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Detection Power of Random, Case-Control, and Case-Parent Control Designs 
for Association Tests and Genetic Mapping of Complex Traits 

Guoping Shu, Beiyan Zeng, and Oscar Smith 

Complex Traits Genetics and Statistical Consulting, Pioneer Hi-Bred IntI, Inc., DuPont Agriculture and 
Nutrition, 7250 NW 62nd Ave. P.o. Box 552, Johnston, IA 50131, USA 

ABSTRACT 

We compared the relative detection power of random, case-control, and case-parent 
control (TDT) study designs by computer simulation of five parameters: Mode of inheritance 
(MOl), magnitude of genetic effect (r ), disease susceptibility allele frequency in the founder 
population (PI)' population age (t ), and the genetic distance ((} ) between disease susceptibility 
locus ( D ), and marker locus (M). Our results show that none of the three study designs can be 
claimed to be the most powerful (requiring the smallest sample size) constantly under every 
different genetic context (parameter combination). Our analysis indicates that both case-parent 
control and case-control designs have more power than the random sampling design in most 
genetic contexts. But the relative power between case-parent and case control depends on the 
specific parameter combinations. Random sampling has more power than case-parent control 
(although less power than case-control design) under some high genetic effect (r ) and initial 
allele frequency (PI) combinations. All the three study designs show the most power under 
additive models of inheritance and least power under recessive mode of inheritance. 

1. INTRODUCTION 

Although meiotic genetic linkage analysis has been successfully used to map genes that largely 
control monogenic traits or diseases, this approach is less successful in the detection of genetic 
loci for complex and quantitative traits or diseases where the genetic effects of individual loci are 
relatively small and the sample size available for linkage analysis is too small to provide 
sufficient detection power. Association analyses or association tests, which can be done in a 
large population sample, have been proposed as a solution for the future of complex trait genetic 
mapping (Lander, 1996; Risch and Merikangas, 1996). Various study designs or sampling 
methods for association tests have been proposed and implemented. The three most widely used 
designs are: random sampling, case-control, and case-parent control. When choosing among 
these designs for an association study, the relative power and the minimum sample size for 
reaching a desired power is an important concern because of the high cost involved in sample 
collection and genotyping. Computer simulation under proper statistical genetic models has been 
employed to estimate the power for each study design (Risch and Merikangas, 1996; Teng and 
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Risch, 1999; Schaid, 1999; Knapp, 1999; Long and Langley, 1999; Ott, 1999; Lou and Wu, 
2001; Gordon et al. 2002). The relative powers of the three study designs are difficult to derive 
from summarizing the results of these literatures because the results were obtained using 
different models and different model parameters. We are not aware of any published literature 
that has compared the relative powers of the three study designs under the same set of model 
parameters. 

The goals of this study were to determine the relationship between the power of detection 
and sample size and to estimate the minimum samples size required to reach 80% of detection 
power for each ofthe three study designs. Computer simulation was carried out using the 
combination of the same set of statistical genetic parameters (mode of inheritance, initial disease 
allele frequency, magnitude of genetic effect). 

2. METHODS 

2.1 Statistical and Population Genetic Models 

We assume that a complex trait is controlled by one major genetic locus and a number of 
minor genetic loci; the major genetic locus is biallelic (D1 / D2)' We assume that at t generations 

ago, a disease susceptibility allele D1 was introduced into a population of genotype D2M1 II D2M2 

through a group of D1 carrier individuals of genotype D1M1 II D2M 2 to form a founder population, a 

common scenario in human immigration and in plant and animal breeding. We further assume 
that in the founder population (generation zero, t = 0), the proportion or percentage of 
D1M1 II D2M2 individuals and D2M1 II D2M2 individuals are P and 1- P respectively and the 

D1 disease susceptibility allele is in cis- position with the M1 marker allele and normal allele D2 is 

in cis- position with M2 marker allele on a chromosome. 

