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A COMPARISON OF GEOSTATISTICAL AND SPATIAL AUTOREGRESSIVE 
APPROACHES FOR DEALING WITH SPATIALLY CORRELATED RESIDUALS IN 

REGRESSION ANALYSIS FOR PRECISION AGRICULTURE APPLICATIONS 
 

Ignacio Colonna, Matías Ruffo, Germán Bollero and Don Bullock 
Dept. of Crop Sciences. University of Illinois at Urbana – Champaign. 

 
Abstract 

Regressions such as Grain yield=f(soil,landscape) are frequently reported in precision agriculture 
research, and are typically computed using conventional OLS methods, implicitly ignoring 
spatial correlation of the residuals. This oversight can have a marked effect on the final 
conclusions derived from these regressions. A further issue is, which approach should be used to 
account for this problem? We investigated this question using a 2 year data set that includes site-
specific soil and topographic information and soybean yields and compare regression results 
from direct covariance representation and spatial autoregressive approaches. Our results show 
that the coefficients from both spatial approaches are in many cases significantly different to 
those from OLS, but the estimates from both spatial approaches appear to show little differences. 
To provide further insight into the comparison among these approaches we use a simulation of 
spatial random fields, with a model containing 2 independent explanatory variables and a 
spatially structured residual term. We then estimated the coefficients for 1000 simulations of this 
field and assessed their distributional properties. All methods yielded overall unbiased estimates 
and OLS showed the largest standard errors, while the ‘spatial’ approaches proved to be 
relatively consistent, although a certain neighborhood specification within the spatial 
autoregressive model had an evidently lower performance than the rest. 
 
Keywords: spatial regression, mixed models, spatial autoregressive model, precision agriculture, 
simulation. 
 
1. Introduction 
 During the early 90’s, both the users and research agricultural communities have 
experienced a rapid increase in their interest in technologies related with what has been called 
precision agriculture (Pierce and Nowak, 1999). In general., the main objectives of precision 
agriculture are to increase farmers’ profitability while keeping environmental contamination to 
reduced levels compared to conventional management. Within this new approach, the 
achievement of these objectives is attempted through the incorporation of management strategies 
at, when convenient, a finer spatial scale than has been traditionally used within conventional 
field crops farming. Such strategies need to be based then on information collected at scales 
smaller than an entire field. This information should provide the basic input for decisions such as 
division of the original field into areas that will potentially receive different management, or the 
detection of useful field properties that can act as predictors of crop response to the application 
of inputs. Examples of this kind of ‘site-specific’ information are yield monitor data, intensive 
soil samples, remotely sensed imagery, or data from automated soil or plant sensors. While 
precision agriculture is still a technology under development there exists an important amount of 
published research aimed at quantifying the relationship between variables of interest such as 
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crop production, economic indices of profitability or residual soil nutrients with environmental 
variables at within-field spatial scales. One approach that has been popular among these 
publications is the use of several forms of regression analysis in an attempt to provide a 
descriptive or functional characterization of this relationship for a particular region (Lark, 1997; 
Coelho et al., 1999; Kravchenko and Bullock, 2000; Kitchen et al., 2003; Machado et al., 2000; 
Kaspar et al., 2003 & 2004). Taking for example crop yield as a response variable and soil 
properties as potentially explanatory variables, these analyses are frequently based on a linear 
model that can be expressed as in  

yield=Xβ+ε                            (1) 
Where yield represents a vector of n observations taken at different locations within a field, X is 
a matrix containing information for the n points from v concomitant variables that may be either 
the originally measured field properties (e.g. Plant et al., 1999; Kaspar et al., 2003) or some 
transformation frequently based on multivariate methods (Chang et al., 2003; Mallarino et al., 
1999; Machado et al., 2000 ), β is the vector of coefficients for each variable in X and ε is a 
vector of n residuals, containing the fraction of yield not explained by the variables in X. Even 
though these studies usually involve the use of numerous concomitant variables, the relative size 
of the ‘non-explained’ part of yield is still typically large, the R2 of the model being frequently in 
the order of 0.1-0.6 (e.g. Perez-Quezada et al., 2003; Kaspar et al., 2003; Kitchen et al., 2003). A 
considerable part of the residual values for these models is thus contributed by field properties 
omitted from the model, but that are relevant somehow to the explanation of variation in the 
response variable. These variables often show some degree of spatial structure or clustering, in 
the sense that similar values tend to appear close to each other in the field (Cambardella et al., 
1994, Robertson et al., 1996), thus generating a vector ε of spatially correlated residuals.  

