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Unreplicated Variety Trials: Effects of Check Plot Density and Fixed Versus 
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Department of Biometry 

Dr. Jeff Pedersen, USDA-Agricultural Research Service 
University of Nebraska-Lincoln 
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ABSTRACT 

Crop researchers performing germplasm screenings are often unable to replicate their plots 
due to scarcity of seed and the large numbers of genotypes being evaluated. The use of known 
check varieties is a common method of overcoming the difficulties associated with unreplicated 
trials. In this simulation, we explored the effect of check plot density on the effectiveness of the 
resulting analysis. We also explored the effect of analyzing treatments as random versus fixed. 
Our study considers ten different designs with check densities ranging from 5% of the plots to 
50%. The designs and analyses were then compared on the basis of the correlation of the actual 
treatment effects with the following: "observed" yield, LSMEANs for treatments fixed, and 
BLUPs for treatments random. Finally, we observed the frequency with which the analysis 
ranked the top 10% of the treatments within the top 15% of the LSMEANs or BLUPs. It was 
found that the LSMEANs and BLUPs from the spatial analysis provide more accurate results 
than the observed Y-values. Also, if the treatments are analyzed as fixed and the LSMEANs are 
used as estimates, then there seems to be a certain point beyond which not much additional 
information is gained by adding more check plots. This plateau is reached near a check plot 
density of approximately 30%. Finally, the BLUPs seem to be a more accurate estimate of the 
true treatment effects than are the LSMEANs at the lower densities; in fact, the BLUPs perform 
relatively well even at check densities of only 5% or 10%. 

1. INTRODUCTION 

Quantifying and adjusting for variability due to the spatial structure of a field is an 
essential step in field variety trials. Estimation of spatial structure is made more difficult when 
the experimental varieties are not replicated. In these cases, there is no "internal" method of 
accounting for spatial structure. To help alleviate this problem, a "check" variety is often 
planted in a systematic pattern throughout the field. The check variety is then used to determine 
the spatial structure of the field so that the data from the experimental varieties can be adjusted 
and thus evaluated more accurately. 

When considering the use of a check variety for a field study, several problems confront 
the researcher. Among these are the pattern in which to plant the checks, the proportion of 
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checks to put in the field, and whether to analyze the experimental varieties as fixed or random 
treatments. The first of these is mentioned briefly by Burguefio et. al. (2000) and is explored in 
some detail by Maas (2002). The latter two issues are the focus of this study. To address these, 
we ran simulations based on a 10 by 10 (100 plot) grid and considered ten different designs with 
check densities ranging from 5% of the plots to 50%. 

2. METHODS 

Check Pattern Selection 

The patterns of checks were chosen based on the ideas mentioned by Maas (2002) 
relating to a principle of maximum separation of check plots. For the lower densities, our check 
patterns attempted to minimize the distance from each experimental variety to its nearest check. 
For the higher densities where all of the experimental varieties are adjacent to at least one check, 
we used the distance to the second closest check, then third closest, etc. In conjunction with 
these distance criteria, we also examined the number of checks that were a given distance from 
each experimental variety. Our aim was to maximize the number of checks that were closest to 
the experimental varieties and to minimize the number that were farthest away. All ten designs 
are shown in Figure 1 (a through j). 

Data Generation 

Treatment numbers were assigned to each of the 100 plots. Check plots were assigned a 
treatment number of "0", and non-check plots were each assigned a unique positive value. We 
began by simulating a spatial floor on the 100 plots, and we used the spherical semivariogram to 
create this spatial floor. The equation for the spherical semivariogram is as follows: 

_ {(],2 {1.5(dij I p)-.5(dij I p)3} if d ij $p 
red.·) - 2 IJ (]' otherwise 

where dij is the distance between observation i and observation j. The sill of the semivariogram 
is denoted by ri, and p is the range. For simplicity we chose a no-nugget structure. Our sill was 
set at 1.0 for the entire simulation. Recall that our 100 plots form a lOxlO grid. We wanted to 
evaluate the performance of each density when only varieties close together were correlated, as 
well as when the spatial correlation spanned the entire field. Thus, we chose "small" and "large" 
ranges of p=3.5 and p=15, respectively. When we analyze the data with treatments fixed, our 
model equation is as follows: 
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When we analyze the treatments as random, our model equation is given as 