Table 1. Haplotype Configuration and Haplotype/Allele Frequencies 
At Generation (t = 0) with Susceptibility Allele Carrier Frequency P • 

Marker Locus 
Disease Locus 

M1 (q1) M2 (q2) Total 

Disease D1 (P1 ) hll .O = -+ p h12.0 = 0 lp 
2 

Normal D2 (P2 ) h2 1.0 = +(1- P) h22.0 = HP + (1- P)] l- l P 2 

Total 1 1 l.0 "2 "2 

The haplotype configuration and haplotype/allele frequencies at generation zero are 
shown in Table 1. In the table, q1 and q2 are the allele frequencies for M1 and M2 respectively 

and the P1 and P2 are the allele frequency for D1 and D2 respectively and hll .o, h12.o, h21.0' hno 
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are the population frequencies for haplotype D]M] , D]M 2, D2M], D2M 2 at generation zero 

respectively. We define the disease phenotype penetrance of genotype D]D], D]D2, and D2D2 as 

ill = P(Affected I D]DJ, i12 = P(Affected I D]DJ, and 122 = P(Affected I D2D2) respectively. 

We assume the population we sample from is a random mating population with Hardy-Weinberg 
equilibrium for the disease susceptibility locus, and the population prevalence of the disease is 
thus defined as 

K = P: 111 + 2 PIPd12 + P;h2 ( 1 ) 
To facilitate computer simulation we express the penetrance of three disease genotypes as a 
function (called penetrance function) of the major effect gene penetrance parameter y(> 1) and 

minor effect gene penetrance (or background penetrance) parameter OJ(:;t 0) , the penetrance 
functions for three modes of inheritance (MOrs) are listed in Table 2. 

Table 2. Penetrance Functions for Three Different Modes of Inheritance (MOl) 

MOl 

Additive OJ 

Recessive 

Dominant OJ 

O):;t 0, y>l 

Penetrance Function 

OJ 

OJy 

.!j]CDPJ 

OJ2y 

OJy 

OJy 

2.2 Computer Simulation Parameters 

We assume that each chromosome is covered with selection-neutral biallelic single nucleotide 
polymorphic markers, such as, SNPs. The marker density is approximately 2.0 centiMorgan 
(cM) and the disease susceptibility locus is 1.0 cM apart from a flanking SNP marker ( M] / M 2 ). 

In our simulation we treat Morgan map distance of 1.0 cM as the equivalent of a recombination 
fraction of B = 0.01. 
We assume that the input data is collected from the population of generation 10 ( t = 10) by one of 
the three sampling methods: random, case-control, and case-parent control. The haplotype 
frequency at current generation ( t = 10) is computed by 

hijl = (I-BY (hijo - PiOqjO) + PiOqjO (2) 
Here we assume Hardy-Weinberg equilibrium for the disease susceptibility locus, that is, the 
disease susceptibility allele frequency remains the same after t generations of random mating. 
Since the haplotype frequencies change over generations, the linkage disequilibrium between 
disease susceptibility and marker allele, measured by linkage disequilibrium coefficient D of 
Lewontin (1988) also degenerate over generations: 
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(3) 

2.3 Estimation of Statistical Power and Sample Size 

The statistical power is defined as Power = 1 - f3 , where f3 is the probability of Type II 

error or the probability of incorrectly accepting the null hypothesis H o, thus the power is the 

probability of correctly accepting the alternative hypothesis H A • The formula for sample size 
estimation can be derived from the formula of power calculation, which differs for different 

study designs (see next section for detail). We use type I error rate a = 5xlO-8 in our computer 
simulation to reduce possible false positives which might be a concern when applying the 
simulation result to guiding a study design for whole genome scanning. 

We can estimate the minimum sample size for reaching any level of power for statistical 
association between two loci of any map distance (0 :s; (J :s; 0.5 ) for a sample collected from 
generation t under any combination of the three genetic parameters: r, PI' and modes of 

inheritance (MOl). Due to space limitation, we only report the computer simulation result of 
total 48 combinations of the three genetic parameters (3x4x4) for 80% detection power at 
(J = 0.01 and t = 10: (1) three modes of inheritance (MOl): additive, recessive, and dominant, (2) 
four levels of major gene effect (r): 1.5, 3, 5, 7, and (3) four initial disease susceptibility allele 

frequencies (PI =tP): 0.05,0.15,0.35,0.5. All our simulation models were implemented in the 
SAS Language and all our simulations are done in SAS Version 8.2 for Window (SAS Institute, 
2002). The following three sections give the details of three different study designs. 