One of the central points in the studies under consideration relies on the interpretation of 
the significance levels, sign and magnitude of the regression parameters in , the corresponding 
estimate for the unknown β. It is well known that the ordinary least squares (OLS) estimator for 

 is not the best linear unbiased estimator (BLUE) under situations with non-
independent residuals (see e.g. Green, 1991 ch. 13). Although the spatial variability in yield and 
in the explanatory variables in X is usually explicitly recognized and central to the subject in 
precision agriculture research, it is paradoxical that the majority of these studies still base the 
computation of  in the OLS estimator, ignoring the aforementioned correlation in ε by 
assuming their distribution as N(0,σ

β̂

( ) Y'XX'Xˆ 1−=β

β̂
2I). Furthermore, the report of conventional correlation 

matrices and their corresponding significance tests for a set of field properties is common 
practice, although these are also likely incorrect for spatially dependent variables, as shown in 
Bivand (1980), Clifford et al. (1989), and Dutilleul (1993). In research studies like those 
exemplified above, the use of OLS can lead, specifically, to underestimated standard errors for 
regression parameter estimates relative to the true OLS standard errors for these estimates and 
inflated significance levels of the corresponding statistical tests, although  may be 
asymptotically unbiased (Greene, 1993 ch. 13, Upton and Fingleton, 1985 p. 285; Haining, 1990 
p. 161). Under the general case of non-spherical ε  the BLUE corresponds to the generalized 
least squares estimator (GLS) of the form  

β̂

( ) YV'XXV'Xˆ 111 −−−=β      (2) 
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where V is the n x n covariance matrix of the residuals in ε, with an expected value not equal to 
σ2 I  (Greene, 1993, Ch. 13 ;  Upton and Fingleton, 1985 p. 277).  

The effect of correlated residuals on parameter estimates has been recognized in 
agricultural research for a long time, but in practice this has been almost exclusively addressed in 
experimental studies involving variety trials, where the use of some variation of the nearest 
neighbors approach has become common, (Wilkinson et al., 1983, Bhatti et al., 1991) and other 
recently  adopted methods based on geostatistics (Ball et al., 1993, Brownie et al., 1993, Stroup 
et al.,1994). In a reduced number of regression analyses in the area of precision agriculture, 
spatial correlation was accounted for in the estimation of β by the use of basically three different 
approaches: nearest-neighbors analysis (Mamo et al., 2003, Bermudez and Mallarino, 2003), 
direct covariance representation (Lark and Wheeler, 2003; Kaspar et al., 2004) and spatial 
autoregression (SAR, Long, 1998; Florax et al., 2002; Anselin et al., 2002).  In this paper, for 
purposes of accounting for spatial correlation in regression residuals, we deal only with the direct 
covariance representation and SAR methods. The approach we call ‘direct covariance 
representation’ corresponds to the ‘random field linear model’ in Zimmerman and Harville 
(1991) and is of more common use among researchers in the biological and agricultural sciences, 
whereas the SAR approach is widely applied in the area of econometrics and economic 
geography. Both methods are explained in some detail in the next two sections. 

While theoretical and applied aspects of both ‘spatial’ methods have been separately 
addressed in numerous publications (e.g. Anselin and Bera, 1998; Florax et al., 2002, 
Zimmerman and Harville, 1991; Grondona and Cressie, 1991; Lark, 2000) we are only aware of 
one paper in which outcomes from the direct covariance representation approach have been 
directly compared against those from SAR-error (Lambert et al., 2002), although this comparison 
was limited to a specific experimental study, with no attempt to describe more general properties 
of both estimators. Christman and Jernigan (1997) have performed a similar comparison of both 
spatial models in an application to a problem in evolutionary biology.  

In this paper our main purpose is to emphasize the possible consequences of ignoring 
spatial correlation in ε in regression analysis used within the context of precision agriculture 
research and to contrast the possible outcomes obtained from the use of two methods that 
account for this condition. To achieve this, we first illustrate the actual differences in the 
estimation outcomes from OLS, direct covariance representation and SAR approaches, which 
motivates our further attempt to provide practical insight into somewhat more general empirical 
properties of the three methods. We begin by briefly describing in the next two sections some 
basic aspects of the direct covariance representation and SAR approaches, continue by 
presenting the results from two examples based on field data and end with a spatial random field 
simulation exercise that yields empirical distributions for  under the specified conditions for 
the simulated fields. Our presentation of both spatial approaches in the following two sections is 
of course rather succinct. A good presentation of theoretical and practical aspects of the first 
method with several examples can be found in Schabenberger and Pierce (2002, ch.7 and 9), and 
equivalent coverage for the second method in the books by Cliff and Ord (1981), Upton and 
Fingleton (1985) and its application to econometrics in Anselin (1988) and Anselin and Bera 
(1998).  

