
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2004 - 16th Annual Conference Proceedings 

AN EXAMPLE OF DEVELOPING COVARIATES FOR PROBLEMS IN AN EXAMPLE OF DEVELOPING COVARIATES FOR PROBLEMS IN 

PRECISION AGRICULTURE PRECISION AGRICULTURE 

D. W. Meek 

J. W. Singer 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Meek, D. W. and Singer, J. W. (2004). "AN EXAMPLE OF DEVELOPING COVARIATES FOR PROBLEMS IN 
PRECISION AGRICULTURE," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/
2475-7772.1165 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansas State University

https://core.ac.uk/display/267195724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2004
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1165
https://doi.org/10.4148/2475-7772.1165
mailto:cads@k-state.edu


AN EXAMPLE OF DEVELOPING COVARIATES FOR PROBLEMS IN PRECISION
AGRICULTURE

D.W. Meek and J.W. Singer
USDA-ARS-MWA-NSTL
Ames, IA 50011-4420 USA

Abstract

Methodology for precision agriculture is, perhaps, too focused on methods that allow for
spatial correlation in the ANOVA error term.  While sound inference about differences between
local yields can be computed, no understanding of what is driving these differences is achieved. 
A completely general form for a spatial model can include suitable covariates.  Most research in
precision agriculture includes gathering a variety of site-specific information.  Through the
presentation of the analysis of data from a published soybean [Glycine max (L.) Merr.] study, one
specific type of covariate is developed - a duration index for soybean canopy light interception
over the growing season.  The relationship of the index to grain yield is reasonably well
determined (R² = 0.82).  We, therefore, suggest that the quest for modeling an appropriate
covariate or covariates is primary.  Treating spatial variation by other methods should only be
used when the quest has failed.

Key Words: mixed-model, nonlinear regression, repeated measures, segmented regression,
weighted least-squares.

1. Introduction

Research in precision agriculture is making use of many technologies that provide increased
geo-referenced, site-specific information throughout the growing season.  Specific measurements
or quantities derived from them can be related to the corresponding geo-referenced yield data
(see e.g., Kaspar et al., 2004; Kravchenko and Bullock, 2000; or Timlin et al., 1998).  Coordinate
data with elevation from global positioning systems (GPS) with the aid of geographic
information system software (GIS) are often used to develop digital terrain characteristics like
slope, curvature estimates, and surface form characterization.  Selected soil properties and type
are characterized.  In situ sensors and remote sensing data can be used to continuously or
periodically monitor selected environmental variables and plant responses.  Reduced negative
environmental impacts and farming costs are among the goals of these research efforts.

Ideally the analysis of results from a precision agriculture experiment should provide the
insight to make practical farm management decisions.  Currently, there are a multitude of
methods employed for the analysis of data for published precision agriculture experiments; they
range from spectral analysis (e.g., Timlin et al., 1998) to mixed models with multivariate
covariates and spatially dependent error structure (e.g., Kaspar et al., 2004).  The basic statistical
methodology for the latter reference is given in Example 9.6.2 in Littell et al. (1996).  The data
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for their example are from a published wheat yield trial with 56 varieties (Stroup and Baenziger,
1994).  While the design structure was a randomized complete block with four blocks, the field
was known to have irregular fertility gradients.  The goal was to select the best yielding varieties. 
The conventional analysis of variance identified selections that did not make sense to the
research agronomist.  The reworked example presents a random field analysis alternative that
uses a mixed model with a spherical spatial covariance error structure.  No alternatives were
considered like developing covariates for fertility level, fertility gradient or trend, or seasonal
nutrient uptake.  While this analysis allows the researchers to make a reasonable probabilistic
selection, it does not provide any insight into why there are spatial differences.  In precision
agriculture such insight is primary (see e.g., Milliken et al., 2004).  Many of the multiple
covariates, especially the geographic coordinates or landscape properties derived from them, are
often used as surrogates to adjust for differences in yield response due to well-known but
complicated overall seasonal uptake or utilization processes driven by spatial differences in
ambient environmental variables like water and nutrients, solar radiation, etc.

Nelsen and Palmquist (2004) have challenged statisticians to develop new tools for this kind
of research.  While there are excellent examples of an analysis for an agronomic trial that is
greatly improved with the addition of a simple plot level covariate (see e.g., “Brussells sprouts
yield data“, problem 1 in Chapter 10 of Mead, 1990), the information on developing suitable
covariates is sparse and scattered.  In precision agriculture one type of covariate of interest is
some measure or index that characterizes the duration for a specific variable measured over the
growing season (i.e., a plot level repeated measurement).  Ideally an example comparing the
conventional spatial ANOVA to pure covariate analysis is in order.  Unfortunately a suitable data
set from a precision agricultural experiment is not presently available to us.  Hence, in this note,
the development of one kind of duration index covariate is presented to demonstrate the
approach.  It is for plot level light interception from a published experiment.  The resulting
relationship with yield is then developed.

