
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2004 - 16th Annual Conference Proceedings 

STATISTICAL ANALYSIS OF 70-MER OLIGONUCLEOTIDE STATISTICAL ANALYSIS OF 70-MER OLIGONUCLEOTIDE 

MICROARRAY DATA FROM POLYPLOID EXPERIMENTS USING MICROARRAY DATA FROM POLYPLOID EXPERIMENTS USING 

REPEATED DYE-SWAPS REPEATED DYE-SWAPS 

Hongmei Jiang 

Jianlin Wang 

Lu Tian 

Z. Je rey Chen 

R. W. Doerge 

See next page for additional authors 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Jiang, Hongmei; Wang, Jianlin; Tian, Lu; Chen, Z. Je rey; and Doerge, R. W. (2004). "STATISTICAL 
ANALYSIS OF 70-MER OLIGONUCLEOTIDE MICROARRAY DATA FROM POLYPLOID EXPERIMENTS USING 
REPEATED DYE-SWAPS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/
2475-7772.1159 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2004
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2004%2Fproceedings%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1159
https://doi.org/10.4148/2475-7772.1159
mailto:cads@k-state.edu


Author Information Author Information 
Hongmei Jiang, Jianlin Wang, Lu Tian, Z. Je rey Chen, and R. W. Doerge 

This is available at New Prairie Press: https://newprairiepress.org/agstatconference/2004/proceedings/13 

https://newprairiepress.org/agstatconference/2004/proceedings/13


STATISTICAL ANALYSIS OF 70-MER OLIGONUCLEOTIDE

MICROARRAY DATA FROM POLYPLOID EXPERIMENTS

USING REPEATED DYE-SWAPS

Hongmei Jiang1, Jianlin Wang2, Lu Tian2,
Z. Je®rey Chen2, and R.W. Doerge1

1Department of Statistics, 1399 Math Building,
Purdue University, West Lafayette, IN 47907 USA

2Genetics Program and Department of Soil and Crop Sciences,
Texas A&M University, College Station, TX 77843-2474 USA

Abstract

Polyploidy plays an important role in plant evolution. A series of Arabidopsis autopolyploids
and allopolyploids have been developed, and their transcript abundance compared using
a 70-mer oligonucleotide microarray consisting of 26,090 annotated genes in Arabidopsis
thaliana. The experimental design included repeated dye-swaps, and analysis of variance
(ANOVA) was employed to detect signi¯cant gene expression changes among and between
the diploid, autopolyploid, and allopolyploid populations. Here, we discuss the statistical
issues (replication, normalization, transformation, per-gene variance estimate, and the pooled
estimate of variation) involved in analyzing these data, as well as the statistical ¯ndings of
these analyses.

1 Introduction

A polyploid refers to cells or organisms that contain more than two complete sets of
chromosomes. Polyploidy, the process of genome doubling that gives rise to organisms with
multiple sets of chromosomes, has been very successful in nature and agriculture. In fact,
more than 70% of °owering plants are polyploids. The nature of polyploidy in Arabidopsis,
Brassica, cotton, maize and wheat, has been studied intensely, however the cause of novel
variation in polyploids is still not fully understood. For a recent review about polyploidy
and research approaches, see Osborn et al. 2003 [1].

Microarray technology enables researchers to monitor tens of thousands of genes, or a
whole genome, in a single experiment. This provides a powerful new approach to studying
gene expression changes in the polyploids. For this study, a 70-mer oligonucleotide (oli-
gos) microarray was employed [2]. The probes (features representing a gene on the array)
are 70-mer oligos which are designed in the laboratory to ensure both high sensitivity and
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speci¯city. Like a cDNA spotted microarray, a 70-mer oligonucleotide microarray is also a
two-channel or two-color array. The two total RNA samples of interest are labeled with
di®erent °uorescent dyes (Cy5 (red) and Cy3 (green)) during reverse transcription, then in
equal amounts combined into one sample and applied to the array. After competitive hy-
bridization, the array is scanned to produce images and separate quanti¯cations of the two
°uorescent dyes. For each spot (or gene feature) on the array, the red and green intensities
represent the transcript abundance of the corresponding probe (or gene) in the two RNA
samples. See [2] for more details about 70-mer oligonucleotide microarray technology.

A series of Arabidopsis polyploids (Figure 1, modi¯ed from Figure 1 of Comai et al. [9])
have been developed by doubling a single genome (autotetraploid), or combining two distinct
but related genomes (allotetraploid) to study genetic and genomic consequences of genome
duplication. The transcriptome variation among two autotetraploid parents and three in-
dependently derived allotetraploid o®springs were compared using a 70-mer oligonucleotide
microarray consisting of 26,090 annotated genes in Arabidopsis. Here, we limit our discuss to
the experimental design and data analysis details for comparing the gene expression changes
between the two autotetraploids, A. thaliana 612 (At612) and C.arenosa (C.a.).