β̂
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2. Direct covariance representation (‘geostatistical’ approach) 
While most references to this method seem to converge to the paper by Zimmerman and 

Harville (1991), its use in the literature dates back at least to the study by Cook and Pocock 
(1983), to regressions based on non-experimental data. The case that concerns us in this paper is 
that of a fully fixed model such as (1), where ε is distributed as N(0,V), and the elements of V are 
obtained by imposing a certain structure in their covariances that depends on only a few 
parameters. For the examples given in this paper, we use the spherical and exponential 
covariance models, two structures frequently applied in spatial analyses for agricultural or 
ecological  applications (e.g. Cambardella and Karlen, 1999; Goovaerts, 1998). For the first one, 
the covariance between any two residuals εi and εj is a nonlinear isotropic function of their 
physical separation distance d and two other parameters as  

otherwise, 0V                                   

ad if 
a

d
a
dadVCov( ssji

=

≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=),,(=), 0

22
31 3

3
22 σσεε

          (3) 

And for the exponential model, the function is as  
( )daadV ss −=),,( exp22 σσ      (4) 

In (3) and (4) V has the same meaning as in (2), the parameter a is usually called 
‘correlation range’ and in this context, σs

2 is called the ‘sill’ when the counterpart of this function 
is represented in a semivariogram. A further variance component equal to σo

2 I, usually called 
‘nugget’ in geostatistics, can be added to both models to represent non-spatial measurement error 
or variation at very small distance lags. Although we have expressed V as a function of only 4 
possible parameters, in reality one need not assume constant values of σs

2 and a throughout the 
field, and different structures can be fitted if this appears to better represent the observed 
covariance patterns in the data (e.g. Schabenberger and Pierce, 2002 p.676). In our regression 
examples, all parameters in V are either estimated externally and fixed or estimated by restricted 
maximum likelihood (REML) and β further estimated as a function of these covariance estimates 
by replacing V in (2) by its estimate V̂ , a method called empirical or estimated GLS (EGLS).  
 
3. Spatial autoregressive approach (SAR) 
 In this case, correlation of the residuals is not accounted for by a direct modeling of the 
elements in V but rather indirectly through a specification of the linear model according to the 
nature of the process generating the correlation pattern. Although many possible model 
specifications exist (see for example Anselin, 2002 & 2003 or Upton and Fingleton, 1985 ch. 5), 
the two most widely used in spatial regression applications, are the ‘spatial lag’ and ‘spatial 
error’ models. Conceptually, the first type corresponds to either a situation whereby the value of 
the response variable at a certain location is in part the result of a contagion, or diffusion, effect 
from the same variable at its neighboring locations (e.g. adoption of a certain technology), or to a 
case where there is a mismatch between the scale at which a variable is measured and the true 
spatial scale of the process represented by that variable (Anselin and Bera, 1998). The second 
type, instead, corresponds to the effect observed in the OLS residuals due to the omission of 
spatially structured explanatory variables in X that are in fact related to the dependent variable, 
such that the residuals ‘absorb’ the spatial structure from these (Anselin and Bera, 1998). In our 
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interpretation, it is this second specification that applies better to the common case found in most 
non-experimental studies within the area of precision agriculture, where one attempts to 
‘explain’ yield variations by including a limited number of field properties as concomitant 
variables in the model, but this group is almost invariably incomplete in terms of the true set of 
variables that cause the observed spatial variation in grain yield, or whichever other response 
variable is investigated. For this paper we choose to use the spatial-error model specification and 
do not pursue further explanations on the spatial lag specification. We note in passing that the 
use of the spatial lag model in exploratory analyses of this sort, where the explanatory variables 
have a strong spatial structure themselves as is the case in Long (1998) and Florax et al. (2002), 
is questionable and can obscure the true influence of the field properties under investigation on 
the dependent variable (see for example comments in Upton and Fingleton, p. 373 about a 
similar situation in a study by Cook and Pocock). 