2. Data and Methodology

2.1 Dataset Background

The example comes from Singer and Meek (2004).  A 2-yr study evaluating biomass removal
in no-tillage soybean was conducted in 2000 and 2001 on a Quakertown silt loam soil (fine-
loamy, mixed, mesic Typic Hapludult) at the Rutgers University Snyder Research and Extension
Farm near Pittstown, NJ (40º 30’ N, 75º 00’ W, elevation 170 m a.s.l.).  In this note only the first
year data are used.  A three-way treatment structure was arranged in a split-split-plot randomized
incomplete block design.  There were four replications.  The main factor was indeterminate
soybean variety, either Pioneer Brand ‘93B53’ or Agway ‘APK394NRR’.  Please note that the
mention of a trade name is for informational purposes only and does not imply an endorsement
by the USDA-ARS.  The first split was three row spacings, narrow (20 cm), intermediate (41
cm), and wide (76 cm).  The second split was no biomass removal (control) and biomass removal
at specific growth stages (V1+V3+V6, V6+R1, R1+R4+R6, and V1+V3+V6+ R1+R4+R6 where
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“V” designates vegetative stages and “R” reproductive stages (Ritchie et al., 1994)).  In this note
‘treatment’ refers to the unique combination of the three factors.  The treatments are applied to
the smallest experimental unit, formally referred to as a ‘sub-subplot’ of the design; for brevity
an ease of reading the term ‘plot’ is used, hereafter, in this note.  Soybean was planted using no-
tillage techniques on May 16 at 518,700 seeds ha  using a no-tillage drill in the narrow and-1

intermediate row spacings, and a no-tillage planter in the wide row spacing.  In the published
grain yield analysis, all factors were significant (all P < 0.01) with the biomass removal having
the greatest variability.

Our objective is to present an illustrative method example for precision agriculture research. 
Here grain yield (g m ), the dependent variable, and light transmittance data (as a fraction of-2

incoming), the raw data for the covariate, for a selected subset are used in our example.  There
are potential problems in using data from this design for our objective - we will present and
discuss them as they arise.  The soil in this field experiment is considered to be reasonably
uniform and the land surface has little relief.  The biomass removal treatment here obviously
forced both large differences in yield (the dependent variable), leaf area and growth, and hence
light interception (the basis for the independent variable).  Only data for one variety (‘93B53’)
and one row spacing (20 cm) are considered in order to avoid possible negative correlations with
adjacent plots and response differences due to the other factors.  These data can, for our purpose,
be used as surrogates for yield differences from a single crop that could be found in a larger area
that has greater relief which, in turn, could be driven by well-known light interception and
nutrient utilization differences (see e.g., Monteith and Unsworth, 1990).  So, for our illustrative
purpose, we will ignore the biomass removal treatments and, thus, can consider the yield
variability to be environmentally driven.  Relevantly we also do not consider possible spatial
autocorrelation in the yield or covariate because plot coordinates were not recorded.  Keitt et al.
(2002) have shown that these considerations can be of considerable consequence in an analysis. 
In this experiment, unfortunately, within each block the biomass removal treatments were all
contiguous because the treatment was implimented in the last split.  In the future, when suitable
data sets from precision agricultural research become available, a comparison of approaches with
more thorough analysis can be performed.

2.2 Covariate Development

Candidate covariates can be initial, midseason, final level of an environmental variable or
time response curve parameters (or estimates derived from them) for one or more selected
repeated measurements (see e.g., Davidian and Giltinan, 1995 or 2004).  They can also be a total,
a restricted accumulated value, or scaled version of either (e.g., growing degree days).  Formally
such an estimate can involve evaluating a time integral for the selected measure (see e.g., Meek
and Singer, 2004).  This type of estimate may characterize the exposure to or persistence of an
ambient condition over the period of study.  Many variables can be scaled to an index ranging
from 0 to 1.  In Singer and Meek (2004) a light transmittance index was defined along with a
duration index for it.  In brief, let L(t) be the light interception as a fraction of daily total
incoming photosynthetically active radiation (PAR) on day, t.  The corresponding transmittance
is then, T(t) = 1 - L(t).  Then the duration index is the definite integral of T(t) over the period. 
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For actual estimation a trapezoidal rule can be used instead of developing a regression model first
then integrating the curve (Meek and Singer, 2004).  Although T(t) was considered in Singer and
Meek (2004), for the purpose of this simple illustration, we really only need to consider L(t).

