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THE PROBABILITY OF PREPONDERANCY: 
AN ALTERNATIVE TO THE INTRACLASS CORRELATION 

Ian R. Harris1 and Brent D. Burch2 

1 Department of Statistical Science 
Southern Methodist University, Dallas, Texas 75275, U.S.A. 

2Department of Mathematics and Statistics 
Northern Arizona University, Flagstaff, Arizona 86011, U.S.A. 

ABSTRACT 

We propose a new parameter for measuring the influence of a random effect in a mixed linear 
model. This is the probability of preponderance of the random effect under study over the other 
random effects. In a one-way random effects model, this is simply the probability the group 
random effect is larger in absolute size than the individual random effect (or error). We discuss 
the meaning of the parameter and relate it to the more familiar intraclass correlation coefficient. 
The new parameter has the appealing property that it is applicable for any distribution, whereas 
the intraclass correlation has its origins in normally distributed random effects. Furthermore, 
the new parameter directly measures the random effect's impact on the observations whereas the 
intraclass correlation relies on the variances (second moments) of the random effects. We suggest 
parametric and nonparametric estimators of the parameter, and demonstrate the applicability of 
the results using real data. We also indicate how to extend the ideas to models with more than 
two sources of variation. 

1 Introduction 

Random and mixed effects models have a long tradition in statistical analysis, dating back 
to at least Airy (1861). Comprehensive reviews are given by Scheffe (1956) and Searle, 
Casella, and McCulloch (1992). Fisher (1918), defined variance as the square of the stan­
dard deviation, and proposed using proportions of total variance to describe the contri­
bution of a particular effect. Later, (Fisher 1925) he pointed out that this ratio is the 
intraclass correlation, " ... the correlation merely measures the relative importance of two 
groups of factors causing variation" (Fisher 1990, p. 223). Fisher (1918) specifically states 
that variance is to be used to measure variation as the data are usually to be taken to 
be normally distributed. This point is a primary motivation for the present paper. If the 
random effects are normally distributed then variance is clearly the correct measure of vari­
ation. However, if the random effects follow, for example, a Laplace (double exponential) 
distribution then one might argue that absolute deviations are more appropriate. In order 
to address this concern, we introduce a new parameter, which we term the probability of 
preponderancy, and denote it bye. 

The probability of preponderancy is the probability that the random effect under study 
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is larger in absolute size than the other random effects. Consider the one-way random 
effects model where the observation on the ;th individual in the ith group, denoted by Yij, 
is 

Yij = J-L + Ai + Eij, (1 ) 

J-L is the overall population mean, A is the group random effect, and Eij is the random error. 
The parameter under study is 

(2) 

The preponderance probability has a particularly easy interpretation as the proportion 
of individuals in which the group random effect is "more important". For example, a 
familiar use of the model is to evaluate questions of genetic versus environmental effects 
on a phenotype. In such a model a e of 0.3 could be interpreted as "in 30% of individuals 
the genetic effect is larger than the environmental effect". As we will see in Section 3, 
for extreme values of the intraclass correlation p there are different qualitative impressions 
from p and e. For example, a p of 0.01 would generally give the impression that genetic 
effects are almost negligible, but under normal distribution assumptions e = 0.064 and 
under Laplace distribution assumptions e = 0.091. Put another way, with p = 0.01 it is 
possible that in almost 10% of individuals, the group random effect is more important than 
the random error. A similar, but reversed pattern occurs for large p. 

We suggest that the new parameter has an important role to play when measuring the 
influence of random effects. By definition, e is the proportion of individuals for which 
the random effect is larger in absolute size than the error. This is in contrast to the 
intraclass correlation coefficient, where it is assumed that variance is the best measure 
of variation. The fact that variance may not be the best measure of variation is also a 
motivation behind the work of Cox and Hall (2002), who examine additive random effects 
and consider estimating cumulants of the distributions of the random effects. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the history 
of variance components and the intraclass correlation coefficient and also robustness of 
common estimators to nonnormality. Section 3 introduces the preponderance probability 
e and considers its relationship to p. Section 4 discusses frequentist parametric inference 
about e under normality assumptions. In Section 5 we introduce a nonparametric estimator 
based on aU-statistic. The estimator is consistent under certain conditions. We recommend 
using bootstrap methods to construct confidence intervals based on the nonparametric 
estimator, and discuss this in the section. An example is given in Section 6 which illustrates 
the usefulness of the parameter. There are some concluding comments in Section 7 and a 
brief discussion that extends the method to models with more than two sources of variation. 

