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UNREPLICATED TREATMENTS 
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1Wirksworth, Derbyshire DE4 4EB, UK; 

2School of Physical Sciences, University of Queensland, Brisbane, Qld 4072, Australia; 
3Prosthetics Molecular Design Ltd, Runcorn, Cheshire, UK; 
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Dedicated to the memory of R. A. Kempton, 1946-2003 
 

Abstract 
 
In early generation variety trials, large numbers of new varieties may be compared, and little 
seed is usually available for each variety. A so-called unreplicated trial has each new variety on 
just one plot at a site, but includes several (often around 5) replicated check or control (or 
standard) varieties. The total proportion of check plots is usually between 10% and 20%. The 
aim of the trial is to choose some (around 1/3) good performing varieties to go on for further 
testing, rather than precise estimation of their mean yield. 
 
Now that spatial analyses of data from field experiments are becoming more common, there is 
interest in an efficient layout of an experiment given a proposed spatial analysis. Some possible 
design criteria are discussed, and efficient layouts under spatial dependence are considered. 
 

1. Introduction 
 

The improvement of crop varieties can have a major impact, for example in reducing the 
amount of land, fertilizer, and pesticides which are needed for a given amount of food. New 
crop varieties are continually being developed by plant breeders, which then undergo lengthy 
testing, with statutory requirements, before they can be used commercially.  
 
There are usually many new varieties, with little available seed. At each experimental station, 
the new varieties are usually (as assumed here) unreplicated, but the experiment includes 
several (typically 1 to 5) replicated control, or check, varieties. Since the aim is to select about a 
third of the new varieties for further testing, it is not clear what is a good but simple criterion for 
choosing between designs.  
 
Additional complications are that although it is often possible to postulate in advance with some 
confidence, from extensive past experience, the form of the spatial dependence, the parameters 
of the process cannot be predicted so accurately, and the postulated process itself may not be 
appropriate.  
 
Thus it is desirable that the design should be robust to mild differences from the postulated 
structure, and that the design should allow efficient estimation of the parameters of the process, 
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an efficient check of whether the process is appropriate, and, if necessary, an efficient diagnosis 
and estimation of a different process. 
 
The design problem for an unreplicated field trial is essentially that of allocating the check 
varieties to n plots out of the total m plots available, and secondly allocating the check varieties 
to those selected sites - see Figure 1. Typically, m will be several hundreds, and n/m between 
10% and 20%. The plots are usually rectangular, but not usually square, so the dependence 
could be expected to be roughly the same in both directions, or much stronger in one direction 
(along which the long sides adjoin) - see Figure 2.  
 
The layout of the control plots has in the past usually been systematic - see e.g. Federer and 
Raghavarao (1975), Kempton (1984), Besag and Kempton (1986), Kempton and Talbot (1988). 
Examples include every third plot in a row having the control, with a single shift from one row 
to the next, leading to the control plots forming diagonal strings (i.e. in strings of diagonally 
adjacent plots); and two controls occupying every sixth column, alternating within each column. 
The latter arrangement was thought to be reasonable if plots are long and narrow, and similar 
designs have been widely used in Britain. Figure 3 shows two examples. 
 

2. Models, analyses and criteria 
 
Interest is usually in selecting about the best third of the new varieties for further testing. 
Various methods for ranking the new varieties have been used over the years. Early methods 
adjusted the yield of each new variety according to the yields of nearby controls (possibly after 
adjustment for variety and block effects, etc) - see, e.g. Besag and Kempton (1986). Note that 
other criteria, such as quality, may also be important. 
 
We consider here an experiment at just one site, and suppose that the m = p1p2 plots are in a 
p1×p2 rectangular array, and that there are c control varieties, replicated {ri} times, with Σri = n. 
Thus there are t = m-n test varieties, and we are only concerned here with the allocation of the n 
control sites. The m sites are assumed to be ordered lexicographically (by columns within rows). 
 
Suppose here that the analysis postulates a linear model for the observations y: E(y) = Tτ, var(y) 
= Vσy2, and uses generalized least-squares estimation. 
 
