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ANALYZING BINOMIAL DATA IN A SPLIT-PLOT DESIGN: CLASSICAL APPROACHES 
OR MODERN TECHNIQUES?  

 
Liang Fang and Thomas M. Loughin 

Department of Statistics, Kansas State University, Manhattan, KS 66502 
 
ABSTRACT: Binomial data are often generated in split-plot experimental designs in 
agricultural, biological, and environmental research. Modeling non-normality and random effects 
are the two major challenges in analyzing binomial data in split-plot designs. In this study, seven 
statistical methods for testing whole-plot and subplot treatment effects using mixed, generalized 
linear, or generalized linear mixed models are compared for the size and power of the tests. This 
study shows that analyzing random effects properly is more important than adjusting the analysis 
for non-normality.  Methods based on mixed and generalized linear mixed models hold Type I 
error rates better than generalized linear models. Whole-plot tests tend to be conservative in 
some cases, but these tests can be improved by removing the lower bound of zero from variance 
parameter estimation or by increasing the number of whole-plot replications. Mixed model 
methods tend to have higher power than generalized linear mixed models when the sample size 
is small. However, they perform equally well as the sample size becomes large. 
 

1. INTRODUCTION 
 

Binomial data are often generated in split-plot experimental designs in agricultural, 
biological, and environmental research (Milliken and Johnson, 1992). For example, in 
entomology, mortality of insects treated with pesticides is measured on wheat of different 
moisture contents under each of several different temperatures, where chambers are set at 
different temperatures and pesticides are assigned to containers within the chambers (Fang et al., 
2003). In agriculture, germination rates are observed for different types of spores under several 
levels of temperature, where temperature is the whole-plot factor and spore type is the subplot 
factor (Huang et al., 2001).  

To analyze the data from these experiments, we are confronted with two challenges: non-
normality and random effects. No method of analysis proposed to date provides an exact solution 
to this problem.  Mixed model methods are standard ways to analyze split-plot designs, but they 
assume sampling from a normally-distributed population. Transformations are often used with 
the mixed models to stabilize the potentially heterogeneous variances due to the binomial 
sampling (Zar, 1999), but the transformed data are then assumed to have been sampled from a 
normal population. Additional techniques have been developed that can model non-normal data 
directly and are available to general users in popular statistical software packages. Generalized 
linear models are widely used to analyze binomial data (Agresti, 1996), but they contain no 
mechanism for modeling random effects, and tests from these models are based on asymptotic 
approximations that may not be adequate in typically-sized biological experiments. Generalized 
linear mixed models can analyze binomial data with random effects (Collett 1991, Cox and Snell 
1989), but tests from these models are also based on asymptotic approximations, and their small-
sample properties are not well understood. Thus, all methods of analysis involve some sort of 
approximation.  
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A similar problem occurs when we try to analyze Poisson-distributed count data in a 
split-plot experiment. Grossardt (MS report, 2003) studies Type I error rates of eleven methods 
for analyzing count data in split-plot designs and finds that mixed model methods and the 
generalized linear mixed model method maintain Type I error rates better than generalized linear 
model methods that have no mechanism to account for random effects. Beckman and Stroup 
(2003) and Sui and Stroup (2001) compare five methods for analyzing binomial or multinomial 
data in repeated measures experiments where the issues of non-normality and correlated 
measurements occur. They find similarly that the classical mixed model approach performs 
better than methods based on the generalized linear and generalized linear mixed models. 

Among all the methods above, the mixed model method with an angular or Freeman-
Tukey transformation is widely used by non-statistical researchers in many disciplines, due to its 
simplicity and long-time existence. The methods with generalized linear or generalized linear 
mixed models are drawing a lot of attention recently because they are now available in popular 
statistical software. More and more consulting statisticians recommend these “new” methods to 
researchers (Garrett et al., 2004); however, to our knowledge, no comprehensive study has been 
done to assess and compare these methods and ensure that these new methods are, indeed, 
improvements over their classical counterparts. 

