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USING THE BI-LOGISTIC MODEL TO ESTIMATE BODY TEMPERATURE IN FEEDLOT 
CATTLE 

M. Kerek l , A. M. Parkhurst l , and T. L. Mader2 
1. Department of Statistics, University of Nebraska at Lincoln 
2. Department of Animal Science, University of Nebraska at Lincoln 

ABSTRACT 
Processing and handling cattle require an expenditure of energy causing an elevation of 

body temperature, depending on the ambient conditions. More knowledge of body 
temperature, Tb, dynamics could lead to more specific recommendations of how far cattle can 
be moved without stress. The bi-Iogistic model has been used to describe the handling process. 
This model estimates several important biological parameters: rate of increase in Tb (rate of 
heat challenge), the maximum Tb (max Tb), time to reach maximum Tb (tmax) and recovery 
rate (rate of decrease in Tb). The objectives of this study are: to compare parameter estimates 
from the bi-Iogistic model with a segmented version of the model; to investigate the robustness 
of the model for different definitions of recovery; and, to check for hormetic behavior using 
switching functions. 

1. INTRODUCTION 
Generally, cattle are processed within a few days of coming into the feedlot. There are 

several benefits of processing feedlot cattle, such as prevention of diseases by inoculation, 
treatment for parasites, performance enhancement with implants, and overall maintenance of 
the health of the animals. However, processing could be detrimental if performed during a 
period of heat stress. For example, on a very hot and humid day in which the panting 
mechanism cannot eliminate enough heat, processing and handling may create intolerable and 
even lethal conditions. Therefore, producers have to make sure that processing has more 
positive than negative effects on the animal, or at least minimize the detrimental aspects. More 
knowledge of body temperature dynamics could lead to more specific recommendations of 
when and how far cattle can be moved without stress. 

In this study, heat stress (challenge) is defined to be heat produced by moving steers. It is 
measured as the temperature differential, the difference between the maximum and initial body 
temperature (Tb). Additional parameters associated with heat production are time to reach 
maximum Tb (tmax), challenge rate (rate of increase in Tb) and recovery rate (rate of decrease 
in Tb). Some obstacles to analyzing these kinds of data are summarized by Parkhurst and 
Mader (2000). Among these obstacles are defining the recovery time. Recovery time was 
defined as the point at which the body temperature returns (if it ever does) to the exact body 
temperature at the beginning of the move. If this did not occur, an alternative is to identify a 
lower asymptote. The end time of the asymptote would then represent the recovery time. 

There are many models to describe challenge and recovery (Parkhurst and Mader, 2000). 
Among them is the logistic model, which is an example of limited growth. The relative growth 
is not constant and is proportional to the amount remaining. 
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bY 
-=K(a-Y) 
Y6X 

where Y is body temperature; X is time; the asymptote a is the maximum body temperature; 
and, K is the rate constant. 

The solution gives a symmetrical sigmoidal curve with a rate of change which rises to 
an inflection point then falls. 

a 
Y=---

1 + fJeKX 

where ~ is the ratio of range (difference between a and the initial value of Y) to the minimum. 

Assuming that challenge and recovery are independent effects and that their 
combination can be predicted by an additive model, the bi-Iogistic model is obtained 
(Parkhurst and Mader, 2000). It is capable of having a maximum and a pair of inflection 
points. 

Y= a + 6-a 
1 + /31e Klx 1 + /3oe K ,x 

The above model may be parameterized in terms of the inflection points when /3is re­
expressed in terms of the inflection point, T, as 
/3= exp(-Kr) 

The resulting inflection point parameterization is then 

y= a 
1 K(X-T) 
+e 

The bi-Iogistic model may then be written in terms of inflection points. 

a 6-a 
Y= + +E Eq[l] 1 + eKl(X-Tl ) 1 + e K2 (X-T2 ) 

where a is the upper asymptote for challenge; .3 is the lower asymptote for recovery which 
represents the departure from initial body temperature; K, and K2 are the rate constants for 
challenge and recovery, respectively; and 1: land 1: 2 are the inflection points for challenge and 
recovery, respectively. 