2 Experimental design

A simple and e®ective design for direct comparison of two treatment conditions or two
types of samples (here we call them control and treatment samples) is a dye-swap, which
is also known as a Latin-square design in classical statistics. This design uses two arrays
but switches the color of the °uorescent dyes for the control and treatment samples when
their mixed sample is hybridized to the array (for a review of microarray technology see [3]).
On array 1, a control sample is labeled with red dye (Cy5) and treatment sample is labeled
with green dye (Cy3); and on array 2, the treatment sample is labeled with red dye (Cy5)
and control sample is labeled with green dye (Cy3). Because some genes incorporate each
dye in di®erent amounts, a dye-swap allows the assessment of this e®ect. In our experience,
for genes with low intensities, the red dye (Cy5) typically yields a smaller (lower) intensity
measurement than the green dye (Cy3).

There are approximately 26,000 genes in Arabidopsis, and all of these genes, except for
some, were spotted only once on the 70-mer oligonucleotide array that we employed. For
the genes that have replicated spots on the array, four of them were spotted 6 times and
twelve of them were spotted 49 times. There were also some controls on the array that were
spotted multiple times. Additionally, there were two biological replicates of each sample, and
for each replicate, we used two repeated dye-swaps, which resulted in eight arrays (Table 1).

3 Methods

3.1 Background correction and log-transformation

Once each gene feature is assessed for both dyes (see [2] for technical details), we sub-
tracted the background median intensity from the foreground median intensity for both red
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and green intensities. If a background intensity is larger than the foreground intensity, the
background-corrected gene intensity measurement is set to 1. Upon evaluation we found the
variation of gene expression to increase as the mean intensity increased, so we employed the
logarithm-transformation of the background-corrected intensities to stabilize the variance.
Unfortunately, the log-transformation also in°ates the variation of genes with low intensity
measurements, therefore we must be cautious when interpreting the results.

3.2 Normalization

As noted previously, there is a long history of one dye incorporating more or less than the
other dye. To check for the dye e®ect, MA plots (M versus A plot as de¯ned by Dudoit et al.,
2002 [4]) were plotted, where M is the log-ratio of the background-corrected red and green
intensities (i.e., M = log(red/green)); and A is the average log-intensity of the background-
corrected red and green intensities (i.e., A = (log(red) + log(green))/2). If a gene is not
di®erentially expressed, the red and green intensities are close to each other, and the log-
ratio is close to 0. However, we noticed that when the average intensity is small, a lot of
points fall below the horizontal (A) axis (i.e., there are a lot of gene features with the red
intensity smaller than the green intensity) (Figure 2). Since this pattern was observed on
both arrays in the dye-swap experiment where the dyes are exchanged between At612 and
C.a. on array 1 and 2 (i.e., array 1: M = log(red/green) = log(At612/C.a.) and array 2:
M = log(red/green) = log(C.a./At612)), it is obviously not due to di®erences in the RNA
samples, but instead the dye. That is, at the low gene expression levels, the dye e®ect is
biased and the green dye gives higher measurements than the red dye. We also noticed
(Figure 2) that the unbalanced dye e®ect for the controls do not have the same pattern as
that for the non-control genes, and that the gene expression levels for the controls do not
cover the whole range of the gene expression, which leads us to recommend not using the
controls for normalization. Instead, we used a robust local regression [5] (loess function in
the software package R) and the majority genes to remove the intensity-dependent dye e®ect,
that is, the non-linear dependence of the log-ratio M on the average log-intensity A within
each of the eight arrays. The distance between any one point and the loess smoothing line
then becomes the new log-ratio. After normalization, the mean of log-ratio is roughly 0 and
all data points scatter around the horizontal (A) axis (Figure 3). Linear transformations
were then applied to the normalized log-ratio to get the normalized red and green intensities
separately.