The objective of this article is to compare various popular methods of analysis for 
binomial data from split-plot designs and to provide immediate and practical suggestions to the 
readers. A simulation study is designed to study the Type I error rates and power of the whole-
plot, subplot, and interaction tests. In a preliminary study, seven factors that may affect rejection 
rates of these tests are studied and screened for a thorough follow-up study. The follow-up study 
with selected factors and methods provides a more thorough investigation of Type I error rates 
and power of the tests. General recommendations are made at the end of the article.  

 
2. MODELS AND METHODS 

 
Suppose that N binomial trials are observed on each experimental unit in a split-plot 

design, and let Yijk represent the count of successes from the subplot unit receiving subplot 
treatment j in the kth whole-plot unit receiving whole-plot treatment i. i = 1, 2, …I; j = 1, 2, …J; k 
= 1, 2, … K.  Let πijk represent the corresponding probability of success.

Three types of models are used in the study: 
a. Mixed model: Yijk = λ0 + λw

i + wk(i) + λs
j + λws

ij + sjk(i)  
b. Generalized linear model: Yijk ~ Binomial (N, πij), log (πij/(1- πij)) = λ0 + λw

i + λs
j + λws

ij   
c. Generalized linear mixed model: Yijk ~ Binomial (N, πijk), log (πijk/(1- πijk)) = λ0 + λw

i + 
wk(i) + λs

j + λws
ij + sjk(i) 

In each model, λ0 is the intercept; λw
i is the whole-plot effect for whole-plot treatment i; λs

j is the 
subplot effect for subplot treatment j; λws

ij is the interaction of the ith whole-plot and jth subplot 
treatment; wk(i) is a random error associated with unit k of whole-plot treatment i; and sjk(i) is a 
random error associated with the unit receiving subplot treatment j on whole-plot unit k(i). The 
whole-plot and subplot errors are independent of each other and each has an identical and 
independent normal distribution with mean zero and variance σ2

w and σ2
s respectively. Note that 

the interpretation of all parameters depends on the context of the model in which they appear. In 
Model (a) they are direct effects on the counts, while in (b) and (c) they are effects on the log-

226 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/16



odds of success. In all cases, it is assumed that all binomial counts are based on the same number 
of trials, N, so that analysis of the counts is equivalent to analysis of the proportions.  
 Derived from the three models, there are seven analysis methods studied in this article: 

1) Mixed model (a) with original data as response (MIXED) 
2) Mixed model (a) with angular-transformed binomial data as response (MIXEDT) 
3) Generalized linear mixed model (c) (GLMM) 
4) Generalized linear model (b) without random effects using Type III likelihood ratio tests 

(GLM) 
5) Generalized linear model (b) without random effects using Wald tests (GLMW) 
6) Generalized linear model (b) without random effects and with overdispersion adjustment 

(GLMO) 
7) Generalized linear model (b) with random effects represented by correlated subplots 

(GLMGEE) 
These methods represent a wild range of popular or recommended analysis approaches for split-
plot designs and binomial data.  

All computations are done using SAS®.  PROC MIXED is used to implement the mixed 
model methods. The generalized linear mixed model (GLMM) is fitted with the GLIMMIX® 
macro that is available on the SAS® website (McCulloch 1996). The generalized linear model 
methods are implemented with PROC GENMOD. Type III likelihood ratio tests and Wald tests 
are available to test the treatment effects in GENMOD. The GLMO method uses Pearson scaling 
(Agresti, 1996) in an effort to adjust for the overdispersion likely to result from the failure to 
model the random effects. As an alternative to modeling the random effects directly, one can 
model the correlated subplot units as repeated measures with a compound symmetry covariance 
structure.  Model fitting and testing are done using the generalized estimating equations approach 
of Liang and Zeger (1986) and achieved in SAS® using the REPEATED statement in the 
GENMOD procedure.   Only Wald tests are available with this analysis in SAS®. 

 
3. SIMULATION STUDY 

 
An initial screening experiment is done to identify factors that influence the type I error 

rates of the various analysis methods and to determine which methods are robust in the sense of 
holding their type I error rates under varying circumstances.  Follow-up studies are done to 
further quantify the effects of important factors and to explore the extent to which sample sizes 
and small mean counts affect the methods.  Finally, power is assessed for those methods that 
satisfactorily hold their type I error rates. 