The shortcomings of the bi-Iogistic model are that it underestimates the time to reach 
the maximum body temperature and that it is sensitive to recovery time. The objectives of this 
study are to compare parameter estimates from the bi-Iogistic model with a segmented version 
of the model and to investigate the robustness of the model for different definitions of 
recovery. We also checked for hormetic behavior using switching functions. 
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2. METHODS 
The temperature data loggers were placed in the left ear of four head of cattle to record 

the body temperature at two-minute intervals beginning on day 1. The experimental design is 
summarized in Table 1. The cattle were moved with as little pressure as possible over the 
designated distance (200 or 1200 ft) at a designated day (day 2, 3, 6, and 7) through the 
processing facility (between 9 and 10 am) and back to their pens. All steer-day data sets in this 
study were analyzed but only illustrative examples are presented in the paper. 

Segmented Bi-Logistic Model 
A segmented model was obtained using the logistic model for the two segments 

(challenge and recovery) of the response (Y, body temperature). Different equations were 
conditionally defined for each segment, depending on whether X (time) is at least (or greater 
than) tmax, the time at which the maximum body temperature occurs. In order to make the 
equation smooth and continuous, the two sections are forced to meet at tmax, the joint point. 

a 
In other words, both segments have the same response, Y = 1 + E at X=tmax. 

1 + fJ1 eK,1 max 

a 
If X:::; tmax (challenge) Y = 1 X + E and 

1 + fJ1e K, 

if X> tmax (recovery) Y = a2ex ) + E where a = a 1 

1 + fJ2eK2 -I max 2 1 + fJ1e 9 max 

We assume £ - iidN (0, cr2). 

Two parameterizations of the logistic model were studied in this paper. The inflection 
point model, described in the introduction, is one parameterization. Another parameterization, 
or rather a transformation of X, is based on a power of X and called the power model. 

a 
Y = (X )-lOge-K) + E 

1+ ~ 
7 

In this study we used inflection point parameterization for challenge and power 
parameterization for recovery as they showed the best statistical properties (curvature and 
close-to-linear behavior) for our data. 

IfX:::;tmax Y= a1x +E andifX>tmaxY= a2 1 e ) +E Eq.[2] 
l+e Ke -r,) 1+(X-tmax]-Og-K2 

72 -tmax 

where aI, is the upper asymptote for challenge; a? = ~l.) ; KI and K2 are the rate - 1 + e K ImaX-T, 

constants for challenge and recovery, 1"1 and 1"2 are the inflection points for challenge and 
recovery, respectively; tmax is the time at which the maximum body temperature occurs. Note 
that at X=tmax both segments reduce to 
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a 
y = 1 +E 

1 + e K (tmaX-T,) 

In other words, the two segments are forced to join at X=tmax. 

Hormetic Model 
Hormetic models by definition are non-monotonic (Schabenberger and Birch, 2001). 

Thus, dose-response models without hormetic effect suggest monotonic changes in the 
response with increasing or decreasing dosage. Accounting for hormetic effects, Brain and 
Cousens (1989) add a linear function of X to the asymptote in the numerator and indicate the 
additional parameter, y, represents the initial rate of increase in the response at low levels of X. 
Switching functions provide a convenient way to add hormetic behavior to a response curve 
(Schabenberger and Birch, 2001). The switching function (a model without hormetic effect) 
combined with an additive hormetic component that we present in this paper (hormetic model) 
IS: 

y = a + (c5 - a) + yX + E Eq [3] 
1 + eK,(X-T,) 1 + eK,(X-T,) 

where a. is the upper asymptote for challenge; 8 is the lower asymptote for recovery which 
represents the depmture from initial body temperature; K] and K2 are the rate constants for 
challenge and recovery, respectively; and T 1 and T 2 are the inflection points for challenge and 
recovery, respectively; and y is the hormetic effect. When y =0, there is no hormetic effect and 
the hormetic model, Eq. [3], reduces to the bi-logistic model, with inflection point 
parameterization Eq.[I]. In terms of heat stress, hormetic models adjust for the initial rate of 
increase in body temperature during the challenge. 