Based on (1) the SAR-spatial error model can be expressed by defining ε as  
      (5) ξλξελε 1−−=+= )WI(W

Here, W is a binary weights matrix that defines the neighborhood structure in a discrete way (i.e. 
1=neighbors, 0 otherwise) and for practical purposes it is typically used in a row-standardized 

form such that . Figure 1 gives a physical representation of two commonly used 

neighbor structures for a regular grid of points, one based on vicinity and called ‘queen’ 
criterion, in an analogy to the movement of this piece in a chess game, and the other based on a 
fixed radius from each point. The coefficient λ (‘spatial autocorrelation parameter’) represents 
the magnitude and direction (positive or negative) of correlation in the residuals, with the 
constraint 

1
1

=∑
=

n

j
ijw

1<λ . The first term in (5) can be intuitively seen as an average of the residuals from 
the neighbors of each point, multiplied by λ. In this sense, then, a value of λ=0 corresponds to a 
case with spatially independent residuals. The error term ξ , for our purposes, is taken as being 
N(0,σ2 I). From model (5), the resulting covariance matrix for ε is: 

( ) ( )[ ] 12 −
−−= WIWIV ' λλσ     (6) 

where λ and σ2 can be estimated by maximum likelihood, and β is again estimated by EGLS 
based on (2), although other alternatives also exist (Anselin and Bera, 1998). Notice that even if 
the neighboring structure in W is defined in a discrete way, the final form of V in a SAR-error 
model is that of a full matrix, where all pairs of neighbors have a nonzero covariance. This 
contrasts with, for example, the case of the spherical model in the previous approach whereby 
any pair of neighbors separated by a distance greater than a have a zero covariance. Also as a 
consequence of specification (5), V is intrinsically heteroscedastic, unless each point in the 
dataset has an identical number of neighbors (Anselin and Bera, 1998; Anselin, 2003).  This 
property applies to the SAR-error case regardless of the properties of the true covariance matrix 
in the data, and thus σ2 in (5) cannot be interpreted in the typical way as a homoscedastic error 
variance. Figure 2 displays the resulting covariance structure for a particular point in the field as 
a function of distance to its neighbors, for two geostatistical models and the same two 
neighborhood structures used in Figure 1.    
 
4. Application to field data: Regression of grain yield to field characteristics 
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4.1. Data and methods 
 The area under analysis is a 20-acre production field, located in East-Central Illinois, for 
which soybean grain yield data was available for the cropping seasons of 1999 and 2001 (Figure 
3). These values were originally collected with a combine yield monitor in transects separated 9 
m apart, with a density of about one point every 2 m along each transect. From a larger set of 
field characteristics, we selected two soil chemical properties and five topographical indices as 
explanatory variables for yield spatial variation (Figure 3). The first two variables are soil 
phosphorus and potassium, expressed in ppm, which were measured in a grid of 110 points up to 
a depth of 8”. The topographical indices were computed from spatially intensive sampling 
conducted using a real-time kinematic differential global positioning system (RTK-DGPS). 
These variables are profile curvature (Prof), plan curvature (Plan), stream power index (SPI), 
compound topographic index (CTI), and aspect (Ang). These are defined or computed as 
follows: Prof and Plan are the second derivatives of the elevation surface in the principal 
direction of the slope and in a direction perpendicular to this one, respectively, and are expressed 
in degrees. SPI is computed as SCA x slope (%), where SCA is specific catchment area, a 
measure of number of grids draining to a given grid in an elevation model, and slope is the 
change in elevation in the direction of maximum elevation difference. CTI (or wetness index) is 
calculated as ln (SCA / slope (%)) and Ang is the direction of slope and is expressed in radians 
counter clockwise from the east direction.  These landscape attributes have been shown to be 
good descriptors of the effect of elevation on water dynamics within a field (Moore et al., 1991; 
Wilson and Gallant, 2000; Western et al., 1999; Chamran et al., 2002), thus influencing grain 
yield spatial variation by modulating plant water availability during the crop season (Halvorson 
and Doll, 1991; Kravchenko and Bullock, 2000).  

Previous to performing the  regression analysis the response and potential explanatory 
variables were kriged (yield, P and K) or locally averaged (topographical variables) to a common 
regular grid at 20 m of separation between points, resulting in a total of 371 points out of which 3 
were eliminated due to being considered outliers in their values for the topographical variables. 
Our final analysis was then based on 368 data values (Figure 3). 
 The grain yield for each year was related to the field characteristics using a linear model 
with no interactions as  