 
3.1 GENERATE BINOMIALLY DISTRIBUTED DATA FOR THE TYPE I ERROR 
RATE STUDY 

Assuming the whole-plot structure of the experiment is a completely randomized design, 
a plausible model for binomial data in a split-plot design is that the response Yijk ~ Bin(N, πijk), 
where πijk is generated from a logit-linear model of the form 

log (πijk /(1- πijk)) = λ0 + λw
i + wk(i) + λs

j + λws
ij + sjk(i)   (3.1) 

where all terms are defined as in the models of the previous section. The terms of λw
i, λs

j, and λws
ij 

are set to be zero in the study of Type I error rates, and set to selected values for the study of 
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power (see Section 3.5). The whole- and sub- plot errors, wk(i) and sjk(i), are simulated from 
normal distributions N(0, σ2

w) and N(0, σ2
s) respectively, using the SAS® RANNOR function. 

The SAS® RANBIN function is used to simulate the binomial data Yijk’s, i = 1, 2, …I; j = 1, 2, 
…J; k = 1, 2, … K. For each combination of study factors, the data are simulated 1000 times.  
 
3.2 A PRELIMINARY STUDY OF TYPE I ERROR RATES 

The seven factors studied in the preliminary study are either directly or indirectly 
involved in the F or Chi-square tests or in the data simulation process. These factors and their 
chosen levels are listed in Table 1. The number of replications of each whole-plot treatment (K), 
number of whole-plot levels (I), and number of subplot levels (J), jointly determine the size of 
the data set. Levels of I, J, and K are chosen to represent typical “small” and “moderately large” 
agricultural experiments. 

Levels of λ0 in (3.1) must be chosen. When λi, λj, and λij are all zero, log(πijk/(1 – πijk)) ~ 
N(λ0, σ2

w + σ2
s). Thus, λ0 represents the median value of log(πijk/(1 – πijk)), and hence π = 

exp(λ0)/(1+exp(λ0)) represents the median value of the distribution of πijk. Levels of π are chosen 
to create both symmetric and skewed binomial distributions. 

Levels of N must be chosen as well. Because sample size considerations for chi-square 
tests are typically based on expected counts, N is set implicitly through the relation µ = Nπ, 
where µ is the median of the expected counts, Nπijk, generated by (3.1). Values of µ are chosen to 
represent cases where normal approximation to the binomial ought to be reasonable. Smaller 
values of µ are considered in Section 3.4. 
 The values of σ2

w and σ2
s in (3.1) also have little intrinsic meaning. Instead, σ2

w and σ2
s are 

controlled implicitly by specifying the amount of variation they impart on the generated data. 
Because Var (log (πijk/(1 – πijk))) = σ2

w + σ2
s, the interval λ0 + 1.96 22

sw σσ +  contains the central 
95% of the distribution of log (πijk/(1- πijk)). By transforming this interval, we get an interval that 
contains 95% of the distribution of πijk,  

   
)1(

1
22

0 96.1λ swe σσ ++−+
 , 

)1(

1
22

0 96.1λ swe σσ +−−+
    (3.2) 

Thus, the width of interval (3.2) is representative of the variability of πijk (and hence µijk = Nπijk) 
across experimental units, and therefore also influences the variability of the binomial counts. To 
specify σ2

w and σ2
s, the spread rate (s) of πijk is defined as amount of variation imparted to πijk by 

the random effects, expressed as a percentage of the median value π, 
   s = (half of width of interval (2.2) / π) * 100%   (3.3) 

To distinguish the relative amounts of whole-plot and subplot variation, the ratio, r, is defined as 
r = σ2

w / σ2
s        (3.4) 

 For each specified median probability of success (π), spread rate (s) and ratio (r), we can 
get the whole-plot and subplot variances, σ2

w and σ2
s, by jointly solving equations (3.3) and (3.4). 

Levels of s are chosen to represent relatively high and low overall variability and levels of r are 
chosen to allow variation in the relative sources of variability. The levels listed in Table 1 result 
in the values of σ2

w and σ2
s given in Table 2. 