2.3.1 Random Sampling Design For our computer simulation, we assume a random 
sample of individuals was collected from the population described in section 2.1. Individuals in 
the sample are sorted into a 2x3 two-way table based on their phenotype (normal or 
disease, j = 0,1) and their marker allele genotypes (j = 0,1,2). When the null hypothesis Ho is true, 

that is, when there is no linkage disequilibrium between the disease susceptibility locus and the 
marker locus, we expect the joint probability estimated using the observed data, Pij' is the same 

as the product of two marginal probabilities: 1fg(M) = 1fi+1f+J , and Pij has a central chi-square 

distribution X(2v ,a) with degrees of freedom v = (2 -1)(3 -1) = 2 . When the alternative 

hypothesis H A is true, that is, when the marker locus is tightly linked with the disease 

susceptibility locus, the joint probability Pi} has a noncentral chi-square distribution X~V'A) with 

v = (2 -1)(3 -1) = 2 and the noncentrality parameter of 1, which can be expressed as 

A = ntt [pu -ff/M)t 

i~l j~l ffij (M) 

nD2 {(J, - 21z + fY D2 + 2P1P2[qlJ, + (1- 2ql)1z - qjJ} 

PI
2P:[1- q12J, - 2Q1Q21z - Q~f,][Q:J, + 2Q1Q21z + Q~f,] 

See Appendix A for the derivation of this equation. 

(4) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/16



Applied Statistics in Agriculture 195 

The statistical test for the existence of linkage disequilibrium is thus a goodness of fit chi-square 
test between the observed joint probability Pi) and the expected joint probability when the null 

hypothesis is true, trij(M) , in a 2 x 3 contingency table (Agresti, 1990). 

The power is computed from difference in accumulated probability of the central and the 
noncentral chi-square distributions: 

Power = 1- fJ = Pr{x:.< ;::: x:,J (5) 

where v is the degree of freedom and for a 2x3 table, v = (2 -1)(3 - 1) = 2 . 

2.3.2 Case-Control Design For the case-control design, we sample from the same 
population as described in Section 2.1. The population can be viewed as comprising two 
subpopulations; n1 individuals were sampled from the subpopulation of affected individuals (A 

sample or case sample) and n2 individuals were sampled from the subpopulation of unaffected 

individuals (U sample or control sample). For convenience, we assume 111 = k112' where k = n j /n2 • 

In our simulation study, we assume the case sample and the control sample have equal size, and 
k = 1 and 111 = n2 although any other k value can be used in our models. The sample size for 

power comparison is defined as n = 111 + n1 = 2n1 = 2n2 . The n individuals are sorted into a 2 x 3 

two-way table based on their phenotype category (control or case, i = 0,1) and their marker 

genotypes (j = 0,1,2). When the null hypothesis Ho is true, that is, when there is no linkage 

disequilibrium between the disease susceptibility locus and the marker locus, we expect the 
marker genotype frequencies at the case subpopulation and at the control subpopulation are 
equal. Thus we have the joint probability estimated using the observed data in each cell of the 2 
x 3 table, p~ equal to the product of two marginal probability: trij = P;+P~j' Asymptotically, the 

Pearson's chi-square statistic follows a central chi-square distribution Xfv,a) (Agresti, 1990). 

When the alternative hypothesis HA is true, that is, when the marker locus is tightly linked with 

the disease susceptibility locus, we expect the difference in marker genotype frequencies 
between the case and the control samples, follows a noncentral chi-square distribution X:,A with 

and the noncentrality parameter 

(6) 

where k = n2 / nj , n1 is the size of case sample, and n2 = kn1 , is the size of the control sample. 

Equation (6) gives the relationship between sample size and power, and we compute asymptotic 
power using equation (5) and the degrees of freedom v = (3 -1) = 2. See Appendix B for more 
detail. 

2.3.3 Case-Parental Control Design There are a number of approaches to detecting 
statistical association using pedigree relationship or family data (Ott, 1989; Spielman et aI., 
1993; Ott, 1999). A widely used approach is the TDT test, or Transmission Disequilibrium Test 
(Spielman et aI, 1993), which use case child and parent triplet or trio data. Our power and sample 
size estimate is for the TDT test. We assume N number of triplets or trios (one case child and its 
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two parents) is sampled from a random mating population, the same population used for random 
sampling and case-control sampling. Statistically, the TDT test is McNemar test (McNemar, 
1947; Agresti, 1990; Weir, 1996; Ott, 1999). There are several different approaches to 
computing power and sample size for TDT test (Camp, 1997; Schaid, 1999, Knapp, 1999; Ott, 
1999). The method we use here is a generalization of the method proposed by Schaid (1999) 
(See Appendix C for detail). 