Formally we denote this light interception duration index as X, where X is given by Eq. [1]:

Final day                                                                                                      

X = I L(t) dt                                                                                 Eq. [1].
Starting day                                                                                                  

That is X is the definite integral of L(t) over the sampling period for the season, P (here in days,
with P = Final day - Starting day).  Hence X is in days and it can be interpreted as the equivalent
number of days that L(t) = 1.

A times series graph is provided that shows the L(t) seasonal behavior for one selected plot. 
Only one is presented for brevity, so summary statistics for the X estimates over all plots are then
provided.  Finally a grain yield (Y) relationship with X is developed with a weighted least
squares procedure.  The SAS® system version 8.2 (SAS® Inst. Inc., Cary, NC) was used to
conduct all the analyses.  The NLIN procedure is used to develop the model.  Multiple
performance and diagnostic statistics are considered.  A 95% confidence band for the predictions
is constructed with the L95 and U95 estimates.  Spatial dependence in either the error or the
covariate are not considered because, as previously noted, coordinate data for the plots were
unavailable.

3. Results and Discussion

Fig. 1 shows L(t) data for a selected soybean plot; here the X estimate was 73.0 d.  The
treatment here did not reduce leaf area as much as for most of the other plots, so soybean
intercepted most of the incoming light once it produced sufficient leaf area.  Many of the
treatments reduced leaf area and therefore light interception.  The median treatment response was
X = 67.5 with values ranging from 56.1 to 75.6 d.  Fig. 2 shows the relationship of the plot grain
yield (Y) with the corresponding X’s over all plots (data are listed in Table 1); notice we selected
a weighted nonlinear model (a line only results in R  = 0.78).  Here the R  definition used is 1 -2 2

weighted error sum of squares over the weighted corrected total sum of squares.  The join point
is fit not fixed.  The selected weight is 1/Y.  One can ask, what would an additional or other$

covariate do?
Selecting or developing an appropriate covariate may not be a simple or easy task. Ideally, of

course, a covariate should be directly causal, i.e., the response is a function of the cause and a
pure regression model that readily meets the i.i.d. assumptions suffices.  Although, in practice we
may not get there, it is the goal we want to pursue.  In a biological or environmental science, the
cause may not be known.  Alternatively, causes may be known but they are either one or both
indirect and complex in nature.  Working closely with the researcher can help.  Moreover,
statistically there may be challenges.  Commonly, covariates are treated as linear terms.  As
shown in this example and others (see e.g., Mowers et al., 1981), the yield response is better
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modeled with a nonlinear function of the covariate.  Also, as discussed on p. 107, Appendix B, in
Mowers et al. (1981), the covariate may have significant measurement error; thus appropriate
measurement error estimation procedures may need to be employed.  Recall, also, that Keitt et al.
(2000) found that spatial dependence in the covariate influences the analysis.  In a more than one-
way design, the different treatments need to be considered.  In principle the same general
approach can be employed.

4. Summary

Although the data set is not ideal, the example presents an approach for the analysis of data in
precision agriculture.  The need to carefully and appropriately consider covariates is emphasized. 
If underlying assumptions are reasonable, a suitable model results and at least some
understanding of what is driving the yield differences is in hand.  So let us look for and try to
determine a meaningful covariate or covariates first and expect that the procedure may not be
simple or linear with respect to the yield response.  The covariate, itself, may have both
significant measurement error and spatial dependence.  To best do the job we should work
closely with the agronomic researchers because they have relevant knowledge and ideas about
covariates.  Each of these considerations is, in principle, tractable.  Use methods with a pure
spatial covariance error structure as a last resort.  This approach could lead to some interesting
and useful modeling.
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Table 1. Yield and index data shown in Fig. 2     
Index     Yield

                   g m—2

56.06      110.0
57.54        52.8
58.89      119.8
60.53      110.4
65.13      155.6
65.86      153.2
65.92      304.2
65.96      387.4
66.92      186.4
68.08      371.7
68.26      449.9
70.26      183.0
70.57      558.9
70.85      528.6
71.62      546.2
72.73      650.0
73.00      573.0
73.45      391.9
73.61      641.8
75.57      628.2
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Figure 1. Seasonal time series of soybean canopy light interception in a selected treatment.
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Figure 2. The soybean grain yield response curve.  Results for the weighted two-phase linear
regression model are summarized in the upper left (gray text).  The black dots show the data, the
black solid line shows the model predictions, and the light gray band shows the 95% confidence
limits for the predictions.
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