 An initial simulation experiment is conducted to screen out factors that do not have an 
appreciable impact on the error rates, and also to identify which methods work consistently well.  
To keep simulation times reasonable, a fractional factorial experiment is designed based on all 

228 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/16



seven factors. The experiment has 16 runs and achieves resolution IV (Wu and Hamada, 2000), 
meaning in particular that all main effects are aliased only with three-factor and higher 
interactions. Observed Type I error rates for this experiment are in Table 3.  

The methods with mixed and generalized linear mixed models generally hold their Type I 
error rates well for all tests. However, for whole-plot tests, these methods tend to be 
conservative, especially when there are not many replications (K is at the low level). The 
methods with generalized linear models tend to be liberal for whole-plot tests, with estimated 
Type I error rates as high as 0.998 for uncorrected methods (GLM and GLMW), 0.66 for the 
overdispersion-corrected analysis (GLMO), and nearly 0.5 for the GLMGEE method. For 
subplot and interaction tests, the GLM, GLMW, and GLMGEE continue to be excessively 
liberal, while GLMO is somewhat better (all estimated Type I error rates < 0.094). The results in 
this study indicate that methods with mixed or generalized linear mixed models, where random 
effects are modeled directly, hold Type I error rates better than the methods with generalized 
linear models, which model non-normality but not random effects.  This finding is similar to the 
one found by Grossardt (2003) for analyzing Poisson data in a split-plot design, by Beckman and 
Stroup (2003) for analyzing binary repeated-measures data, and by Sui and Stroup (2001) for 
analyzing multinomial repeated-measures data. T-tests done to test the factor effects show that 
the main effects of µ, K, and s are possibly significant for the three methods that best maintain 
their error rates (MIXED, MIXEDT, and GLMM). Follow-up studies focus on the effects of 
these three factors on the MIXED, MIXEDT, and GLMM methods. 

In addition to the angular transformation, the Freeman-Tukey transformation is also used 
in the study. The results are very similar to those from the angular transformation and not 
reported here. Similarly, for the GLMGEE method, three different variance-covariance structures 
(unstructured, compound symmetry, and auto regression) are used in the study. Only the results 
of the method with unstructured variance-covariance matrix are reported here because others’ 
results are quite similar. 
 
3.3 A FOLLOW-UP STUDY OF TYPE I ERROR RATES 

In Table 3, an interesting result is observed that Type I error rates for whole-plot tests 
tend to be conservative when replicates are low, especially when combined with low expected 
counts or low spread rates. For binomial data, low counts mean low variability, which could lead 
to negative whole-plot variance component estimates in SAS® PROC MIXED. Even with high 
counts, negative estimates can result from having too little data to accurately estimate variance 
components.  SAS® handles this problem by setting the lower boundary of variance component 
estimates to be zero. Stroup and Littell (2002) note that this strategy makes the estimates realistic 
but induces a bias upon them, which leads to conservative whole-plot and liberal subplot tests. 
This is exactly what is observed in Table 3. They suggest removing the lower bound of zero to 
reduce bias and improve the tests. 

The percentages of zero estimates of the whole plot variance components in our 
simulation study are reported on Table 3. Runs 1-6, 8, and 10, where the conservative whole-plot 
and liberal subplot tests occur, have generally high percentages of zero estimates of the whole 
plot variance components. To assess the effect of this phenomenon on Type I error rates, a 
NOBOUND option is used to remove the lower bound of zero and the simulations are rerun. 
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Only the apparent significant factors, µ, K, and s, are studied at both high and low levels. The 
rest of the factors, π, I, J, and r, are fixed to be 0.25, 5, 5, and 1. 

After removing the lower bound on variance component estimates, all whole-plot, 
subplot, and interaction tests for MIXED, MIXEDT, and GLMM hold Type I error rates within a 
95% confidence interval of 0.05 (Table 4). Compared to the tests with the lower bound left intact 
(Table 3), this adjustment improves the tests’ ability to hold Type I error rates dramatically, 
especially for the whole-plot and interaction tests. All further simulations in this article are 
performed without the lower bound. 