We compute statistical power using the relation between sample size and power which is 
expressed as 

(7) 

where 17 is the expected number of heterozygous parents per case child, N is the number of 
affected case children (also the number of child-parent triplets) in the sample, 7r * is the 
probability of transmission of an DJ disease susceptibility allele to an affected child, Za and zp 
are Z values of a standard normal distribution at Type I error level of a and Type II error level 
of f3 . Equation (7) gives the relationship between Nand Z p , from which we can obtain sample 

size (3N) and the power (1 - f3 ). Here we use 3N instead of N because TDT test requires 

genotyping both parents of a case child, thus 3N is comparable to the n in random sampling and 
case-control. See Appendix C for details about equation (7). 

3. Result 

Table 3 shows the minimum sample size requirement to reach 80% power and the 
relative power of case-control and case-parent (TDT) designs over a random sampling design 
under different parameter combinations. 

Table 3. Sample Size Necessary to Gain 80% Detction Power (t = 10,B = 0.01) 

P1 (initial Additive Recessive Dominant 

Gamma 
disease 
allele Case- Relative Case- Relative Case- Relative Case- Relative Case- Relative Case- Relative 

frequency) 
Random 

Control Power Parent Power Random 
Control Power Parent Power 

Random Control Power Parent Power 
(R) 

(CC) (RlCC) (TOT) (RlTDT) 
(R) 

(CC) (RlCC) (TOT) (RlTDll 
(R) 

(CC) (R/CC) (TOll I (RiTDll 
0.05 >100000 >100000 NA 68140 NA >100000 >100000 NA >100000 NA >100000 >100000 NA 90700 NA 

1.5 0.15 28030 11785 2.38 6730 4.16 >100000 >100000 NA >100000 NA 64475 25705 2.51 14835 4.35 
0.35 3490 1855 1.88 1140 3.06 47195 18675 2.53 13775 3.43 20395 8715 2.34 5970 3.42 
0.5 1380 886 1.56 570 2.42 11925 5135 2.32 3770 3.16 14165 6245 2.27 5625 2.52 

0.05 26480 11175 2.37 6400 4.14 >100000 >100000 NA >100000 NA 30625 12785 2.40 7360 4.16 
3 015 3430 1855 1.85 1180 2.91 86251 33325 2.59 25085 3.44 5245 2635 1.99 1730 3.03 

0.35 730 550 1.33 435 1.68 3385 1670 2.03 1200 2.82 1915 1165 1.64 1035 1.85 
0.5 360 325 1.11 310 1.16 955 580 1.65 415 2.30 1395 915 1.52 1155 1.21 

0.05 7740 3695 2.09 2230 3.47 >100000 >100000 NA >100000 NA 8705 4095 2.13 2490 3.50 
5 0.15 1180 795 1.48 590 2.00 22371 9215 2.43 6815 3.28 1665 1035 1.61 795 2.09 

0.35 270 260 1.04 305 0.89 985 595 1.66 425 2.32 630 505 1.25 610 1.03 
0.5 130 130 1.00 250 0.52 300 242 1.24 190 1.58 450 400 1.13 735 0.61 

0.05 3870 2045 1.89 1300 2.98 >100000 >100000 NA >100000 NA 4315 2235 1.93 1145 3.77 
7 0.15 630 495 1.27 430 1.47 10305 4495 2.29 3285 3.14 865 640 1.35 555 1.56 

0.35 130 130 1.00 265 0.49 495 350 1.41 255 1.94 312 295 1.06 495 0.63 
0.5 50 20 2.50 230 0.22 155 150 1.03 125 1.24 205 215 0.95 620 0.33 

NA. no available 
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For additive mode of inheritance, the table shows that for a small genetic effect 
(r = 1.5, 3), both case-control and case-parental (TDT) are more powerful than random 
sampling, and the TDT is more powerful than the case-control design. At a large genetic effect 
value ( r = 5, 7), the relative power of different study designs depends on the level of initial 

frequency of PI allele. At low PI , both case-control and the TDT show more power, but at high 

PI allele frequency, the TDT has the least power and case-control has the most power in most 

combinations. Notes that random sampling design outperforms TDT in a number of 
combinations. The above result is a summary for the additive mode; it is largely true for the 
dominant mode. For the recessive mode, both case-control and TDT outperform random 
sampling designs and TDT also outperforms the case-control design (Table 3). 