Methods which take into account the spatial dependencies in the yields have been recently 
suggested (Cullis et al., 1989, 1998). Recent practice in NSW Agriculture, Australia uses a 
spatial model for the dependence fitted by ASREML (Gilmour et al., 1995). Their initial spatial 
model includes terms for random row and column effects, a superimposed spatial dependence 
modelled as a separable AR1*AR1, and an independent white noise (or measurement error), so 
that 
 

Vσy2 = Ip1 p2 σ02 + Jp1 ⊗Ip2 σ12 + Ip1 ⊗Jp2 σ22 + Λ1⊗Λ2σ32;   (1) 
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where Jp is a p×p matrix of ones, Λk = (αk|i-j|); and α1 and α2 are the within-column and within-
row AR1 parameters. Here we concentrate on results for the AR1*AR1, i.e. in eq. (1) σ02 = σ12 
= σ22 = 0, σy2 = σ32, so that ρg,h = corr(yi,j, yi+g,j+h), the correlation at lags g, h, equals ρg,0ρ0,h 
= α1|g|α2|h|, and assume non-negative correlations, α1, α2 ≥ 0. Results for the more general 
model are discussed in Chan et al. (1999), Chauhan et al. (2000), Martin et al. (2000). Some 
design comparisons under some other dependence assumptions are in Maas et al. (2002). 
 
Here we assume the mean E(y) only depends on the c+t variety effects, which are treated here as 
fixed effects. Note that it may be appropriate in some cases to treat the new variety effects as 
random, and the check variety effects might then be taken as either fixed or random. Some 
investigations of design under these assumptions are in Chauhan et al. (2000), Maas et al. 
(2003). 
 
In practice, the analysis may also include high-order polynomial or spline surfaces treated as 
fixed or random effects. 
 
Let C denote T'V-1T, the usual C-matrix. Then ˆ τ  = C-1T'V-1y with var( ˆ τ ) = C-1σy2. For design 
purposes, assume V is known. 
 
When all (pairwise) contrasts are of equal interest, it is reasonable to minimise the average 
scaled variance (i.e. ignoring σy2) of pairwise contrasts, {2/(c+t-1)}{tr(C-1) - 1'C-11/(c+t)}. This 
is the the A-criterion. However, since selection is (mainly) by ranking, which is not amenable 
for design purposes, it is not clear what is a sensible design criterion to use in this situation. 
 
Several possible criteria have been considered previously - see, e.g. Federer and Raghavarao 
(1975). These include the A-criterion, and minimizing the average scaled variance between test 
and control varieties (Ans-criterion), or the average scaled variance between test varieties (Ann-
criterion). Although the Ann-criterion seems more natural for this situation, we shall see its use is 
not always satisfactory. If the Ass-value is that for the average scaled variance between the 
control varieties, then 
 

(c+t)(c+t-1)×(A-value) = 2ct×(Ans-value) + t(t-1)×(Ann-value) + c(c-1)×(Ass-value), 
 
If, as usual, c/t is small, we have the approximate relationship: 
 

A-value ≈ Ann-value - 2ct-1×{(Ann-value) - (Ans-value)}, 
 
i.e.  the A-value is usually nearly linearly related to the Ann- and Ans-values (exactly so if c=1), 
and is usually close to the Ann-value. 
 
Example 1. The A-, Ann-, Ans-, and Ass-values for some designs with p1 = 5, p2 = 10, m=50, 
n=10, t=40, are given in Table 1. Firstly, there are the values for V = Im (any layout); for c=2, r1 
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= r2 = 5; and c=1, r1 = 10. Then there are the values for two designs (DC(3,8), DR(3) in §4) 
under an AR1*AR1 dependence structure with α1 = 0.2, α2 = 0.6, in the alternating and 
repeated cases (subscripts a and r) for c=2, r1 = r2 = 5; together with those for c=1, r1 = 10 
(subscript 1). The {ai} are defined later. Note how closely the A- and Ann-values are related, 
and, within either of the two designs, how the A- and Ann-values hardly differ over the three 
cases, but the Ans-value for the repeated case is somewhat larger than the other two. Also, see 
the values for V = Im and DR(3), the A-value for c=1 can be larger than when c=2. [] 
 