 
3.4 TYPE I ERROR RATES WITH SMALL EXPECTED COUNTS 
 Normal linear mixed models assume sampling from normal populations, which is 
violated with binomial counts.  The quality of the normal approximation to the binomial depends 
on the expected count (Agresti, 1996).  For π ≤ .05, the closeness of the approximation 
deteriorates as µ→0.  The initial simulations are conducted under favorable circumstances (µ≥5) 
where the normal approximation might be expected to hold reasonably well.  To study the type I 
error rates of the selected methods under small expected counts, values of µ are reduced to 5, 2.5, 
1, and 0.5.  The numbers of whole-plot replications, K, are 3, 10, and 20 in expectation that the 
effects of small expected counts within a plot may be modified by increasing the number of 
plots.  Other factors (π, I, J, r, and s) are set to be 0.25, 5, 5, 1, and 0.1, respectively, and data are 
simulated as before. The observed rejection rates for this study are in Table 5. Mixed model 
methods (MIXED and MIXEDT) still hold Type I error rates close to 0.05 in all the simulations 
except one slightly low value of 0.035. GLMM tends to be conservative when µ is smaller than 
5, and the convergence rates drop as well. The trends are offset somewhat when the number of 
replications increases. However, when µ is extremely small (0.5), the tests are still conservative 
when the number of replications is increased to 20, which is higher than what is normally used in 
agricultural and biological experiments.  
 
3.5 A STUDY OF POWER 
 The power of the three methods (MIXED, MIXEDT, and GLMM) that hold Type I error 
rate properly is examined in this power study. The factors K, I, J, π, s, and r are fixed to be 3, 3, 
3, 0.25, 0.25, and 1 respectively. The median count, µ, is varied at the levels of 1, 5, and 100.  
The resulting numbers of binomial trials, N, are 4, 20, and 400 respectively.  
 Power functions and non-centrality parameters for hypothesis tests in split-plot designs 
are rather complicated. They are functions of the number of replicates, whole-plot levels, subplot 
levels, and sum of squares of the corresponding treatment effects (Kanji and Liu, 1984). 
Generally, however, they depend on the treatment effects only through the magnitude of the sum 
of squared deviations of the effects and not through the pattern of the effects. For convenience, 
we use the following patterns are used to incorporate the treatment effects in the study: 
 

(1) Whole-plot effects: λ, λ, -2λ 
 
(2) Subplot effects: λ, λ, -2λ 
 
(3) Whole by sub plot interaction effects: 
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Whole plot 
         1  2       3 
  Subplot 1 5.4 λ  0 - 5.4 λ 
    2    0  0       0 
    3 - 5.4 λ 0 5.4 λ 
 
The sums of squares of the whole and sub plot effects are 3*3*(λ2 + λ2 + (2λ)2) = 54λ2. The sum 
of squares of their interaction effect is 3*(( 5.4 λ)2 + ( 5.4 λ)2 + ( 5.4 λ)2 +( 5.4 λ)2) = 54λ2 
as well. The values of λ are chosen by “trial-and-error” to achieve a series of rejection rates that 
fit a smooth curve over the range from 0 to 1. For each of the tests, λ = 0 represents a study of 
Type I error rates, and λ > 0 represents a study of power. One thousand sets of data are simulated 
from Model (3.1) for each λ and µ combination in a similar way to the Type I error rate study of 
the previous sections. The rejection rate results are displayed in Figures 1.  
 Among the three methods tested, none of them stands out when µ is at least 5. The Type I 
error rates are controlled within the 95% confidence interval of 0.05. However, when µ = 1, the 
convergence rates of the GLIMMIX® macro drop down dramatically (most of them are less then 
50%) and all the tests tend to be very conservative. Therefore, no results of GLMM method are 
shown on the figures when µ = 1.  The MIXED and MIXEDT methods have exactly the same 
Type I error rates when µ=1.  
 