Var(tJ = a 2r 

Var(cij ) = a 2 f(dij)' 

We used the RANNOR generator (with (J2, =0.25) to simulate these different treatment effects. 
We then added these random treatment effects onto the existing spatial floor of the non-check 
plots. Without loss of generality, no treatment effect was added to plots containing check 
varieties. Our final simulated data set contained a variable for the treatment effect only and 
another for the combined spatial floor and treatment effect (Y). The 'Y' variable represents 
"observed" field data. Note that in practice, a researcher does not know if the treatments are 
random or fixed. Thus, even though the data has been generated with random treatment effects, 
we analyzed it with both treatments fixed and treatments random to see how the results differed. 

Analysis 

For each range/density combination, we generated and analyzed 1,000 data sets. Initially, 
we analyzed the simulated data sets with only the information from the check plots to estimate 
the spatial structure, using the following PROC MIXED statements: 

Proc Mixed data=Des_Floor_Eff covtest; where trt=O; 
class Ion lat; 
model Y= ; 
repeated /subject=intercept type=sp(sph) (Ion lat); 
parms (&RANGE) (1) ; 
ods output 'Covariance Parameter Estirnates'=ckparms; 
ods output 'Convergence Status'=cnvgstat; 
run; 

We assigned a convergence code (for use in the final analysis) to each iteration based on the 
'Convergence Status' and the 'Covariance Parameter Estimates'. We have found that PROC 
MIXED can sometimes converge to unrealistic estimates for the range and sill when it is used to 
analyze spatial experiments. In this simulation, we considered any estimate that was smaller 
than 10-6 or larger than 100 to be unfeasible. If the analysis converged to reasonable estimates of 
the range and sill, we assigned a code of "I". The covariance parameter estimates themselves 
were then output to a dataset to be used in the next stage of the analysis. On the other hand, if 
the analysis converged, but the parameters were obviously inappropriate (as described above), 
we assigned a code of "2". Finally, a code of "3" was assigned if the analysis failed to converge. 
Then, based on the convergence code, the data from each iteration was subsequently analyzed as 
follows. 
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If the iteration was assigned a code of "I", meaning that the initial analysis converged to 
logical parameters, then we used a spherical spatial structure to analyze the full dataset that 
included the experimental varieties. First, we analyzed the treatments as fixed (SAS code given 
below). Note the NOlTER option in the PARMS statement: the range and sill were held fixed at 
the values given by the initial analysis using only checks. 

Proc Mixed data=Des_Floor_Eff covtest; 
class lon lat trt; 
model y=trt; 
repeated /subject=intercept type=sp(sph) (lon lat); 
parms /parmsdata=ckparms noiter; 
lsmeans trt; 
ods output 'Least Squares Means'= means; 
run; 

Next, we analyzed the treatments as random (SAS code given below). When treatments were 
analyzed as random, the data set containing initial values for the parameters also contained a 
variable for the treatment variance. In this analysis, the treatment variance was allowed to 
iterate, whereas the range and sill were held fixed. Also, since we have simulated a positive 
treatment variance, the LOWERBOUND option was used to keep the treatment variance away 
from zero. 

Proc Mixed data=Des_Floor_Eff covtest; 
class lon lat trt; 
model y= ; 
random trt /solution; 
repeated /subject=intercept type=sp(sph) (lon lat); 
parms /parmsdata=ckparms_R hold=2,3 lowerb=le-6,0,le-6; 
ods output SolutionR = blups; 
run; 

If an iteration was coded as a "2" or a "3", then we were left with no reasonable values 
for the range and sill. Note that if a linear sernivariogram is used to adjust for spatial variability, 
then the choice of parameters does not affect the estimates. That is, the LSMEANS and BLUPS 
will not depend on the intercept or slope of the semivariogram (Marx 1987). Thus, we chose to 
use a linear structure if the initial analysis did not provide us with feasible estimates of the range 
and sill. Parameters of 0.01 and 100 were used in the PARMS statement, resulting in a slope of 
1 and a range large enough to encompass the entire field (PROC MIXED uses the reciprocal of 
the range in the linear structure, hence 0.01). First we analyzed the treatments as fixed (SAS 
code shown below). Note that the range and sill were held fixed. 