Some simulations suggest that usually the A-, Ann-, Ans-values correlate well (negatively) with 
selection probabilities - see Figure 4 for an example, which shows some Ann- and Ans-values for 
an 8×20 array, with c=2, r1 = r2 = 10, t=140, and eq. (1) with σ02 = 1/4, σ12 = 1/8, σ22 = 3/4, σ32 
= 3/4, σ32, α1 = 0.2, α2 = 0.6, and considers the probability that the best 7 varieties are in the 35 
selected. For this, 15 designs expected to be good and 15 expected to be bad were chosen, as 
well as 120 random ones. The treatment effects were generated from a N(0, 1) distribution, and 
for each design y was simulated 5000 times. Then the treatment effects were estimated using 
generalised least-squares assuming V was known. Note the spread in probabilities and criteria 
values among the random designs, and that all were well above the designs expected to be bad. 
Also, note the difference between the two criteria for the designs expected to be bad. They form 
two clumps, which are reasonably close for the Ann-values, but further apart for the Ans-values, 
although the selection probabilities are fairly similar. In this example, the Spearman rank 
correlations are -0.87 and -0.86, respectively. Over the other examples considered, the Ann-
value usually correlates very slightly better than the Ans-value with selection probabilities. The 
A- and Ann-values are extremely highly correlated, and so henceforth only the Ann- and Ans-
values are discussed. 
 
To obtain efficient designs for a typically large m and a general V, an algorithmic approach can 
be used. A hybrid algorithm based on simulated annealing, and using exchanges between 
varieties at sites, has been developed (Martin & Eccleston, 1997), and used on some examples. 
For large m, the basic algorithm can take a long time to produce very good designs as C is of 
size t×t, and hence C-1 is time-consuming to calculate. However, since most varieties are 
unreplicated, T has a simple form, and some matrix manipulations can dramatically reduce the 
computation needed. 
 
Reorder the plots with the control plots first, so that y' becomes (ys' yn'), T becomes diag(Ts, Tn), 

and V becomes ⎣⎢
⎡

⎦⎥
⎤Vss Vsn

Vns Vnn
  , where ys is the vector of observations on the control plots, E(ys) = 

Tsτ, and var(ys) = Vssσy2, etc. Let Vnn.s denote Vnn - VnsVss-1Vsn, and let M1 = Ts'Vss-1Ts, M2 = 
Ts'Vss-1Vsn. Note that M1 is the C-matrix for the control varieties, and Vnn.sσy2 is var(yn|ys) in 
the conditional distribution for yn|ys, which has E(yn|ys) = Tnτ + VnsVss-1(ys - Tsτ) = (Tn - M2')τ 
+ VnsVss-1ys. 
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 Then,       C-1 = ⎣⎢
⎡

⎦⎥
⎤0  0

0 Vnn.s
   + ⎣⎢

⎡
⎦⎥
⎤Ic

M2'   M1-1 [Ic M2] ,  and the Ann- and Ans-values are given by 

 
{(t-1)/2}×(Ann-value) = a1 - a2 + a3 - a4 ≥ a1 - a2 and 

ct×(Ans-value) = c(a1 + a3) + ta5 - 2a6 ≥ ca1, 
 

where a1 = tr(Vnn.s), a2 = t-11t'Vnn.s1t, a3 = tr(M2'M1-1M2), a4 = t-11t'M2'M1-1M21t, a5 = tr(M1-1), 
a6 = 1c'M1-1M21t. Table 1 gives the {ai} for the designs in Example 1.  
 
These expressions only require inverting the n×n Vss (where n is usually at most m/5), and the 
c×c M1, and give bounds for the criteria values. Note that a1 and a2 only depend on the positions 
of the control plots. They do not depend on c, and if c>1 they do not depend on the arrangement 
of the controls within the control plots. Also, given the set of control plots, if c>1 different 
allocations of the control varieties only require changing M1 and M2. Over these different 
allocations, usually a3 - a4, and hence the Ann-value, only differs relatively slightly, and can be 
the same as when c=1. Updating formulae can be used for Vss-1 under variety exchanges. 
 