2 Background 

According to Scheffe (1956) and Searle, Casella, and McCulloch (1992), the first explicit 
use of the one-way random effects model was made by Airy (1861). Fisher (1918, 1925) 
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used a two variance component model in quantitative genetics by considering additive 
genetic effect as one random effect and lumping together non-additive genetic effects with 
environmental effects to form a second random effect. See Bennett (1983) for details. Fisher 
specifically advocated using variances to describe variation as errors were to be taken to be 
normally distributed. 

The intraclass correlation coefficient, first named by Fisher (1925) is generally defined 
in the terms of variance components and assumes normally distributed random effects. For 
a thorough overview of the intraclass correlation coefficient in the one-way random effects 
model, see Donner (1986). Despite the clear dominance in the literature of the assump­
tions of normality and using variance to measure variation, there are some papers where 
the intraclass correlation coefficient is not based on these assumptions. Rothery (1979) 
defines a nonparametric measure of intraclass correlation as a probability of certain types 
of concordances among the observations. The estimator is a function of the ranks of the 
observations. Shirahata (1982) compares the estimator derived by Rothery (1979) to two 
additional nonparametric estimators. Com menges and Jacqmin (1994) provide a definition 
of the intraclass correlation coefficient which depends on variances but not normal the­
ory. The parameter is a function of the conditional expectation of the observations given 
the random effect under study. The statistic used to test the hypothesis of null intraclass 
correlation is related to the pairwise correlation coefficient, which predates the AN OVA 
estimator of p. See Karlin, Cameron, and Williams (1981) for a general class of weighted 
pairwise correlation coefficients. Bansal and Bhandary (1994) discuss the properties of 
M-estimators of the intraclass correlation cofficient. Muller and Buttner (1994) note that 
selecting the appropriate estimator of p depends on the underlying sampling theory. Vogler, 
Wette, McGue, and Rao (1995) compare estimators of p under a variety of sampling condi­
tions. Cox and Hall (2002) propose a linear model, but do not assume the random effects 
are normally distributed. Instead of looking at variances, they estimate cumulants of the 
distributions of the random effects in order to compare their relative importance. 

It is our intention to use an underlying linear model structure, that is, consider scenarios 
in which one can identify sources that produce variation in the observations, and where 
the sources combine additively. Furthermore, the parameter of interest should be a direct 
function of the sources, not the variances (or second moments) of the sources. The papers 
mentioned above do not address these issues. 

3 The probability of preponderancy 

Consider the one-way random effects model given by 

(3) 

where i = 1, ... , a, j = 1, ... , bi , and L:~=l bi = n. Yij is the lh observation in the ith class (or 
group) of factor A. The a groups of A in the model are assumed to be randomly selected 
from some large population of groups. Furthermore, a random sample of size bi has been 
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obtained from the ith group. tij is referred to as random error. It is often assumed that 
the Ai are iid with mean 0 and variance O"r, the tij are iid with mean 0 and variance O"~, 
and that Ai and tij are mutually independent, with O"r :2: 0 and O"~ > O. In Section 4 of this 
paper we will assume the random effects are normally distributed, but in much of the paper 
this is not the case. The parameter f1 is a fixed but unknown quantity that represents the 
overall mean of Yij. 

Observations within the same group are correlated (Cov(Yij, Yijl) = O"i) and observa­
tions from different groups are uncorrelated. In addition, Var(Yi j ) = Var(Ai) + Var(tij) = 

O"r + O"~. The intraclass correlation coefficient is p = O"U (O"r + O"~) where 0 :S p < l. p may 
be interpreted as the proportion of the variation in the Yiy's attributed to factor A. Note 
that p is a function of the variances of the random effects; and is not a direct comparison 
of random effects themselves. 

The preponderance probability, e, is defined as 

(4) 

This probability has a direct interpretation in terms of random effects. For example, in 
genetic applications it can be interpreted as the probability that additive genetic effects 
are more important than "other" effects for the phenotype under investigation. Note that 
e directly contrasts the influence of A on Y with the influence of t on Y. 

If the random effects are normally distributed, it can be shown that 

e 

(5) 

where F1,1 (.) is the cumulative distribution function of an F -distributed variate having 
numerator and denominator degrees of freedom equal to one. By definition, 0 :s e < l. In 
this case the parameter can be written as 

(6) 

and thus 

(7) 