4. CONCLUSIONS 
 
In summary, the methods with mixed (MIXED and MIXEDT) and generalized linear 

mixed models (GLMM) can hold Type I error rates near a nominal .05 level most of time. The 
whole-plot tests tend to be conservative when the spread rate and median count are low, in other 
words, when median counts for all treatments in the experiment are low and close to each other. 
This difficulty can be overcome by increasing the number of whole-plot replicates in designing 
the experiment or removing the lower constraint on the mixed models’ variance component 
estimates in the analysis. Although this latter approach may lead to negative variance component 
estimates, all tests from MIXED, MIXEDT, and GLMM methods hold Type I error rates close to 
α. For GLMM method, tests become conservative when µ is smaller than 5. The GLIMMIX 
macro has serious convergence problems when the median count is smaller than 5 and the 
number of whole-plot replications is not large. Therefore, mixed model methods are preferred 
when a lot of small counts occur. The methods based on generalized linear models cannot hold 
Type I error rates appropriately and should not be used to analyze binomial data in split-plot 
designs.  

While this work demonstrates favorable performance of the classical mixed model 
approach, we should not rule out the new techniques completely. There are certain limits to this 
study. The binomial data in the study are simulated with Model 3.1. In real problems, if the 
mechanism that produces data cannot be represented adequately by this model, different 
conclusions might be drawn. Also, these simulations are conducted under the assumption that 
each experimental unit experiences the same number of binomial trials.  Possible future work can 
also be done to compare the methods under unequal N for each treatment combination. 
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Nonetheless, these results, along with those of Grossardt (2003), Beckman and Stroup (2003), 
and Sui and Stroup (2001) provide evidence to suggest that normal-based mixed model 
procedures are reasonably robust against deviations from normality. Also, it appears that proper 
modeling of random effects is much more important in an analysis than exactly matching the 
parent distribution of the data. 
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Table 1. Factor levels in the first set of simulations  
 
  Factor            Values 
 Mean number of successes (µ)    5  100 
 Probability of success (π)     0.1  0.5 
 Number of replications (K)     3  10 
 Number of whole-plot levels (I)    2  5 
 Number of sub-plot levels (J)    2  5 
 Spread rate (variability) of success probs (s)  10%  50% 
 Ratio of σ2

w/σ2
s (r)     0.25  4 
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Table 2. Whole- and sub- plot variances used in the first set of simulations 
    Probability of success Spread rate Ratio Whole-plot variance Sub-plot variance  
  π  s r σ2

w σ2
s

 0.1 0.1 0.25 0.00064 0.00257 
 0.5 0.1 0.25 0.00210 0.00839 
 0.1 0.5 0.25 0.01538 0.06152 
 0.5 0.5 0.25 0.06284 0.25134 
 0.1 0.1 4 0.00257 0.00064 
 0.5 0.1 4 0.00839 0.00210 
 0.1 0.5 4 0.06152 0.01538 
 0.5 0.5 4 0.25134 0.06284 
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Table 3. Factor level combinations and observed Type I error rates for the preliminary simulation study. 
 

K -                - - - - - - - + + + + + + + +
s -                - - - + + + + - - - - + + + +
µ - -               + + - - + + - - + + - - + +
π -                + - + - + - + - + - + - + - +
r -                + - + + - + - + - + - - + - +
I -                - + + + + - - + + - - - - + +
J -                + + - - + + - + - - + + - - +

run                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Method Whole-Plot Main Effect 
MIXED 0.015 0.009 0.015 0.031 0.029 0.017 0.038 0.025 0.037 0.039 0.040 0.043 0.054 0.051 0.047 0.049

MIXEDT 0.017 0.009 0.015 0.031 0.027 0.016 0.037 0.025 0.042 0.038 0.040 0.042 0.052 0.052 0.046 0.049
GLMM 0.016 0.008 0.016 0.031 0.024 0.015 0.037 0.025 0.038 0.034 0.040 0.043 0.054 0.050 0.048 0.048
GLM 0.048 0.063 0.176 0.309 0.237 0.358 0.751 0.621 0.073 0.063 0.102 0.148 0.151 0.202 0.904 0.998