209 

Different parameterizations of the switching function (inflection point, power, and 
combinations with the original) were also tried. Sometimes the functional form of the two 
switching functions was the same. Other times it was different. These parameterizations either 
had larger MSEs than those of Eq. [3], did not capture the max Tb quite as well, or some 
parameters did not show close-to-linear behavior. Some examples of the parameterizations 
used are: 

Y a (c5 - a) + yX 0" 1 P P .. 
= x + 1 ( )' ngma - ower arametenzatlOn 

1 + /3 e K
j 1 + ( ~ r og -K, 

a (c5 - a) + yX 0" 1 0" 1 P .. Y = x + x' ngma - ngma arametenzatlOn 
1 + fJl e K, 1 + /32 e K, 

y = c5 + yX ,Original: Common ~ and K Parameterization 
1 + fJe KX 
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Data Analysis 
SAS (1999) was the tool used for data analysis. For all parameterizations, the MSE and 

the estimates, SE, CI and skewness for all parameters were found using proc NUN. Programs 
were written in proc IML to estimate intrinsic and parameter effects curvature (IN and PE) and 
close-to-linear behavior (%Bias and %excess variation). 

Assessing Nonlinear Behavior 
Two assumptions are needed for least squares estimation of parameters in nonlinear 

regression: planarity and uniformity of coordinates. There are several ways to assess how close a 
model-data set combination is to satisfying these asymptotic properties. Bates and Watts (1980) 
proposed relative measures for intrinsic and parameter-effects curvature. 

Intrinsic curvature (IN) measures the relative curvature of the expectation surface at the 
point of convergence. In linear regression, the surface is a plane and IN always equals zero. For 
nonlinear regression, IN increases as the curvature of the expectation surface increases, 
invalidating the linear estimation procedure. Large IN values indicate unacceptable deviation 
from the tangent plane assumption. Parameter-effects curvature, PE, measures the lack of 
uniformity of the parameter lines on the tangent plane. In linear regression, parameter contours 
are parallel and equally-spaced when projected onto the tangent plane. The PE value of 
maximum relative curvature is obtained from a scaled version of the Hessian, i.e., the second 
derivatives of the model with respect to each parameter. For the linear case, all second 
deri vati ves equal zero resulting in a PE of zero. For nonlinear regression, a higher PE indicates 
higher degree of departure from the assumption of parallelism. The square root of the average 
squared curvature can be standardized by multiplying by Fos, p, n-p (Bates and Watts, 1980). 
When the standardized curvature measure is less than or equal to 0.4, the curvatures are 
considered acceptable. 

Ratkowsky (1990) suggests examining the close-to-linear behavior of each parameter. 
The measures used in this paper are Box's approximate measure of bias (1972), percent excess 
variance based on Lowry and Morton's asymmetry measure (1983) and Hougaard's 
approximate measure of skewness (1985). Using the under 1 % rule-of-thumb for absolute 
%bias suggests all parameters appear to have close-to-linear behavior. Lowry and Morton's 
asymmetry measure can be expressed as percentage of excess variance. Ratkowsky (quoted in 
Seber and Wild, 1989, P 188) gives reference values for the measure. Expressed as percentage, 
values <1 % indicate behavior is very close to linear: values between 1 % and 5% indicate 
increasing skewness in the distribution of the parameter: and values >5%, skewness is very 
apparent in simulation. Skewness measures departure from symmetry. Hougaard's 
approximate skewness works well when n>150. Ratkowsky (1983) gives reference values for 
skewness. They are: Iskewnessl <0.1 indicates behavior is very close to linear; between 0.1 and 
0.25, reasonably close to linear; between 0.25 and 1, apparent skewness; and >1, considerable 
skewness. 
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3. RESULTS 
Bi-Iogistic versus Segmented Bi-Logistic Model 
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Figure 1 and Table 2 show how well the segmented model fits the data (146 min) from 
Steer 445 on day 2. The observed values of tmax and max Tb are 36.7 min and 1.89 C, 
respectively. The model predictions for these parameters are 36.8 min and 1.93 C, respectively. 
In other words, segmented model predicts tmax and max Tb very well (although max Tb appears 
slightly over estimated by 0.04). The mean square error, MSE of 0.0006 and standard error of 
the estimates, SEs, are small. The 95% confidence intervals, CIs, are adequate and exclude zero. 
Figure 2 and Table 3, on the other hand, show how well the bi-Iogistic model fits the same data. 
The MSE is greater (0.002) than that given by the segmented model. In addition, the max Tb is 
underestimated by 0.05 (1.84 C) and predicted to occur 5.7 minutes later (42.4 min) than the 
observed time to maximum. So, in this particular case the segmented bi-Iogistic parameter 
estimates are closer to the observed values. 