jCTISPIAngPlanProf K PYield εββββββββ ++++++++= jjjjjjjjj 76543210  (7) 
where j=1999, 2001, and each variable in the model is a vector with n=368, and β0-β7 are the 
elements of vector β in (1). More sophisticated and possible nonlinear models including 
interactions may be more appropriate for understanding the sources of grain yield variability, but 
a rather simple one is well suited for the purpose of our example.  
 As a first step, the βij in model (7) were estimated by OLS, and the spatial structure of the 
residuals analyzed using experimental semivariograms to which alternative models were fitted 
using a routine based in PROC NLIN in SAS®. This revealed marked differences in nugget, sill 
and correlation range between years, justifying the decision of fitting a separate covariance 
structure to each year. The βij for the direct covariance representation approach was then 
estimated in SAS® using a spherical covariance structure (Figure 4), using the following code 
(example for year 1999): 
proc mixed data=soiltopyldind noprofile scoring=16; 
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title 'spatial regression - 20m - year 99'; 

model yield= P K  Prof  Plan Spiavg Cti Ang/ddfm=kr solution outp=unadjresid99; 

parms /*sill*/ (1000) /*range*/(70) /*nugget*/ (600)/noiter; 

repeated /subject=intercept local type=sp(sph) (x y) r rci; 

ods output InvCholR= choleskyinv; run; 

The values specified in parms correspond to the models obtained from the external fitting 
of semivariogram model (3) as explained above. The decision of fixing the covariance parameter 
(option noiter) rather than estimating them by restricted maximum likehood (REML) was 
based on the unrealistic parameters obtained by this method when compared against the 
experimental semivariograms in Figure 4. This is due to the influence of covariance values at 
distances beyond half the field length or width (200 m), a threshold after which the points 
contributing to each value in the covariogram correspond to ever smaller subsets of the entire 
dataset, and thus are not reliable representations of the overall covariance structure (Littel et al., 
1996). The results for the REML estimates are nonetheless reported, to compare their standard 
errors with those from the noiter case. The option rci requests the inverse of the Cholesky 
decomposition matrix for the covariance matrix of the residuals. This matrix satisfies the relation 
r=rci-1(rci-1)’, r being equivalent in this case to V in (1). It is thanks to this property that this 
matrix can be used to check the appropriateness of the fitted covariance model in the 
representation of the observed structure. For this purpose, an experimental variogram was 
computed for a set of residuals,  adjresid, adjusted by the imposed covariance structure. This 
adjusted set was obtained using the code: 
proc iml; 

use choleskyinv; read all into choleskyinv99; 

choleskyinv99=choleskyinv99[,3:370];             *cholesky inverse matrix;  

use unadjresid99;         *dataset containing unadjusted residuals from proc mixed; 

read all var{x y resid}; 

adjresid=choleskyinv99 *resid;  *’adjust’ residuals; 

create residadjust var{x y adjresid}; 

append; quit;   

Two models were obtained with the SAR-error approach corresponding to the 
neighborhood structures shown in Figures 1 and 2, queen and distance-based with a radius of 50 
m (‘d50’). The weights matrices for both schemes were obtained in Geoda™  (Anselin, 2003) 
and the regression analysis was performed using the spdep library (Bivand, 2003) in R 
statistical package (http://cran.r-project.org). The basic code in R is: 
attach(north99) #dataset for regression 
#fit the model: 
yldyear.err.99<-errorsarlm(yield~P+K+Prof+Plan+Spi+Cti+Ang,queen99.wt) 
#get adjusted residuals for variogram computation: 
res.err.99<-resid(yldyear.err.99) 
The residuals obtained from spdep correspond to the error term ξ in (5) and are thus already 
adjusted for the resulting spatial structure imposed by W. 
 

4.2. Results and discussion 
The consistency in the parameter estimates of (7) obtained from OLS, SAR-error or direct 

covariance representation was largely dependent on the year under analysis (Table 1). 
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Noticeably, the OLS estimates did not differ significantly from the estimates by the other 
methods for any of the explanatory variables in year 1999, but considerable differences were 
observed among them for 2001. Specifically, P 01 under OLS is significant at p<0.001 but non-
significant under all of the other spatial approaches, while both curvature variables change from 
non-significant to significant and negative, and the opposite occurs with SPI and CTI. Our 
interpretation of this result relies in the fact that the spatial structure for the OLS residuals 
(Figure 3) for 1999 is much lower than that for 2001, as evidenced by a higher nugget/sill ratio 
(0.38 vs. 0.14) and a shorter correlation range (70 vs. 120 m) for the first year. Consequently, the 
departure of the structure in V from σ2I  is larger for 2001 than for 1999,  thus  has a 
stronger influence in the computed   for 2001 when these are based in EGLS of the form 
(3). The distinct spatial structure of residuals between years can be explained at least in part by 
the contrasting rainfall amounts between years. During the 1999 cropping season, rainfall was 
considerably higher than for 2001 (600 vs 411 mm for the period April-August), most of this 
difference being concentrated early in the season where water excess has a strong negative effect 
on plant establishment and growth. This might explain the higher influence of topographical 
variables in yield variation in 1999 versus that in 2001 as expressed by the significantly larger 
(p<0.01) absolute values in the regression coefficients for the first year.  Thus, a larger part of the 
spatially structured variation in grain yield was explained by the variables X in 1999 than in 
2001, implying that for this last year the influence of spatially dependent explanatory variables 
omitted from the model, likely unrelated to topography, was included in the residual term.  