The term a5 in the Ans-value (but not the Ann-value) suggests differences in the Ans-value 
between a good and a bad design for the control varieties. A good one would have like 
replicates well separated. 
 
Unless the dependence is very weak or t is small, the dominant term in the Ann-value is a1. As 
the dependence becomes stronger, this term also dominates the Ans-value, so that the two 
criteria values are then highly correlated, and the efficient designs under the two criteria (and 
the A-criterion) become very similar. To make a1 small, it is necessary that the number of 
adjacencies (taking account of the relative strengths of the correlations in the two directions) 
between check plots and new variety plots is maximized. This leads to well separated check 
plots (at least in the dominant direction). 
 
Even though these formulae are useful in seeing what design features affect efficiency under the 
two criteria, it is not easy to see all the effects. However, it is possible to use these formulae to 
obtain approximations for low and high correlations, and the elements of these approximations 
can be interpreted. 
 
Example 2. Suppose p1 = 5, p2 = 1, m=5, c=1, r1=2, n=2, t=3, with an AR1 process, ρ1 = α.  
 
There are 6 possible designs D(i, j) = {i, j} for the two control plots (since {1, 2} is equivalent 
to {4, 5}, etc.). Thus all designs can be compared, and the known expression for V-1, plus the 
small m, mean that exact expressions in α for the criteria values can be found (Martin et al., 
2000). 
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Even in this very simple case, it is not obvious from the exact formulae which designs are good 
under the two criteria. Approximations to the values can be obtained by power-series 
expansions for low |α|, or high α = 1 - ε. Table 2 gives the approximations to 3×(Ann-value) for 
low correlations, (3/ε)×(Ann-value) for high α, 6×(Ans-value) for low correlations, and 
(3/ε)×(Ans-value) for high α. The expansions for low correlations are given in the general form 
from §3, and for the AR1 with low |α| have ρ2 = ρ12 = α2. 
 
These approximations show that for the Ann-criterion, D(1,5) is best for low α>0 (and D(1,2) is 
close), and D(1,5) for high α; and that for the Ans-criterion, D(2,4) is best for low α>0, and 
D(1,4) for high α (and D(2,4) and D(1,5) are close).   
 
Precise comparisons show that D(1,5) is Ann-optimal for all α>0. The Ans-optimal designs are 
D(2,4) for 0<α<0.518, and D(1,4) for α>0.518, although D(1,4) is highly Ans-efficient for all 
α>0 (minimum efficiency of 0.979 at α ≈ 0.22). At α = 0.5, the efficiency of the worst design is 
0.707 (Ann) and 0.632 (Ans). Note that for low α>0, D(1,2) is Ans-worst, but very Ann-efficient. 
 
Evaluations suggest that the linear approximation in α is reasonable (errors up to about 5%) for 
α up to about 0.2, the quadratic approximation in α up to about 0.4, and the high α 
approximation from about 0.7. [] 
 

3. Approximations to the criteria values 
 
For |ρ1|, |ρ2| and ρ12, small, and all other ρg negligible, the general formula for the low-order 
approximation with p2 = 1 is (Martin et al., 2000): 

 
{t(t-1)/2}×(Ann-value) ≈ t(t-1) - 2(m1ρ1 + m2ρ2) - tk3ρ12, and 

 
ct×(Ans-value) ≈ ct + tΣri-1 - 2(k1 - tl1)ρ1 - 2(k2 - tl2)ρ2 - {ck4 - 2(k5 - tl3)}ρ12. 

 
In these formulae, the mi depend on new-new adjacencies (or lag 2 adjacencies); the ki on 
control-new adjacencies (or lag 2 adjacencies); and the li on like-like control adjacencies (or lag 
2 adjacencies). 
 
The coefficients in the approximation formula can be interpreted to show that the Ann-efficient 
designs for low correlations have as many new-new adjacencies as possible. This occurs when 
the controls plots are all at the two ends (or one end), in any order. The Ann-worst designs have 
the controls separated and not at the ends. 
 
The Ans-efficient designs for low correlations have as few like-like control adjacencies, and as 
many new-control adjacencies, as possible. This occurs when the controls plots are all 
separated. When there are control-control adjacencies and c>1, the Ans-value varies more with 
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how many are like-like adjacencies than the Ann-value. The Ans-worst designs have the like 
controls all together, and all the controls at one end.  
 