Figure 1. Power and Sample Size By Modes of Inheritance (t = 10, e = 0.01 ,r =5.0) 
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Figure 1 and Figure 2 show the relationship between the sample size and statistical power 
at two allele frequencies PI = 0.15 and PI = 0.50 under different study designs (Figure 1) and 
different modes of inheritance (Figure 2). The figures are based on the simulation results at 
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r = 5.0 and () =0.01. The left and right panel of each figure shows a difference in the rate of 
power increase at two levels of initial allele frequencies. Both figures show that the rate of 
reaching 100% power is faster at PI = 0.5 than at PI = 0.15 . Figure 1 also indicates that 

at PI = 0.15, the sample size needed to reach high power is extremely large for recessive mode 

compare with the dominant mode and additive mode. However at PI = 0.5, the detection power 

increases rapidly for recessive mode. 

Figure 2. Power and Sample Size By Study Design (t = 10,8 = 0.01 ,r = 5.0) 
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Figure 1 also shows that at PI = 0.15, case-parental (TDT) design shows the fastest 

increase in power when sample size increases whereas the random sampling shows the slowest 
increase. At recessive mode, all study designs require more than 2000 informative individuals to 
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reach 80% or more power. The relative performance of three study designs are quite different 
atpI = 0.50. 

199 

Figure 2 shows the comparison the power and sample size among three different modes 
of inheritance at each study design. We can see that at PI = 0.15, the additive mode shows the 
fastest increase in detection power then, the dominant mode, and the recessive mode. That is, the 
sample size to reach the same power is the smallest for additive mode, the second for dominant 
mode, and the largest for recessive mode. At PI = 0.50 we see much faster increase of power for 
recessive mode in all three designs. 

4. Discussion 

It is still being debated on which study design for association analysis is the most 
effective (Risch, 1997; Morton and Collins, 1998; Teng and Risch, 1998; Long and Langley, 
1999). Random sampling, case-control, and case-parental control are the mostly widely used 
study designs. Random sampling design, although widely used in population genetic modeling 
and molecular evolution studies because of its ease in parameterization, has been considered the 
least effective study design for genetic mapping especially when population disease prevalence is 
low (corresponding to low disease susceptibility allele frequency and low phenotype penetrance). 
The case-control design is widely used in genetic epidemiology and large-scale association 
mapping because it is a very effective design when the disease prevalence is low. But it will 
produce spurious associations when the population is stratified. The case-parental control design, 
a type of family-based study design, is a robust design in the presence of population 
stratification, however collecting nuclear families or parent-child trios for TDT test is costly or, 
in some situation, impossible (for example, for a late onset trait or disease, the parental data are 
often not available). Although the power for each individual study design has been reported (Luo 
and Wu, 2001, random sampling; Slager and Schaid, 2001, case-control, Risch and Merikangas, 
1996, Teng and Risch, 1999, Long and Langley, 1999, Schaid, 1999, Knapp, 1999, case-parental 
control), direct comparison of their relative detection power is not available in the literature. This 
study is the first attempt to comparing all three designs for their relative powers using computer 
simulation under different combinations of five statistical and genetic parameters. 

The focus of this study is to determine which study design is the most powerful design in 
term of minimum sample size required under the assumption that the population is not stratified 
and that sampling and genotyping cost per sample unit is the same for each study design. We 
found from these simulation studies that none of the three designs are universally superior in 
terms of power for all parameter combinations. For example, TDT shows more power than case­
control and random sampling in most parameter combinations, but shows the lowest 
performance at some high r and high p, combinations (Figure 1-B2, Table 3). Random 
sampling shows the lowest performance at most parameter combinations but performances the 
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best at the parameter combination of r=7, PI =0.5, and dominant mode (Table 3). Our simulation 

results demonstrate that MOl, r, PI and their combinations are all critical in determining the 

performance for each study design. Since the true values of these factors are seldom known in 
real life, the power for any design is uncertain, which presents a challenge for applying 
association study to genetic mapping. 