1ˆ −V
β̂

Both spatial approaches appear to have eliminated most of the spatial structure in ε compared 
to that in the unadjusted values, as shown by the experimental semivariograms in Figure 5. The 
residuals for the SAR-error methods seem to show a slight spatial structure with a short range, 
but this is still considerably lower than that for the OLS residuals. As a result, the parameter 
estimates obtained in all spatial approaches to regression are somewhat consistent, and do not 
show appreciable differences among them.  

It is conceivable that the high degree of multicollinearity present in the variables in X might 
have an influence on the observed outcome from our comparison. To verify this, we ran a similar 
analysis using a set of orthogonal variables obtained by a principal components transformation 
on the original set. While these results are too extensive to be included in this paper, we do 
confirm that the degree of consistency among methods and years we found for this case was 
equivalent to that reported for the original variables. While for this example the results from 
different spatial methods appeared to agree, a more general and informative approach to compare 
them under conditions similar to those in this analysis was pursued. 
 
5. A more general empirical comparison: Monte Carlo simulation  

5.1. Generation of spatial random fields 
 The steps for this part of the analysis were: 

1) Generate n values for three mutually independent, spatially structured random variables 
in a field of dimensions nn × . Call these vectors X1, X2 and ε. 

2) Generate a dependent variable y by combining the vectors from the previous step in a 
model of the form: y=βo+β1X1+β2X2+ε. 
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3) Fit a linear model y=f(X1,X2) and estimate β0,β1 and β2 by OLS, direct covariance 
representation and SAR-error, using different structures for V and W to evaluate the 
consequences of a misspecification in the correlation structure on the estimation results. 

4) Save the output from 3 and return to 1, repeat the sequence s times. 
 

The spatial random fields from step 1 were generated in PROC SIM2D in SAS®, using  
LU (Cholesky) decomposition of the covariance matrix. In the past this method was usually 
recommended only for small grids of less than 100 points (Goovaerts, 1997), but our 
simulation of 441 points took less than 0.2 seconds per field in a PC with a Pentium 4 
processor. This was done for a square field where the minimum distance between 2 points 
was assigned an arbitrary value of 20 m. The spatial structure was based on spherical 
covariance models for the three variables, with mean and covariance parameters as specified 
in Table 2. The values chosen for the parameters in the model were : β0=10, β1=0.6 and 
β2=1.2, which together with the covariance parameters assigned to the variables would result 
in an adjusted-R2 of about 0.37, well within the order of those frequently found in the 
literature for regressions like the one performed in the previous section.  

This sequence was repeated 1000 times, thus resulting in an equal number of realizations 
of this hypothetical field. The corresponding 1000 regressions were fit in SAS® for the direct 
covariance representation with 4 different error covariance specifications: spherical-no 
nugget (true structure), spherical-nugget, exponential-no nugget and exponential-nugget. 
Similarly, the same data were fit under the SAR-error model using the same two 
neighborhood structures as in the previous section.  

  
5.2. Simulation results and discussion 

In agreement with theory, the empirical distribution of  under OLS showed by far the 
largest standard errors among the three approaches (Figure 6).  Furthermore, the incorrect OLS-
based estimated standard errors for each run grossly underestimated the one derived from the 
empirical distribution (Figure 8). Interestingly, among the spatial approaches the d50 structure 
resulted in standard errors considerably larger than the rest (Figures 6 and 8). The empirical 
standard error of β

β̂

1 for d50 was equal to 0.08, whereas those for all other spatial models were 
between 0.054 (spherical no nugget) and 0.06 (queen). Similarly, for  the standard error of 
d50 was 0.09 while for others ranged between 0.064 (spherical no nugget) and 0.07 (Queen). 
This is likely due to the poor representation of the true covariance values at short ranges below 
40m that results from the d50 specification as shown in Figure 2 for a specific point in the grid. 
Although the true covariance structure was a spherical with no nugget, all other geostatistical 
models evaluated and the SAR-error based on a Queen structure yielded very consistent 
estimates, with R