The Ans-efficient designs for low correlations are Ann-inefficient. Similarly, some of the Ann-
efficient designs are Ans-inefficient. If c>1, some of the Ann-efficient designs are not so Ans-
inefficient. 
 
The low-correlation approximation for p1, p2 > 1 is considerably more involved (Martin et al., 
2000), and is not given here, although essentially the same interpretation holds. The Ann-
efficient designs for low correlations have many new-new adjacencies, and the Ans-efficient 
designs have many new-control adjacencies, with few like-like control adjacencies.The 
approximations for high correlations are more complicated (Martin et al., 2000), and also are 
not given here, but for both criteria suggest spacing out the control plots for efficient designs. 
 

4. A two-dimensional example 
 
Consider in detail the case of in Example 1: p1 = 5, p2 = 10, m=50, c=2, r1 = r2 = 5, n=10, t = 40. 
Use of the algorithm shows that some common types of designs arise as efficient or inefficient. 
 
The aligned design DA({i1, i2, ...}×{j1, j2, ...}) has the control plots are the intersections of rows 
i1, i2, ... and columns j1, j2, ... . This includes the row design DR(i1, i2, ...), when the controls 
completely fill rows i1, i2, ..., and the corresponding column design DC(j1, j2, ...). These are all 
systematic designs. An additional set of systematic designs uses diagonals. A subscript 'r' after 
DA, DR, DC or DD indicates all the like controls are together (i.e. repeated 1111…), and ‘a’ for 
alternate (e.g. 1212…). 
  
     The other types of designs have control units well separated: 

A scattered design DS has no row or column control-control adjacencies. 
A scattered interior design DSI is a DS design which also has no controls along the edges. 
A knight's move design DKM is a DS design which also has no diagonal control-control 
adjacencies, and no row or column lag 2 control-control adjacencies, so that the control plots 
are all at least a knight's move apart. 

 
Some examples of the best and worst designs found by an algorithmic search and theory for an 
AR1*AR1 with some different (ρ1,0, ρ0,1) are given in Table 3. DA(1) denotes DA({2, 4}×{2, 4, 
6, 8, 10}), and DO denotes other designs (DO(1) has a row adjacency between control 1 and 
control 2). The best designs are shown in Figure 5. 
 
Evaluations for the AR1*AR1 suggest that the first-order approximations are reasonable (up to 
5% relative error) for ρ1,0, ρ0,1 up to about 0.25, and that the second-order approximations are 
reasonable (up to 5% relative error) for ρ1,0, ρ0,1 up to about 0.45. Using the algorithm for 
finding efficient designs suggests that for higher correlations, the determinants of efficiency are 
similar to those for moderate correlations.  
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Table 4 shows the second-order approximations for the designs in Example 1. Although ρ0,1 = 
0.6 is too high for the approximations to work well, they do indicate clearly how the different 
designs and cases of them affect the two criteria values. Over the three cases for each design, 
the Ann-approximations hardly differ, but the Ans-approximations do. Both approximations 
differ markedly between the two designs. 
 
The approximations and the best/worst designs confirm that for both criteria the worst designs 
have the like controls close together (but for the Ann-criterion, the alternating designs have very 
similar values). If ν = ρ1,0/ρ0,1 is small or large, an alternating column or row design, 
respectively, is best (with a wider range of ν for the Ann-criterion). For ν close to 1, the best 
designs have the controls well-separated (unless the correlations are very small with the Ann-
criterion). 
 
