 
(Table 1.1). This table shows the following parameter estimates and goodness of fit: 

        1  Long term average outside air temperature (° C) 
2  Long term average soil temperature inside the high tunnel (° C) 
3  Rate of change 
4  Scaling factor for adjustment of high tunnel soil temperature based on outside air 
5  Variation of high tunnel soil temperature explained by the model 
6  MSPE = Prediction error between observed  and predicted soil temperatures 

   7 2*SQRT(MSPE) = ½ width of a 95% Confidence Interval for the predicted soil  
    temperature 

 
        Also, using the hypothetical air temperature (Table 1.2) in the prediction equation  
        (Eq.  [9]), would make it easier for a grower to know the soil temperature before an   
        extreme  weather condition. This table shows the following: 

1  Time of day 
2  External air temperature (° C) 

  3  Time of day + lag 
   4  Predicted soil temperature (° C) 
 
2) With just a site’s air temperature and another site’s k and α, the grower can predict the 

soil temperature at the new site. Based on the test location, the model does well in 
predicting temperatures at one location using the k and α from another location (Tables 
1.3 and 1.4).  

 
 
                                                 Figure 1.1 T
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                                                               Figure 1.2 
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Table 1.1: Parameter estimates and goodness of fit statistics for Lincoln, Nebraska from 
September 2002 to March 2004 
                  
    Lincoln  Parameter  Estimates        Goodness of Fit 

Months A0
1 A1

2 k3 α4   R Square5 MSPE6 2*SQRT(MSPE)7

Sep-02 20.78 7.91 0.57 0.50  0.88 1.94 2.79 
Oct-02 7.13 8.45 0.48 0.43  0.74 3.13 3.54 
Nov-02 4.34 6.21 0.42 0.38  0.84 1.10 2.10 
Dec-02 1.17 5.12 0.30 0.42  0.78 0.87 1.86 
Jan-03 -3.15 3.65 0.23 0.64  0.77 1.17 2.16 
Feb-03 -3.01 3.10 0.26 0.66  0.62 1.22 2.21 
Mar-03 5.51 4.93 0.30 0.56  0.88 1.84 2.72 
Apr-03 12.67 6.65 0.34 0.47  0.72 1.69 2.60 
May-03 14.87 10.81 0.37 0.36  0.74 1.41 2.37 
Jun-03 21.19 14.91 0.48 0.52  0.74 2.90 3.41 
Jul-03 27.08 13.24 0.44 0.42  0.78 1.04 2.04 
Aug-03 26.10 18.30 0.58 0.44  0.71 1.23 2.22 
Sep-03 17.92 8.18 0.53 0.46  0.71 3.12 3.53 
Oct-03 13.72 8.02 0.46 0.48  0.81 2.26 3.01 
Nov-03 4.07 5.67 0.39 0.43  0.71 3.03 3.48 
Dec-03 0.42 3.85 0.31 0.33  0.69 1.84 2.71 
Jan-04 -4.98 3.14 0.12 0.59  0.64 2.03 2.85 
Feb-04 -5.03 3.65 0.22 0.64  0.78 2.33 3.05 
Mar-04 5.13 3.39 0.41 0.47  0.71 1.27 2.25 

 
 

 
       Table 1.2: Hypothetical temperature profile at Lincoln, NE in winter                                     

        
          t1          T0(t)2         (t+θ )3          T(t+θ )4

2:00 PM 17 4:45 PM 9.98 
6:00 PM 11 8:45 PM 7.34 
9:00 PM 6       11:45 PM 5.1 

    10:00 PM 4       12:45 AM 4.26 
    11:00 PM 2 1:45 AM 3.38 
    12:00 AM -2 2:45 AM 1.62 

1:00 AM -2 3:45 AM 1.62 
2:00 AM -2 4:45 AM 1.62 
3:00 AM -2 5:45 AM 1.62 

  

 
 
Table 1.3: Comparison between actual Loth parameter estimates and predicted Loth 
parameter estimates (obtained using Loth’s outside air temperature and Lincoln’s k and α) 
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                             Parameter  Estimates     Goodness of Fit 
Location Soil Temp Months A0 A1 k α   R Square MSPE 
Loth Actual May-03 13.89 11.07 0.39 0.42  0.74 2.74 
Loth Predicted May-03 13.89 12.20 0.37 0.36  0.79 2.71 
Loth Actual Mar-03 4.48 8.20 0.41 0.59  0.85 2.96 
Loth Predicted Mar-03 4.48 9.93 0.30 0.56  0.88 2.19 
 
 
 
  
Table 1.4: Comparison between actual Bryzinski parameter estimates and predicted 
Bryzinski parameter estimates (obtained using Bryzinski’s outside air temperature and 
Jozie’s k and α) 
 
                              Parameter  Estimates    Goodness of Fit 
Location Soil Temp Months A0 A1 k α   R Square MSPE 
Bryzinski Actual Jan-03 -2.21 4.00 0.35 0.62  0.76 2.10 
Bryzinski Predicted Jan-03 -2.21 4.83 0.37 0.55  0.78 1.70 
Bryzinski Actual Feb-03 -0.95 4.92 0.40 0.63  0.70 0.96 
Bryzinski Predicted Feb-03 -0.95 5.23 0.36 0.57  0.73 0.95 
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