2β̂

2 of about 0.99 for the regression of the 1000 parameter estimates from any of 
them against those from the spherical-no nugget model. When a nugget was specified, the values 
for this structure estimated by REML were never higher than 0.6 and averaged 0.1 and 0.005 for 
the spherical and exponential models, respectively, even though the initial value for the iterations 
was set at 1 in the parms statement in SAS®.   
 Finally, an intuitive idea of the practical significance of the differences mentioned above 
can be given by expressing the fraction of estimates in each empirical distribution that were 
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beyond an interval of + 15% of the true value for that parameter. That is, within the range 0.51-
0.69 for β1 and 1.02-1.38 for β2. For the first parameter, only 55% of all OLS estimates were 
within this range, followed by SAR-error d50 where this fraction was 72%. For the other spatial 
methods, the values were considerably larger, ranging from 86% (Queen) to 90% (spherical-no 
nugget). In the case of β2 these differences were not as important due to the ratio standard 
error/parameter value being 1.8 smaller to that for β1. For OLS and d50 the corresponding 
fractions of the estimates within the mentioned range were 84% and 95%, respectively, whereas 
for the other models these values were above 99%.   
 
6. Conclusions and summary 
 Our example of a regression analysis similar to those performed in precision agriculture 
research made evident that large inconsistencies are possible between OLS-based estimation and 
any other method that accounts for correlation in the residuals. In particular, all methods were 
fairly consistent when the residuals presented a correlation range of only about 70 m and a 
nugget/sill ratio close to 0.4, but significant differences between both approaches resulted when 
the range was in the order of 120 m and the nugget/sill ratio was about 0.15. Under this last 
situation the parameter estimates from the spatial approaches did not show significant differences 
among them from either statistical or practical standpoints. This was in accordance to the 
suggestion given by Zimmerman and Harville (1991) about the use of geostatistical models, and 
the results obtained by Lambert et al. (2002) in a comparison of geostatistical approaches vs. 
SAR-error. Moreover, the Monte Carlo simulation exercise showed that differences of practical 
relevance were certainly likely between OLS and the other spatial approaches, but within this 
last group only SAR-error d50 was an evidently inferior specification compared to the rest, for 
the particular simulation model we chose. It seems important then to correctly specify the 
neighbor structure for the SAR-error model in order to obtain appropriate estimates and standard 
errors. 

Further explorations into the comparative performance of these methods will involve the 
simulation of spatial random fields with a variety of spatial structures in the error, ranging from 
situations with short correlation ranges and high nugget/sill ratios to more spatially continuous 
patterns. This would provide a better illustration of the situation observed in our example, where 
in one of the years the effect of the spatial correction appear negligible while in the other this had 
a strong influence.  
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Figure 1. Representation of two possible neighborhood structures for W in the SAR-error model. a. distance-based 
criterion, using a 50-m radius around the central point. b. queen criterion. Neighbors (grey-filled circles) and non-
neighbors (empty circles) are defined relative to the central point (square). In this case, W would be a 49 x 49 
matrix. If we number the points 1to 49 from left to right and up to bottom the central point is assigned number 25, 
corresponding to the 25th column. The values for this column in a non row-standardized version of W are shown to 
the right of each graph. Notice that point 25 itself is assigned a value of 0. 
 
 

 
Figure 2. Covariance values between pairs of points at increasing separation distances. The values for the two 
geostatistical models apply to any point in the field, but those for the SAR-error models are specifically computed 
relative to the central point in a 21 x 21 regular grid in a field, or equivalently correspond to the 221th column in the 
matrix V. Due to the induced heteroscedasticity in the SAR-error model, covariance values for other points would 
differ slightly from the ones shown here.   
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Yield 1999      Yield 2001                   Soil sample grid (P & K) 

  

 
Elevation data        Grid 20m x 20m 

 
Figure 3. Data used in the example on regression application to precision agriculture: Grain yield for both years, 
soil sample grid and CTI map overlain onto the topographical relief surface. The arrows represent the operation of 
ordinary kriging to a common point grid. The support used in the spatial estimation was approximately the same for 
all datasets. 
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Figure 4. Experimental semivariograms of OLS residuals for both years, with corresponding spherical models 
(dotted line) fitted to them. 