3.3 ANOVA models

Analysis of variance (ANOVA) models have been used to identify di®erentially expressed
genes ([6]) or genes that change between treatments. Here, two ANOVA models were em-
ployed to detect di®erentially expressed genes, and the di®erences and similarities between
them investigated for the purpose of understanding the result of the common variance as-
sumption for each gene versus a per-gene variance assumption. For the ¯rst ANOVA model
(1), we assume all 26,090 genes have the same variation; while the gene-based ANOVA model
(3) is based on individual gene variation and requires thousands of ANOVA models.
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3.3.1 ANOVA: common-variance approach

Di®erent sources of variations in a microarray experiment include array, dye, treatment
and gene [3]. The ANOVA model is:

log(yijkgr) = ¹ + Ai + Dj + Tk + Gg + AGig + DGjg + TGkg + ²ijkgr. (1)

where i = 1, ¢ ¢ ¢ , 8; j = 1, 2; k = 1, 2; g = 1, ¢ ¢ ¢ , 26090; and r = 1, ¢ ¢ ¢ , ng (ng is the number
replicated spots of gene g); ¹ is the average gene intensity over all arrays, dyes, treatments
and genes, and A, D, T and G are the array, dye, treatment and gene main e®ects, while AG,
DG and TG are the interactions between array and gene, dye and gene, and treatment and
gene, respectively. For this polyploid experiment the treatment e®ect is the parent (diploid,
autopolyploid, or allopolyploid) e®ect. The error terms ²ijkgr are independent with mean 0
and variance ¾2. When we test for di®erential expression of gene g between two treatments,
we use Tk + TGkg ([3]) and the test statistic is

z =
|(T̂1 + T̂G1g) − (T̂2 + T̂G2g)|√

1
4ng

¾̂2
, (2)

where ¾̂2 =
∑

ijkgr

(yijkgr − ȳi..g.− ȳ.j.g.− ȳ..kg. +2ȳ...g.)
2/(n−10m), n is the total number of data

points, m is the total number of genes, and ȳ.j.g. is the average intensity over the omitted
indices i, k and r. Because there are 26,090 genes, the degrees of freedom for the error term is
very large (approximately 180,000). The test statistic in (2) is a z-test statistic (i.e., normally
distributed with mean 0 and variance 1 under the null hypothesis, T1 + TG1g = T2 + TG2g).

3.3.2 ANOVA: per-gene-variance approach

In order to acknowledge each gene’s variation, we ¯t the ANOVA model on a gene-by-
gene basis. That is, for each gene g (g is ¯xed in the following model), we have an ANOVA
model as following,

log(yijkgr) = ¹g + Aig + Djg + Tkg + ²ijkgr. (3)

Notice that here ¹ is the average gene intensity for gene g, while A,D and T are the gene-
speci¯c array, dye and treatment e®ects, respectively. We assume the error terms ²ijkgr are
independent normal with mean 0 and variance ¾2

g . In fact when we assume the array is a
¯xed factor, ¹g = ¹+Gg in (1), Aig = Ai+AGig, and so on. We use Tkg to test the treatment
e®ect for each gene and the test statistic is

t =
|T̂1g − T̂2g|√

1
4ng

¾̂g
2

, (4)

where ¾̂2
g =

∑
ijkr

(yijkgr − ȳi..g.− ȳ.j.g.− ȳ..kg. +2ȳ...g.)
2/(16ng −10). For most genes spotted only

once on the array (ng = 1), there are 16 observations, so the degrees of freedom for the error
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term is 6 (7 degrees freedom for the array e®ect, and 1 degree of freedom for average gene
intensity ¹g, treatment e®ect, and dye e®ect, respectively). The test statistic in (4) has a
t-distribution with 6 degrees of freedom.

3.3.3 Comparisons between two ANOVA models

Both the common-variance approach and per-gene-variance approach give the same es-
timates of the gene expression changes (i.e., the numerators in (2) and (4)) when array is a
¯xed factor. The di®erences in the two test statistics lies in how to estimate the variances
of the gene expression changes, and the relative degrees of freedom of the test statistics. For
the common-variance approach, we assume the residuals have a constant variance, and use
all the observations to estimate the variation. For the per-gene-variance approach, only the
observations related to a given gene are used. If in fact, all genes have the same variation, the
common-variance approach is more powerful than the per-gene-variance approach, since the
degrees of freedom is larger. However, it is well known that the residuals are non-normally
distributed with non-constant variance (discussed later). When the common-variance ap-
proach is used, the genes with small fold-change AND small variation may not be detected,
but the disadvantage in using the gene-basis ANOVA is that the degrees of freedom are small
due to the limited number of replicate of spots and arrays.