We present another example where the max Tb prediction is even better. Figure 3 and 
Table 4 show how well the segmented model fits the data (78 min) from Steer 336 on day 2. The 
observed estimates of tmax and max Tb are 33.0 min and 0.98 C, respectively. The model 
predictions for these parameters (33.50 min and 0.98 C, respectively) are very close to the 
observed values. The MSE equals 0.0005 and the SEs are small. The CIs are adequate and 
exclude zero. Figure 4 and Table 5, on the other hand, show the bi-Iogistic model provides a 
poorer fit to the same data. The MSE is larger (0.00l). Tmax and max Tb are again 
underestimated (32.7 min and 0.92 C, respectively). 

When the nonlinear behavior of the segmented model was assessed, the planarity 
assumption appeared acceptable for both segments (challenge and recovery) since INs are 0.017 
and 0.042, respectively. The parameter-effects curvature (PE) is also acceptable for both 
segments (0.124 and 0.128, respectively). The bi-Iogistic model also appeared acceptable 
(IN=0.046 and PE=0.3385). As for the measures proposed by Ratkowsky, the skewness, %bias, 
and %excess variance of Table 6 show that all parameters appear to have close-to-linear behavior 
for the segmented model. But, the asymptotic properties of the bi-Iogistic model (Table 7) 
indicate a problem with K2 (skewness = -.8527). The other parameters have close-to-linear 
behavior. 

Different recovery durations 
Both models (Eqs. [1] and [2]) were analyzed using three different times to estimate the 

recovery time (86, 146, and 204 min.) for Steer 445 on day 2. When the segmented model was 
used (Figure 5), the maximum body temperature and the time to reach it were robust, 
decreasing slightly as the record length increased (max Tb from 1.91 to 1.90 and tmax from 
36.3 to 35.7). However, when the bi-Iogistic model was used, the range for these two 
parameters was greater (max Tb from 1.89 to 1.79 and tmax from 41.8 to 42.7). Table 8 gives 
the parameter estimates from different recovery durations, and the %change in the estimates 
with respect to the estimates from 146 min. The results show that the segmented model was 
more robust to changes in recovery durations. Only one parameter, K2, had a %change greater 
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than 4%. Whereas, the bi-Iogistic model had a %change greater than 4% for four parameters 
(T], 8, K2, and T2)' These large %changes are highlighted in Table 8. 

Hormetic Behavior 
The result associated with the fit of Eq. 3 is plotted in Figure 6 and tabulated in Table 9 

for Steer 445 on day 2. The estimate of y (-0.008) is significantly different from zero. The 
estimated max Tb (l.90) is very close to the observed value (1.89) but tmax is predicted to 
occur 4.5 minutes later than the observed value. The MSE (0.0008) is slightly larger than that 
of segmented model (0.0006); and, although the planarity assumption appears acceptable (IN = 
0.07), the uniform coordinates assumption does not (PE= 1.04). In addition, the rate of 
recovery, K2, has a %bias of l.30, %excess variance of 1.60 and skewness of -5.31. 
Therefore, a separate adjustment for the initial rate of increase in Tb during the challenge does 
not enhance the suitability of the model compared to the segmented version. 