Proc Mixed data=Des Floor Eff covtest; 
class lon lat trt; 
model y=trt; 
repeated /subject=intercept type=sp(lin) (lon lat); 
parms (.01) (100)/noiter; 
lsmeans trt; 
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ods output 'Least Squares Means'= means; 
run; 

Next, we analyzed the treatments as random (SAS code below). Again, note that the range and 
sill were held fixed, while the treatment variance was allowed to iterate. Note that in the 
PARMS statement, the initial value for the treatment variance was given as .5 even though our 
simulated treatment variance was .25. As mentioned earlier, our intent was to keep the treatment 
variance away from zero; thus, we started the treatment variance on the other side of .25 with the 
same purpose in mind. 

Proc Mixed data=Des_Floor_Eff covtest; 
class lon lat trt; 
model Y= ; 
random trt /solution; 
repeated /subject=intercept type=sp(lin) (lon lat); 
parms (.5) (.01) (lOO)/hold=2,3 lowerb=le-6,0,le-6; 
ods output SolutionR = blups; 
run; 

Output Data Sets 

From each iteration (regardless of whether the iteration was coded as a "1", "2", or "3"), 
we output the LSMEAN, BLUP, the simulated treatment effect, and the "observed" Y-value for 
each of the observations. Then we compiled a data set consisting of the LSMEANs, BLUPs, 
simulated treatment effects, and the Y -values from all iterations. One such data set was generated 
for each density/range combination. Then, we calculated the correlation of the actual treatment 
effects with each of the following: "observed" yield, LSMEANs, and BLUPs. Note that the 
LSMEANs and BLUPs are simply adjusted versions of the Y-values. Since the LSMEANs and 
BLUPs have adjusted for the underlying spatial variation, we would expect them to be a more 
accurate representation of the actual treatment effects; thus, we expect the LSMEANs and 
BLUPs to be more highly correlated with the treatment effects than the "observed" Y -values. 
Finally, in addition to the correlations, we also analyzed the ranks of the LSMEANs, BLUPs, 
and Y -values in relation to the simulated treatment effects. In large variety field trials, the 
researcher is primarily interested in finding the top experimental varieties and then conducting 
further studies using only those varieties. With that in mind, we observed the frequency with 
which the analysis ranked the top 10% of the treatments within the top 15% of the LSMEANs, 
BLUPs, or Y-values. We define this as percent success. For example, in the case of 30% check 
density, there are 70 experimental varieties in our field to which we assigned treatment effects. 
The top ten percent of those 70 varieties are those ranked from 1 to 7. If the LSMEAN for one 
of those varieties was ranked into the top fifteen percent of the LSMEANs, then that was defined 
as a success (note that in determining the top ten percent the researcher considers only numerical 
differences; i.e., the differences are not necessarily significant). This was repeated for the 
BLUPs and Y-values, and for each density. Again, since the LSMEANs and BLUPs have 
adjusted for spatial variability, we expect them to do a better job of identifying what truly are the 
top treatments as compared to the Y-values. 
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3. RESULTS 

Figure 2 (a and b) shows the correlations of the LSMEANs, BLUPs, and Y-values with 
the simulated treatment effects for each of the different densities. Here, we highlight some of the 
basic patterns that appear. As expected, we see that the correlation of the Y -values with the 
treatment effects remains constant as the density varies. Also, we see that the correlation of the 
LSMEANs with the treatment effects is relatively low for the smaller densities and increases as 
the density increases; i.e., as we gain information regarding the underlying spatial variability, the 
LSMEAN becomes a more accurate representation of the true treatment effect. Furthermore, we 
see that the LSMEANs seem to reach somewhat of a plateau around 30-35% for the smaller 
range and around 20-25% for the larger range. Finally, we see that the correlations of the 
BLUPs with the treatment effects are relatively high, regardless of the check pattern density. 