4 Results and summary

For the polyploid experiment at hand, we applied ANOVA models (1) and (3) to de-
tect statistically signi¯cant di®erentially expressed genes. To address the multiple compar-
ison problem, we simply employed Benjamini-Hochberg’s FDR controlling procedure [7] at
signi¯cance level 0.05. We identi¯ed 11,199 signi¯cantly di®erentially expressed genes be-
tween At612 and C.a. using the per-gene-variance approach, 4,363 genes using the common-
variance approach, and 3,923 genes were identi¯ed by both approaches. With respect to
detecting di®erentially expressed genes, the common-variance approach identi¯ed genes with
large fold-changes, even some genes with large variations were found signi¯cant; the per-gene-
variance approach detected both small and large fold-changes with small variations; and the
signi¯cant genes identi¯ed by both approaches have large fold-changes and small variation.
Interestingly, there are also several genes with small fold-changes and large variation that
are statistically signi¯cant by either one or both approaches. In fact these same genes, as
mentioned earlier, were spotted more than one time on the array. This illustrates the well
known principle, “the bigger the sample size, the more powerful the test.” This being said
it is not a fair assessment when there are more replications for one gene than another in
the same microarray experiment, because genes with more replications at the spot level will
have a bigger chance to be detected as di®erentially expressed.

One practical disadvantage of the common-variance approach is that one can not eas-
ily apply general statistical software to estimate the large number of parameters in model
(1). However this can be easily addressed using a programming language, such as R and
MATLAB. On the other hand, one practical advantage of the common-variance approach
is model validation. Standard statistical QQ plots and residual plots can be used to check
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the model assumptions, such as constant variance and normal distribution. Unfortunately,
for the per-gene-variance approach (3), with tens of thousands of genes, it is not feasible to
produce and assess this many visual plots.

In this paper, we treat all e®ects as ¯xed. The two approaches, the common-variance
approach and the per-gene-variance approach, give the same estimates of gene expression
changes between two treatment conditions, but di®erent lists of statistically signi¯cant dif-
ferentially expressed genes due to di®erent ways of modeling the errors. When the array
e®ect is treated as random (as well as its interaction with gene) in a mixed models ap-
proach, as proposed by Wol¯nger et al., 2001 [8], the previous conclusions still hold when
variance components are computed using traditional ANOVA estimates. However when the
method of restricted maximum likelihood(REML) is used, the two ANOVA models produce
substantially di®erent results.

Finally, we investigated the e®ect of the log-transformation. The standard deviation
which was computed using the per-gene-variance approach for each individual gene was plot-
ted against its corresponding average gene intensity for the log-transformed data (Figure 4).
It can be seen that the log-transformation works well for the genes with large intensities,
however it in°ates the variation for genes with low intensities. The per-gene-variance ap-
proach can only detect genes with large intensity levels; while the common-variance approach
is able to detect some di®erentially genes at the low intensity level, since it looks for large
fold-changes. Therefore, when applying the per-gene-variance approach to log-transformed
data, it will be di±cult to identify di®erentially expressed genes with low intensity levels,
unless this is compensated by increasing the number of replicates.

To summarize, two ANOVA models, common-variance approach (1) and per-gene-variance
approach (3), were compared in the context of identifying statistically signi¯cant di®eren-
tially expressed genes between two autotetraploids using repeated dye-swaps experimental
design. When the array e®ect is treated as ¯xed, these two approaches give the same esti-
mates of gene expression changes, but yield di®erent lists of di®erentially expressed genes.
Being aware of the assumptions behind these two models, and the similarities and di®erences
between them allows researchers to interpret their results appropriately.
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Table 1: Experimental design for comparing two autotetraploids A. thaliana 612 (At612) and C.
arenosa (C.a.). There are two biological replicates for each of the two autotetraploids, and for each
replicate, two repeated dye-swaps are used.

Biological replicate 1 Biological replicate 2
Dye-Swap 1 Dye-Swap 2 Dye-Swap 3 Dye-Swap 4

Array 1 2 3 4 5 6 7 8
Red dye (Cy5) At612 C.a. At612 C.a. At612 C.a. At612 C.a.
Green dye (Cy3) C.a. At612 C.a. At612 C.a. At612 C.a. At612
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Figure 1: A. thaliana (A.t) is a diploid with 5 chromosomes. A. thaliana 612 and C. arenosa (C.a.)
are autotetraploids each having four complete sets of the same chromosomes. The cross of the two
autotetraploids produces allotetraploid o®spring.

hybrid

              A. thaliana

                 A. thaliana 612 C. arenosa
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Figure 2: MA plots for the two arrays of one dye-swap experiment. The left plot is array 1 with
At612 labeled red and C.a. labeled green; the right plot is array 2 with At612 labeled green and
C.a. labeled red. The loess smoothing lines for all genes (both black and purple points) and the
controls (purple points only) are in blue and, red respectively
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Figure 3: MA plots for one array before and after loess normalization. The left plot represents
the before normalization scenario, while the plot on the right represents the after normalization
scenario.
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Figure 4: The e®ect of log-transformation. The black points represent signi¯cant genes detected by
common-variance approach; green points by per-gene-variance approach; and red points by both
approaches.
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