GLMW 0.046 0.063 0.175 0.308 0.214 0.347 0.751 0.620 0.074 0.062 0.102 0.148 0.151 0.202 0.902 0.998
GLMO 0.067 0.067 0.083 0.155 0.139 0.128 0.351 0.117 0.067 0.062 0.066 0.098 0.097 0.101 0.092 0.663

GLMGEE 0.162 0.173 0.455 0.486 0.498 0.467 0.194 0.192 0.155 0.128 0.068 0.083 0.095 0.081 0.141 0.138
Method Subplot Main Effect 
MIXED 0.054 0.057 0.049 0.057 0.049 0.057 0.051 0.067 0.050 0.068 0.058 0.052 0.049 0.052 0.047 0.052

MIXEDT 0.055 0.056 0.050 0.057 0.052 0.054 0.052 0.064 0.051 0.065 0.057 0.052 0.049 0.049 0.045 0.052
GLMM 0.051 0.050 0.049 0.057 0.050 0.053 0.055 0.064 0.046 0.065 0.056 0.052 0.050 0.048 0.043 0.053
GLM 0.051 0.051 0.114 0.071 0.066 0.190 0.419 0.558 0.045 0.070 0.061 0.155 0.114 0.052 0.442 0.623

GLMW 0.048 0.041 0.113 0.070 0.064 0.184 0.415 0.557 0.046 0.070 0.061 0.155 0.112 0.052 0.442 0.623
GLMO 0.082 0.074 0.052 0.031 0.042 0.044 0.006 0.064 0.045 0.065 0.042 0.047 0.046 0.019 0.030 0.000

GLMGEE 0.178 0.797 0.406 0.157 0.144 0.401 0.812 0.190 0.105 0.079 0.080 0.163 0.194 0.076 0.064 0.127
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K -                - - - - - - - + + + + + + + +
s -                - - - + + + + - - - - + + + +
µ - -               + + - - + + - - + + - - + +
π -                + - + - + - + - + - + - + - +
r -                + - + + - + - + - + - - + - +
I -                - + + + + - - + + - - - - + +
J -                + + - - + + - + - - + + - - +

run                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Method Whole-Plot by Subplot Interaction 
MIXED 0.069 0.063 0.049 0.064 0.045 0.055 0.055 0.049 0.052 0.056 0.057 0.051 0.051 0.053 0.054 0.045

MIXEDT 0.070 0.062 0.047 0.063 0.037 0.055 0.056 0.047 0.053 0.054 0.056 0.051 0.044 0.056 0.050 0.044
GLMM 0.073 0.054 0.049 0.063 0.037 0.028 0.057 0.047 0.050 0.051 0.057 0.051 0.049 0.051 0.058 0.043
GLM 0.067 0.071 0.177 0.065 0.061 0.377 0.434 0.578 0.054 0.062 0.068 0.150 0.106 0.057 0.858 0.977

GLMW 0.061 0.066 0.174 0.065 0.051 0.340 0.433 0.578 0.047 0.061 0.068 0.150 0.105 0.057 0.857 0.977
GLMO 0.094 0.085 0.074 0.031 0.037 0.050 0.010 0.056 0.061 0.057 0.043 0.047 0.050 0.025 0.027 0.000

GLMGEE 0.200 0.814 0.977 0.443 0.476 0.975 0.833 0.183 0.542 0.141 0.090 0.163 0.174 0.088 0.162 0.545
Method Percentage of Zero Estimates of the Whole-plot Variance Components 
MIXED 0.513 0.505 0.402 0.200 0.280 0.262 0.011 0.365 0.438 0.481 0.241 0.230 0.333 0.075 0.125 0.000

MIXEDT 0.499 0.506 0.400 0.200 0.268 0.267 0.011 0.365 0.440 0.481 0.243 0.230 0.335 0.072 0.122 0.000
GLMM 0.498 0.490 0.387 0.197 0.268 0.257 0.009 0.348 0.424 0.471 0.237 0.223 0.326 0.072 0.110 0.000

 
 

1. Factors with negative signs have low-level values; factors with positive signs have high-level values (see Table 1). 
2. Black background means the observed Type I error rates are larger than 0.064 (liberal), gray background means smaller 

than 0.036 (conservative), and white background means between 0.036 and 0.064.
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Table 4. Observed Type I error rates using selected methods without lower bound 
constraints on covariance parameter estimates. 
 