In addition to three simulation parameters that were widely used in previous studies: 
MOl, r, and PI' we also introduce two new parameters in our simulation models: genetic 

distance between the marker locus and the disease susceptibility locus, (), and the age of 
population, or the number of generations after founders, t. We can estimate the power and 
sample size for any combination of the two parameters, although we only reported here the 
results for one combination of these two parameters: B= 0.01 t= lOin this work. The published 
power analysis results ofSchaid (1999) and Lou and Wu (2001) can be reproduced using our 
models by setting the parameter values to: B= 0, t= o. Thus, their models are the special cases of 
our models. The significance of this generalization or extension is that our models can be used to 
estimate the power and sample size for both whole genome candidate gene screening and fine 
mapping. For candidate gene genome screening where the marker locus and the disease 
susceptibility locus are assumed to reside within the same candidate gene sequence and are 
completely linked, we set B = 0 (Risch and Merikangas, 1996; Schaid, 1999; Knapp, 1999; Lou 
and Wu, 2001). For fine mapping where the two loci are tightly linked but do not overlap 
( 0 < B::;; 0.5), we can set B to any value to simulate fine mapping using maps of different marker 
density. Fine mapping has been widely used for refining the genetic map location of an unknown 
trait/disease locus by its association with a set of mapped SNP or SSR markers of usually 
unknown biological functions. 

In order to extend the TDT design of Schaid (1999) from complete linkage ( B = 0) to 
tight linkage ( () > 0 ), we use the apparent penetrance of marker genotype f; instead of marker 

genotype relative risk Ij =;;2/;;1 and r2 =;;2/;;1 used in Schaid (1999). Since the disease penetrance 

fj~ is a constant for a given genotype of disease susceptibility locus, the apparent penetrance of a 

marker genotype is also a constant in Schaid (1999) because f; = fij when B = 0 . In our model, 

the apparent penetrancef; is a function of () (see equation (2) and (11)). The advantage of using 

the apparent penetrance notation is that we can express the conditional probability P(gk I A, mz) 

(see Appendix C and column 6, Table 4) for three different MOls using a single formula instead 
of three different formula as used in Schaid (1999). 

Since our main interest in this study is to compare the relative detection power of 

different study designs, we estimate sample size using type I error rate a = 5xl0-8 under the 
assumption that the chromosome location of a trait or disease gene locus is completely unknown 
and a whole genome scanning is needed. In many studies, the chromosome location of a trait or 
disease gene locus is known (from previous linkage analysis, for example), association test is 
only used for fine mapping not for genome scanning. If this is the case, the type I error rate can 
be set to a much larger value, and the actual sample size needed to reach 80% power should be 
smaller than we provide here. Therefore, the minimum sample sizes reported here should be 
treated as very conservative estimates. 
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Table 4. Conditional Probability of Observing Case Marker Genotype in Case-Parent Control Designs 

Parental 
Mating Type P(m, I A) g, peg, 1m) 

yTDT 
peg, I A, m) P(g", I A) 

(ml ) 

M)M)xM)M) 4 J;'] - q4 !i'l 
ql "7 M)M) 1 1 1 K' 

/;') I(ft') + /;'2) 2 3 ;;, 

M)M)xM)M2 2 3 J;>!,,~ M)M) 112 1 qj q2 --:-K 
qj q2 -K-'- M)M2 2 2 2 r,; 

112 ° 
/;'2 I (h') + ;;'2 ) qjq2 "7 

M)M)xM2M2 2 2 2 f~ - 2 2 2 r,; 
qjq2 "7 MIM2 1 1 qjq2 "7 

.2 2 ill 

114 1,1 h') 1(/;') + 2/;'2 + f~2) 
q, q, -:-

K 

M jM 2XM jM 2 2 2 t;'1+2J;~+f~ M)M) 
2/;'2 1(/;') + 2/;'2 + h,2) 

2 221.; qjq2--K'- M)M2 112 1,0 q,q, -; 

M2M2 h,2 1(/;') + 2/;'2 + f~2) 2 2 f~ 

114 0,0 qjq2 "7 

2 3 J;>f~ MIM2 112 1 fi'2 /(fi'2 + f~2) 2 3 r,~ 
M)M2 xM2M 2 

qj q2 -K'-
M2M2 ° f~2 /(iJ'2 + f~2) 

qj q2"7 

112 2 3 f,~ qj q2"7 

4 f~ 

M2M2 XM2M2 q2"7 M2M2 1 - 1 4 f~ 
q2 "7 
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Appendix A 