4. SUMMARY 
The segmented version of the bi-logistic appeared superior to both the bi-Iogistic and 

hormetic models for modeling heat stress in processing feedlot cattle. The nonlinear 
curvatures validated the assumptions (i.e. both intrinsic and parameter-effects curvature are 
<0.4) and all parameter estimates showed close-to-linear behavior (i.e. %bias, %excess 
variance, and skewness criteria are satisfied). The segmented bi-logistic model followed the 
dynamics of the handling process. The predictions for time to reach maximum body 
temperature from the segmented bi-Iogistic model were closer to the observed value than either 
the bi-Iogistic or hormetic estimates. Moreover, the segmented bi-Iogistic model was robust to 
different definitions of recovery time. 
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T bl 1 E a e · t ID . xperImen a eSIgn 
Steer Day 1 Day Day Days Day Day 

2 3 4&5 6 7 
Distance (ft) 

Pen 1 377 1200 1200 200 200 
445 1200 1200 200 200 

Pen 2 442 200 200 1200 1200 
508 200 200 1200 1200 

Figure 1. Segmented bi-Iogistic model (Eq. 2) Figure 2. Bi-Iogistic model (Eq. 1) 

Steer 445 on Day 2 (146 min) 
Observed tmax=36.7 Max Tb=1.89 

2 
~ 1.8 

~ 1.6 
:::: 1.4 
~ 1.2 
El 1 
~ 0.8 ..s 0.6 
Q 0.4 = 0.2 tmax=36.8 Max Tb=1.93 
o~~~--~~~--~~ 

o ~ ~ 00 00 1001~1~1oo 

Time (min) 

~ 
I-

= -eo:: 
I-
~ 

S' 
~ 
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"0 
Q = 

2 
1.8 
1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 

0 
-0.2 

MSE=O.002 
tmax=42.4 Max Tb= 1. 84 

20 40 60 80 100 120 140 160 

Time (min) 

T bl 2 S a e · t d d I (St 445 D 2 146 .) MSE=O.0006 e men e mo e eer on ay , mIn, 
Parameter Estimate SE Lower CI Upper CI 
a 2.187 0.057 2.072 2.302 

K1 -0.178 0.006 -0.190 -0.167 

'["1 25.538 0.381 24.778 26.299 

'["2 117.2 0.891 115.4 119.0 

K2 -0.0490 0.0036 -0.0561 -0.0418 

T bl 3 B· I . f d I (St 445 D 2 146 .) MSE=O.002 a e · 1- OgiS IC mo e eer on ay , mIn, 
Parameter Estimate SE Lower CI Upper CI 
a 2.200 0.104 1.992 2.407 

K1 -0.191 0.012 -0.214 -0.167 

'["1 23.631 0.211 23.209 24.052 
8 0.803 0.021 0.761 0.846 

K2 -0.047 0.004 -0.055 -0.039 
'["2 70.110 3.206 63.714 76.507 
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Figure 3. Segmented bi-Iogistic model (Eq. 2) Figure 4. Bi-Iogistic model (Eq. 1) 
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• 

•• MSE=O.0005 

• • • 
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-0.2 -l--~~-~~~-~~~ -0.2 

o 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 

Time (min) Time (min) 

T bI 4 S a e ° eg t d d I (St 336 D 2 78 0) men e mo e eer on ay , mIll 
Parameter Estimate SE Lower CI Upper CI 
a 1.053 0.031 0.989 1.117 

Kl -0.244 0.014 -0.271 -0.216 

'tl 22.787 0.364 22.047 23.528 

K2 -0.0727 0.0120 -0.0971 -0.0483 

't2 50.981 0.694 49.571 52.391 

T bI 5 B O I ° f d I (St 336 D 2 78 0) a e . 1- ogls IC mo e eer on ay , mIll 
Parameter Estimate SE Lower CI Upper CI 
a 1.815 0.758 0.274 3.356 