µ - - - - + + + + 
K + - + - + - + - 
s + + - - + + - - 

run 1 2 3 4 5 6 7 8 
Method Whole-Plot Main Effect 
MIXED 0.043 0.055 0.050 0.050 0.056 0.052 0.046 0.048 

MIXEDT 0.040 0.056 0.047 0.052 0.053 0.053 0.045 0.048 
GLMM 0.042 0.058 0.049 0.053 0.056 0.052 0.045 0.048 
Method Sub-Plot Main Effect 
MIXED 0.051 0.051 0.061 0.052 0.045 0.057 0.051 0.053 

MIXEDT 0.053 0.048 0.055 0.048 0.046 0.055 0.050 0.052 
GLMM 0.048 0.048 0.057 0.044 0.048 0.061 0.048 0.056 
Method Whole-Plot by Sub-Plot Interaction 
MIXED 0.044 0.051 0.046 0.062 0.049 0.043 0.045 0.048 

MIXEDT 0.045 0.051 0.050 0.063 0.051 0.040 0.044 0.046 
GLMM 0.046 0.039 0.040 0.045 0.055 0.049 0.046 0.047 
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Table 5. Observed Type I error rates with various levels of expected counts and 
replications 
 

µ 5 2.5 1 0.5 

K 3 10 20 3 10 20 3 10 20 3 10 20 

Methods Whole-plot Tests 

1 0.051 0.045 0.048 0.045 0.051 0.059 0.044 0.056 0.049 0.048 0.049 0.052
2 0.052 0.048 0.047 0.043 0.053 0.056 0.043 0.054 0.049 0.048 0.049 0.052
7 0.047 0.044 0.050 0.037 0.049 0.057 0.009 0.051 0.046 0.000 0.029 0.048
  Sub-plot Tests 

1 0.045 0.040 0.053 0.060 0.047 0.039 0.038 0.036 0.048 0.047 0.047 0.053
2 0.051 0.038 0.047 0.058 0.041 0.042 0.038 0.035 0.050 0.047 0.047 0.053
7 0.045 0.039 0.050 0.051 0.045 0.037 0.007 0.036 0.051 0.000 0.035 0.052
  Interaction of Whole and Sub plots Tests 

1 0.048 0.044 0.048 0.052 0.042 0.044 0.045 0.055 0.048 0.048 0.052 0.044
2 0.050 0.047 0.048 0.054 0.046 0.041 0.044 0.056 0.048 0.048 0.052 0.044
7 0.033 0.038 0.046 0.028 0.032 0.041 0.004 0.027 0.039 0.000 0.009 0.030

Convergence 
Rates (%) of 

Method 7 
99.7 100 100 98.5 100 100 76.0 100 100 16.3 97.0 100 

 
 

The observed Type I error rate is smaller than 0.036 if the cell background is gray, and between 
0.036 and 0.064 if the cell background is white. 
 

Applied Statistics in Agriculture 239

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/16



P
ow

er
 o

f t
he

 T
es

ts
W

ho
le

 P
lo

t T
es

ts
S

ub
pl

ot
 T

es
ts

W
ho

le
 b

y 
S

ub
 P

lo
t T

es
ts

µ = 100

MIXED
MIXEDT
GLMM

µ = 5

Function of Noncentrality Parameter

0.0
0.2
0.4
0.6
0.8
1.0

µ = 1

0.0
0.2
0.4
0.6
0.8
1.0

0.00 0.02 0.04 0.06 0.08 0.100.0 0.1 0.2 0.3 0.4 0.5 0.60.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0
0.2
0.4
0.6
0.8
1.0

 
 

Figure 1. The power is estimated based on 1,000 simulated sets of data. The estimated Type I 
error rates of all tests shown on the graph are within the 95% confidence interval of 0.05. The 
GLMM method has very low convergence rate when µ =1, and the results are not shown here.  
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