The joint probability of the phenotype and marker genotype of an individual in a 2 x 3 two-way 
table, Pij' described in Section 2.3.1 is estimated by 

PIO = Pr(A,M 2M 2) = J;A~ + J;2(2h.2 hn) + f~2h~ 

PII = Pr(A,MjM2) = J;, (2h"'~2) + J;,[(2h.,hn ) + (2h.2h,Jl + fn(2h2lh22 ) 

PI2 = Pr(A,M,MJ = J;,h.~ + J;2 (2h.,h,,) + !,2h:, 

pO<) = Pr(U,M 2M2) = (1- J;,)h.~ + (1- J;2)(2h.2hn) + (1- fn)h~ 

Po, = Pr(U,MjM 2) = (1- f.J(2h.A2) + (1- J;2)[(2hllh22 ) + (2h.2h2l)1 + (1- f n )(2h2,h22 ) 

P02 = Pr(U,M,MJ = (1- J;th.'J + (1- J;2)(2h.,h2J + (1- !'2)h~, 

From equation (3), we have 

~ j = hD M = Plqj + D, 1 , 

(9) 
h2j =hDM = P2qj-D, h22 =hDM = P2q2 +D 

2 1 2 2 

(8) 

Replace hij in (8) and using (9), we obtain (4). See Lou and Wu (2001) for a different approach 

of obtaining (4). 

Appendix B 

For computing noncentrality parameter A, we obtain the conditional probability of marker 
genotype given a phenotype in case-control study design of 2.3.2 from the joint probability given 
in (8) of Appendix A, 

, P,o ' P" ' PI2 p,o =Pr(M2M2 1 A)=-, P" =Pr(MjM2 1 A) =-, P12 = Pr(MjMjl A) =-
KKK (10) 

'( Poo ' ( POI' P02 Poo = Pr M2M2IU)=--, Po, =Pr MjM21 U)=--, P02 =Pr(MjMjIU)=--
1-K 1-K 1-K 

By incorporating (10) into Mitra (1958), we have equation (6) (Mitra, 1958; Agresti, 1990; 
Gordon et. a1., 2002). 

Appendix C 

There are four steps to obtain the value of equation (7). 
(1) Compute the conditional probability of observing case child given the marker genotype 
gk = MiMj (which is also called apparent penetrance of a marker genotype): 

, {' h' + {' (2h h ) + f h2 

{' = peA I g = M M ) = JIl', it, \I 2i 22 21 
J il k i I 2 

ql 
(11) 
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The conditional probability given by Schaid (1999) is a special case of this general formula at 

()= 0 where/~ = Ii). 
(2) Compute the conditional probability of the kth marker genotype (gk ) for the case child 

given the lth parental mating type (m[), P(gk I A, m[): 

(12) 

k=l 

203 

where peA I gk) is the apparent penetrance ~ defined in expression (11) and P(gk I m[) is the 

probability of observing marker genotype gk in a child given parental mating type m[ (column 4, 
Table 4). 

There are three marker genotypes for all offspring cases (column 3 Table 4) and 6 
possible parental mating types (column 1, Table 4). However only the conditional probability 
P(gk I A, m[) for three informative mating types (type 2,4,5, column 1, Table 4) need to be 

computed and the three noninformative types (type 1,3,6) are always 1 (column 6, Table 4). 
(3) Compute probability of observing marker genotype gk in case child given mating type m[: 

P(gkl[ I A) = P(m[ I A)P(gk I A, m[) (13) 
which is the product of column 2 and column 6 in Table 4. The result is reported in column 7 of 
Table 4. Equation (13) applies to any mode of inheritance (MOl). 

TDT 

(4) Specify yTDT, Compute hand Jr*: here, y is the number of M J marker alleles 

transmitted or not transmitted from a heterozygous parent to the case child, which has values 
either 1 or 0 and is listed in column 5 of Table 4. The h is the expected number of heterozygous 
parents per case child and is computed using 

h = L w,LP(g", I A) (14) 
1=2,4,5 

where w[ is the weight, which has values of 2 when both parents are heterozygous and 1 for all 

other mating types. The 1[ * in equation (7), the probability of transmission of and DJ disease 

susceptibility allele from n. heterozygote parents to an affected child, is computed from 

1[" = [L LyTDT P(g'll I A)] / Nh (15). 
10,,2,4,5 k 
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