The best designs for one (ρ1,0, ρ0,1) can have very poor robustness to quite different 
correlations. For (ρ1,0, ρ0,1) = (0.1, 0.9) the relative efficiencies of the optimal designs under 
(0.9, 0.1) are 0.180 (Ans) and 0.301 (Ann). For (ρ1,0, ρ0,1) = (0.9, 0.1) the relative efficiencies of 
the optimal designs under (0.1, 0.9) are 0.302 (Ans) and 0.360 (Ann). Note that, apart from the 
change from alternating to repeated (which does not greatly affect the Ann-value), the Ann-best 
at (0.1, 0.9) is the Ann-worst at (0.9, 0.1) and vice-versa.  In practice, it would be very unusual 
to predict the correlations this badly. The designs in Figure 5 suggest that if the dependence is 
stronger in one direction, the check plots only need to be spread fairly evenly along that 
direction. However, for some (ρ1,0, ρ0,1) there are some obvious differences in the designs 
obtained under the two criteria. Table 5 shows that the robustness is usually not too bad 
provided the actual correlations are not too different from those used to obtain the design. 
Diagonal designs are reasonably efficient, but don’t arise as the best designs (or the worst). 
 
These comments explain fairly well the different designs shown in Figure 5. With unreplicated 
trials, it is usually sensible to seek high efficiency rather than optimality, which in any case 
cannot usually be obtained. Efficiency of a design under the Ann-criterion can be unstable as the 
strength of the dependence increases. 
 
 Most of the designs in Figure 5 have the check plots at least fairly systematically arranged, and 
would not give good information on spatial dependence at some of the low lags which would be 
important for estimating the spatial process. The effect of using an additional criterion for the 
efficient estimation of the spatial dependence has not yet been investigated fully, but it is clear 
intuitively that some check plots should be close together. For the Ans-criterion on the mean 
effects, these close check plots should (if c>1) have different varieties. 
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5. Summary 
 
For small t and small correlations, the Ann- and Ans-efficient designs can look very different, 
although the relative efficiency of one to the other may still be quite high. For larger t and/or 
larger correlations, both criteria values mainly depend on tr(Vnn.s), and tend to give very similar 
efficient designs. These tend to have, along the direction of stronger correlations, a minimal 
number of like controls close together, and a maximal number of test-control adjacencies, so 
that the controls are scattered. Although the Ann-value may correlate slightly better with 
selection probabilities, efficient designs under the Ans-criterion for a given V will usually be 
more robust to other V, and more intuitively acceptable.  
 
Designs which allow the dependence to be estimated also have been considered in some of the 
situations, and usually the designs have some sites close together. In these cases, there may not 
be a confident prior form for the dependence structure, so that being able to estimate a general 
process is important. With unreplicated trials, there often is confidence in the form of the 
dependence structure, so that good designs for that structure, but robust to small differences in 
the structure, are required. 
 
Chauhan et al. (2000) investigated the efficiency of some systematic unreplicated designs. A 
general recommendation from that and the results here would be that the control plots, and the 
replicates of each control, should be as well separated as possible, particularly in the direction of 
stronger dependence. If possible, designs in which the control plots are at least a knight's move 
apart are usually very efficient unless the dependence is much stronger in one direction. If the 
dependence is much stronger across the rows, say, designs with control plots filling separated 
columns, preferably with the replicates of each control well separated, can be very efficient. 
 

Acknowledgements 
 
We are grateful to Brian Cullis of the Wagga Wagga Agricultural Institute for motivating this 
research, and for his assistance on the practicalities of the design and analysis of unreplicated 
trials; and to the late Rob Kempton for further discussions on the topic. RJM is grateful for 
support provided by the Department of Statistics, North Carolina State University. 
 

References 
 
Besag, J. and Kempton, R. (1986). Statistical analysis of field experiments using neighbouring 

plots. Biometrics 42, 231-251. 
Chan, B., Eccleston, J. A., Martin, R. J. and Chauhan, N. (1999). On the construction of 

unreplicated designs with spatially correlated data. Preprint. 
Chauhan, N., Chan, B., Eccleston, J. A. and Martin, R. J. (2000). On the efficiency of systematic 

designs in unreplicated trials. Preprint. 
Cullis, B., Gogel, B., Verbyla, A. and Thompson, R. (1998). Spatial analysis of multi-

environment early generation variety trials. Biometrics 54, 1-18. 

  
  

Applied Statistics in Agriculture 165

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/11



Cullis, B. R., Lill, W. J., Fisher, J. A., Read, B. J. and Gleeson, A. C. (1989). A new procedure 
for the analysis of early generation variety trials. Applied Statistics, 38, 361-375. 