Kl -0.206 0.038 -0.283 -0.128 

'tl 23.739 0.982 21.743 25.735 

8 0.275 0.014 0.246 0.303 

K2 -0.119 0.008 -0.135 -0.103 

't2 35.375 4.918 25.380 45.370 
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Table 6. The estimates of parameters and their asymptotic properties for challenge and 
recovery (St 445 D 2) ~ th t db' I . f d I eer on ay or e segmen e 1- ogls IC mo e 

Challenge Recovery 
Para- Estimate Skew- Bias Excess Para- Estimate Skew- Bias 
meter ness (%) Var(%) meter ness (%) 

a 2.148 0.237 0.087 0.430 tmax 38.247 -0.196 -0.078 

Kl -0.181 0.096 0.083 0.121 Kz -0.0538 -0.0843 0.177 

'tl 25.299 0.198 0.043 0.373 'tz 117.2 0.0567 0.006 

T bl 7 A a e . t f f symplo IC proper les 0 fth b' I . f d I (St 445 on Day 2) e 1- ogls IC mo e eer 
Parameter Estimate Skewness Bias (%) Excess 

Var(%) 
a 2.1998 0.2835 0.0143 0.0797 

Kl -0.1906 -0.1257 0.0361 0.0221 

'tl 23.6308 0.0105 -0.0145 0.1378 

8 0.8031 -0.0283 -0.0640 0.0908 

Kz -0.0474 -0.8527 0.1673 0.2516 

'tz 70.1103 -0.2197 0.0163 0.1297 

Figure 5. Different recovery durations for the segmented bi-logistic model (Eq. 2) 
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T bl 8 D·n a e . I erent recovery d uratIons (S teer 445 D 2) on av 

Segmented 
Bi-Iogistic 
Model 

Bi-Iogistic 
Model 

Para- 86 min 
meter Estimate % Change 

a 2.203 0.732 

Kl -0.177 -0.562 

'tl 25.634 0.376 

K2 -0.033 -32.653 

't2 112.9 -3.669 
tmax 36.266 -1.571 

al 2.255 2.500 

Kl -0.186 -2.204 

'tl 24.736 4.676 

8 1.214 51.114 

K2 -0.081 70.042 

't2 54.533 -22.219 

Figure 6. Hormetic behavior (Eq. 3) 

Steer 445 on Day 2 (143 min) 
Observed tmax=36.7 Max Tb=1.89 2.0 . __ ._. __ .. _ ............ _ ..... . 

l.S 
f: l.6 = E l.4 
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=:I 0.4 
0.2 

MSE=0.0008 
tmax=4l.2 Max Tb=l.90 
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Time (min) 

146 min 
Estimate 

2.187 
-0.178 
25.538 
-0.049 
117.2 

36.845 
2.200 

-0.191 
23.631 

0.803 
-0.047 
70.110 

T bl 9 H a e . ormetIc b h . (S e aVlOr teer 445 D 2) on av 
Parameter Estimate SE LowerCI UpperCI 

a 2.311 0.289 1.733 2.889 

Kl -0.185 0.015 -0.215 -0.156 

'tl 24.927 0.329 24.271 25.584 

8 1.896 0.056 1.784 2.008 

K2 -0.082 0.016 -0.114 -0.050 

't2 45.113 7.025 31.083 59.143 
y -0.008 0.0004 -0.009 -0.007 

204 min 
Estimate % Change 

2.224 1.692 
-0.176 -1.124 
25.757 0.858 
-0.031 -36.735 
116.9 -0.256 

35.707 -3.089 
2.210 0.450 

-0.186 -2.361 
22.465 -4.932 

0.472 -41.253 
-0.031 -34.599 
84.630 20.709 

Bias (%) Excess 
Var (%) 

-0.326 0.4218 
0.144 0.208 

-0.036 0.307 
-0.0538 0.305 

1.304 1.601 
0.512 0.456 

-0.0867 0.264 

217 

Skewness 

-0.569 
-0.717 
-1.005 
0.700 

-5.319 
1.416 

-0.533 
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