Effect beta s.e. p-val. beta s.e. p-val. beta s.e. p-val. beta s.e. p-val. beta s.e. p-val.
Intercept 99 528.6 39.06 <.001 569.7 50.93 <.001 559.4 48.48 <.001 549.0 52.10 <.001 531.6 50.20 <.001
P 99 0.60 0.25 0.02 0.64 0.40 0.11 0.53 0.38 0.16 0.62 0.41 0.13 0.59 0.37 0.11
K 99 -0.28 0.07 <.001 -0.32 0.11 0.00 -0.32 0.11 0.00 -0.30 0.12 0.02 -0.29 0.11 0.01
Prof 99 -283.7 79.20 0.00 -265.8 79.64 0.00 -261.8 78.98 0.00 -251.4 76.56 0.00 -276.6 80.43 0.00
Plan 99 -337.0 47.57 <.001 -363.0 48.04 0.00 -342.6 47.71 0.00 -341.1 45.88 <.001 -344.2 48.36 <.001
Spi 99 1.10 0.54 0.04 1.93 0.59 0.00 1.76 0.58 0.00 2.03 0.57 0.00 1.67 0.56 0.00
Cti 99 -20.46 3.87 <.001 -25.02 4.36 0.00 -23.12 4.17 0.00 -22.65 4.38 <.001 -20.79 4.52 <.001
Ang 99 5.81 1.50 0.00 6.77 1.78 0.00 6.58 1.67 0.00 5.84 1.78 0.00 5.97 1.88 0.00

Intercept 01 179.7 31.72 <.001 330.1 46.32 0.00 358.8 45.66 0.00 298.1 42.92 <.001 339.9 55.85 <.001
P 01 1.08 0.20 <.001 0.14 0.39 0.72 0.08 0.34 0.80 0.59 0.39 0.14 0.31 0.51 0.55
K 01 -0.12 0.06 0.04 -0.24 0.13 0.06 -0.35 0.11 0.00 -0.24 0.12 0.06 -0.29 0.17 0.08
Prof 01 36.4 64.32 0.57 -86.2 47.75 0.07 -130.0 49.58 0.01 -97.9 39.66 0.01 -96.0 47.02 0.04
Plan 01 3.95 38.63 0.92 -93.4 28.86 0.00 -103.4 30.07 0.00 -83.0 24.22 0.00 -87.8 28.12 0.00
Spi 01 0.98 0.44 0.03 -0.25 0.37 0.50 -0.48 0.37 0.20 -0.07 0.30 0.82 -0.01 0.36 0.97
Cti 01 10.35 3.14 0.00 -0.02 2.80 0.99 2.12 2.74 0.44 1.51 2.47 0.54 -0.38 2.91 0.90
Ang 01 1.17 1.22 0.34 1.86 1.16 0.11 1.42 1.10 0.20 2.24 0.98 0.02 1.74 1.19 0.14

DCR (REML)OLS SAR-error Queen SAR-error d 50 DCR (noiter)

 
 
Table 1. Regression parameter estimates, standard errors and p-values for OLS, SAR-error and direct covariance 
representation (DCR) corresponding to model (7) for both years.  Shaded parameter estimates are those showing the 
largest absolute differences with OLS parameter estimates. .  
 

 
Figure 5. Experimental semivariograms of residuals for 1999 (left) and 2001 (right). DCR: direct covariance 
representation. ‘Unadjusted’ corresponds to OLS residuals. The sills for the 4 variograms have been shifted 
vertically to allow for a better comparison of the spatial structure among the 4 cases.  
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µ σ0
2 σs

2
a

X 1 5 0.5 2 80
X 2 5 0 1.4 50
ε 0 0 0 70  

Table 2. Mean and covariance parameters used to generate the spatial random fields for the Monte Carlo simulation. 
  

 
Figure 6. Empirical distributions of the estimates for β1 (left) and β2 (right) for the 1000 simulated spatial random 
fields.  The dashed vertical line represents the true value for each parameter. 
 
    
 

 
a                                      b                                  c      d   
 

Figure 7. Scatterplots for estimates of β1 at each of the 1000 simulations obtained with the true V structure 
(spherical., no nugget) against those estimates obtained with alternative specifications. a: SAR-error d50  b. SAR-
error queen. c. Exponential-no nugget. d. Spherical-nugget. 
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Figure 8. Distributions of the reported standard errors for β1 (left) and β2 (right) for the 1000 simulated spatial 
random fields.  The vertical lines represent the standard errors computed from the empirical distributions of each 
parameter shown in Figure 6. 
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