Federer, W. T. and Raghavarao, D. (1975). On augmented designs. Biometrics 31, 29-35. 
Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995). Average information REML: an 

efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51, 
1440-1450. 

Kempton, R. A. (1984). The design and analysis of unreplicated field trials. Vorträge für 
Pflanzenzüchtung 7, 219-242. 

Kempton, R. A. and Talbot, M. (1988). The development of new crop varieties. J. Roy. Statist. 
Soc. A 151, 327-341. 

Maas, T., Marx, D. and Pedersen. J. (2002). Unreplicated spatial designs compared using 
optimality criteria. In ‘Proceedings of the 2002 Kansas State University Conference on 
Applied Statistics in Agriculture’, 84-93. Kansas State University, Manhattan, KS. 

Maas, T., Stafford, J., Sebolai, B., Marx, D., Travnicek and Pedersen. J. (2003). Unreplicated 
variey trials: effects of check plot density and fixed versus random treatments. In 
‘Proceedings of the 2003 Kansas State University Conference on Applied Statistics in 
Agriculture’, 180-190. Kansas State University, Manhattan, KS. 

Martin, R. J. (2001). Comparing and contrasting some environmental and experimental design 
problems. Environmetrics 12, 273-287. 

Martin, R. J., Chauhan, N., Eccleston, J. A. and Chan, B. (2000). Some theoretical results on 
unreplicated designs for dependent observations. Research Report 494/00. Department of 
Probability and Statistics, University of Sheffield. 

Martin, R. J. and Eccleston, J. A. (1997). Construction of optimal and near-optimal designs for 
dependent observations using simulated annealing. Research Report 479/97. Department of 
Probability and Statistics, University of Sheffield. 

  
  

166 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/11



Figure 1. An unreplicated design with p1 = p2 = 4, t=12, c=2, r1 = r2 = 2, n=4:  
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Figure 2. Some different plot shapes for 3×3 layouts 
 

           
           
           
           
           
           
           
           
           

 
 
 

Figure 3. Examples of systematic layouts of controls 
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11 7/11/04

Figure 4. Estimated selection probabilities plotted against  Ans- and Ann-values

Figure 5. Ans- and Ann-efficient designs for a 5×10 layout with c = 2, r = 5, under an AR1*AR1

and different (ρ1,0, ρ0,1) :
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Table 1. A-, Ann-, Ans-, and Ass-values and the ai for some designs with p1 = 5, p2 = 10, m=50, 
c=2, r1 = r2 = 5, n=10, t=40 

 
V = Im 

 A- Ann- Ans- Ass- a1 a2 a3 a4 a5 a6 
c=2 1.924 2 1.2 0.4 40 1 0 0 0.4 0 
c=1 1.956 2 1.1 0 40 1 0 0 0.1 0 

 

 
AR1*AR1 (0.2, 0.6) 

 A- Ann- Ans- Ass- a1 a2 a3 a4 a5 a6 
DCa(3,8) 1.404 1.462 0.856 0.264 29.783 1.868 2.323 1.732 0.426 6.383
DCr(3,8) 1.433 1.486 0.927 0.503 29.783 1.868 2.786 1.732 0.546 6.383
DC1(3,8) 1.404 1.436 0.777 0 29.783 1.868 1.813 1.732 0.147 3.191

DRa(3) 1.763 1.818 1.247 0.108 39.168 3.812 0.279 0.177 0.669 2.954
DRr(3) 1.779 1.823 1.365 0.571 39.168 3.812 0.375 0.177 0.901 2.954
DR1(3) 1.788 1.817 1.219 0 39.168 3.812 0.256 0.177 0.308 1.477

 
 
 

Table 2. Approximations to 3×(Ann-value) for low correlations, (3/ε)×(Ann-value) for high α, 
6×(Ans-value) for low correlations, and (3/ε)×(Ans-value) for high α 