One interesting feature appears in Figure 2(a). Notice that at the 5% density, the Y­
values are more correlated with the treatment effect than are the LSMEANs when the range is 
small. This is due to the check pattern itself. Upon examination of the 5% density pattern, one 
can see that none of the checks are within 3.5 units of each other. Thus, when the range is 3.5, 
we do not gain any information and thus cannot make adjustments to our estimates regarding the 
underlying spatial variability. 

Next, Figure 3 (a and b) shows plots of the percent success over all iterations for the short 
and long range, respectively. As with the correlation plots, the same basic patterns emerge. The 
Y-values are consistently low for both ranges, the LSMEANs begin low and increase to a plateau 
(which is more visible for the longer range), and the BLUPs perform consistently better than 
either the Y-values or the LSMEANs, especially at the lowest densities. 

In the plot for the short range, Figure 3(a), another feature stands out. For the LSMEANs 
and BLUPs, the patterns of increase are not as smooth as in the correlation plots. Between the 
25% and 45% densities there is a spike and dip pattern. This pattern is still present, although 
much less pronounced, in the long range plot (Figure 3 (b)). It may be that the 25% and 45% 
patterns are more optimal than we thought, or that the 30% and 35% are less optimal than 
expected at estimating the short range. For the long range, all densities are performing closer to 
where we expected them. 

4. DISCUSSION AND CONCLUSIONS 

First of all, the LSMEANs and BLUPs from the spatial analysis provide more accurate 
results than the observed Y -values. Also, if the treatments are analyzed as fixed and the 
LSMEANs are used as estimates, then there seems to be a certain point beyond which not much 
additional information is gained by adding more check plots. If the range is small, this plateau is 
reached when approximately 30-35% of the plots contain the check variety; however, when the 
range is large, this plateau is reached a bit sooner (when 20-25% of the plots contain checks). 
This information may be very important to the researcher who is deciding how to allocate 
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resources. There is a balance point between the literal cost of having more checks in the field 
versus the cost of information lost by not having enough checks, and finding this balance point is 
key to a researcher who is designing an unreplicated experiment. Finally, the BLUPs seem to be 
a more accurate estimate of the true treatment effects than are the LSMEANs at the lower 
densities; in fact, the BLUPs perform relatively well even at check densities of only 5% or 10%. 

Another interesting problem arose from this simulation study which we would like to 
highlight. Recall that when treatments were analyzed as random, we used the lowerbound option 
to keep the treatment variance away from zero. This led to some surprising results! Whether we 
used a lower bound of 10-6 or 10-8 (i.e., anything close but not equal to zero), if the treatment 
variance reached that lower bound and stayed at a value close to it, then we saw an interesting 
effect. The correlations of the BLUPs with the treatment effects remained relatively high and the 
ranks were unchanged, even though the BLUPs themselves were very closely centered on the 
exact same value. 

In conclusion, it seems that the check plot density does have an effect on the efficiency of 
the resulting analysis. As the proportion of checks in the field increases, so does the amount of 
information we gain. This is true up to a certain point, as mentioned above. It seems that when 
around 30% of the plots contain checks, the information we would gain by adding more checks 
may not be worth the sacrifice of space in the field. Also, this study indicates that BLUPS are a 
more accurate representation of the treatment effects. However, the authors feel that additional 
research is necessary to confirm this finding, and we hesitate to state that treatments should be 
analyzed as random. 
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Figure 1. 
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Figure 2. Correlations With Treatment Effects. 
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Figure 3. The frequency with which the analysis ranked the top 10% of the treatments 
within the top 15% of the LSMEANS, BLUPS, or V-values. 
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