 
 3×Ann (3/ε)×Ann 6×Ans (3/ε)×Ans 
D(1,2) 6 - 4ρ1 - 2ρ2 -  ρ12 8 - 2ε 9 +  ρ1 - 4ρ2 - ρ12 12 - 8ε 
D(1,3) 6 - 2ρ1 - 2ρ2 -  ρ12 10 - ε 9 - 6ρ1 +  ρ2 - ρ12 7 - 3ε/2 
D(1,4) 6 - 2ρ1 - 2ρ2 - 4ρ12 8 + 2ε 9 - 6ρ1 - 4ρ2 - 3ρ12 14/3 + 4ε/3 
D(1,5) 6 - 4ρ1 - 2ρ2 - 3ρ12 5 + 5ε/2 9 - 4ρ1 - 4ρ2 - 2ρ12 5 + 5ε/2 
D(2,3) 6 - 2ρ1           - 3ρ12 12 - 8ε 9 -   ρ1 - 6ρ2 - 2ρ12 8 - 2ε 
D(2,4) 6           - 4ρ2 - 3ρ12 10 - ε 9 - 8ρ1 + 3ρ2 - 2ρ12 5 + ε/2 

 
 
 

Table 3. The best and worst designs for an AR1*AR1 with some different (ρ1,0, ρ0,1) 
 

(ρ1,0, ρ0,1) 
 (0.1, 0.1) (0.5, 0.5) (0.9, 0.9) (0.2, 0.6) (0.1, 0.9) (0.9, 0.1) 
Ann-best DAa(1) DSI(1) DS(3) DCa(3,8) DCa(3,8) DRa(3) 
Ann-worst DCr(1,2) DCr(1,2) DCr(1,2) DRr(3) DRr(3) DCr(3,8) 
Ans-best DS(1) DS(2) DKM(1) DO(1) DCa(3,8) DRa(3) 
Ans-worst DCr(1,2) DCr(1,2) DCr(1,2) DRr(1) DRr(1) DCr(1,2) 

  
  

170 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/11



 
Table 4. The coefficients in the approximations to the {(Ann-value) - 2}×39/2 (rows 1 to 6) and 

the {(Ans-value) - 1 - c/10}×100 (rows 7 to 12) for the DC(3,8) and DR(3) designs.  
 
 

 ρ1,0 ρ0,1 ρ2,0 ρ0,2 ρ1,1 ρ1,-1 ρ1,0
2 ρ0,1

2 ρ1,0ρ0,1 
DCa(3,8) -1.6 -1.25 -1.2 -1 -1 -1 0 -16 0 
DCr(3,8) -1.6 -1.25 -1.2 -1 -1 -1 0 -16 0 
DC1(3,8) -1.6 -1.25 -1.2 -1 -1 -1 0 -18 0 
DRa(3) -1 -1.8 -0.5 -1.6 -0.9 -0.9 -16 0 0 
DRr(3) -1 -1.8 -0.5 -1.6 -0.9 -0.9 -16 0 0 
DR1(3) -1 -1.8 -0.5 -1.6 -0.9 -0.9 -18 0 0 
          
DCa(3,8) 0 -10 24 -10 -8 -8 -4.8 -40 0 
DCr(3,8) 32 -10 24 -10 -8 -8 -4.8 -40 0 
DC1(3,8) 16 -10 12 -10 -8 -8 -2.4 -45 0 
DRa(3) -10 0 -10 32 -9 -9 -40 -3.2 0 
DRr(3) -10 32 -10 24 -9 -9 -40 -8 0 
DR1(3) -10 18 -10 16 -9 -9 -45 -1.6 0 

 
 

Table 5. Ann- (upper value) and Ans- (lower value) efficiencies for some (ρ1,0, ρ0,1) 
 

True value 
Assumed 
value 

(0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9) 

(0.5, 0.5) 1 
1 

0.986 
0.999 

0.925 
0.985 

0.768 
0.941 

0.491 
0.903 

(0.4, 0.6) 0.982 
0.995 

1 
1 

0.996 
0.992 

0.962 
0.951 

0.939 
0.914 

(0.3, 0.7) 0.953 
0.980 

0.986 
0.993 

1 
1 

0.985 
0.979 

0.987 
0.958 

(0.2, 0.8) and 
(0.1, 0.9) 

0.904 
0.857 

0.961 
0.931 

0.999 
0.988 

1.000 
1.000 

1.000 
1.000 
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