Note that when p = 0, e = 0, when p = 1/2, e = 1/2, and as p approaches one, e approaches 
one. 
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One alternative distribution for the random effects is Laplace (double exponential). 
Suppose that A has a Laplace distribution with mean 0 and variance err, Eij is Laplace 
with mean 0 and variance er~, and Ai and Eij are mutually independent. In this scenario it 
is known that IAil and IEijl have exponential distributions with means equal to erI/y'2 and 
er2/ y'2, respectively. It can be shown that 

e 

(8) 

where F2,2(.) is the cumulative distribution function of an F-distributed random variable 
having numerator and denominator degrees of freedom equal to two. Note that as in the 
normal case, by definition 0 :::; e < 1. After some algebra, the parameter can also be written 
as 

e (1 - p)1/2 + pl/2· 
(9) 

Alternatively, 

p = (10) 

As in the normal case, when p = 0, e = 0, when p = 1/2, e = 1/2, and as p approaches 
one, e approaches one. For other values of p, the relationship between p and e is somewhat 
different depending on which of these two distributional forms we adopt. Table 1 displays 
the values of e as a function of 0 :::; p < 0.5 for the normal and Laplace distributional 
assumptions. 

One can make some general statements about the relationship between e and p, at least 
in the case of continuous distributions with finite second moments. Note that p = 0 iff 
err = 0 and er~ > O. Of course err = 0 iff A = 0 almost everywhere. Since E is continuous 
with positive variance, we then have that these conditions are satisfied iff P(IAI > lEI) = 0, 
i.e., e = O. Similar reasoning also establishes that p approaches 1 iff e approaches 1. It 
seems reasonable, and we conjecture that p> 1/2 iff e > 1/2, but we as yet have no proof 
of this fact. If the variables in question are discrete then it is possible for other relationships 
to occur, for example, p can be very small, but e be quite large. 

It is important to note that e and p measure different phenomena. e relates to indi­
viduals, telling us for what proportion of individuals, the group random effect is "more 
important" than the individual random effect. p tells us what proportion of the variance 
of a trait in a population is due to the group effect. Using variance to measure variation 
is a concept tied to normal theory. It follows that using p to measure the relative contri­
bution of the random effect to the variation in the observations may be misleading. For 
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example, one might think that p = 0.01 would imply that group effects are negligible, but 
under the assumption of Laplace distributions, in over 9% of individuals, the group effect 
outweighs the individual effect. Again, p = 0.1 would usually be taken to be a small group 
effect, but under Laplace distributions, e = 0.25, so that for 25% of individuals, the group 
effect dominates. We offer e as an alternative to p and suggest its appropriateness is not 
dependent on a specific distribution. 

In the next two sections we take up the problem of inference from data, first under 
parametric, and then under nonparametric assumptions. 

4 Inference under normal distribution assumptions 

Although the main intent of this paper is to introduce a parameter and associated estimator 
that do not assume normality, it is still useful to look at inference about the parameter 
when normality does hold. Assume that A is N(O, aD and Eij is N(O, a~), with the usual 
independence assumptions. A commonly choosen estimator of p is the restricted maximum 
likelihood (REML) estimator, which we denote by p. See Searle, Casella, and McCulloch 
(1992, pages 90ff, 159ft·, 249ff) for a general description of REML estimators of variance 
components. Due to the invariance of maximum likelihood estimators, the REML estimator 
of e is 

~ 2 r; e = -s'in-1 V p. 
'if 

(ll) 

Maximum likelihood estimators, ANOVA estimators, and pairwise estimators of p are also 
discussed by Vogler et al. (1995). 

The analysis of variance table for the balanced one-way random effects model is given 
in Table 2. For balanced data, where bi = b for i = 1, ... , a, the REML estimator of p is the 
same as the ANOVA estimator of p bound to the parameter space. In these scenarios an 
exact confidence interval for e is readily available. It is well known that Q1 (the between 
group sum of squares) and Q2 (the within group or error sum of squares) are independently 
distributed X2 variables and so 

( a?) (a-l)Q1 
1 + b a§ a(b _ I)Q2 rv F(a(b - 1), a-I). (12) 

Let Fa/2 and F1- a / 2 be the 0;/2 and 1 - 0;/2 percentiles of the F distribution having 
numerator and denominator degrees of freedom equal to a(b - 1) and a-I, respectively. 
A 100(1-0;)% equal-tailed confidence interval for e is obtained by recognizing that 

( ( a?) (a - 1) Q 1 ) 
1 - 0; = P Fa/2 < 1 + b a§ a(b _ I)Q2 < F1-o: j2 

( 1 ( a(b-l)Q2 ) a? 1 ( a(b-l)Q2)) 
= P b Fa/2 (a _ I)Q1 - 1 < a§ < b F1-o:/2 (a _ I)Q1 - 1 
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( [1 ( a(b - 1)Q2)] [1 ( a(b - 1)Q2 )]) 
= P Fl,l b Fex/2 (a _ l)Ql - 1 < e < FI,l b F I - ex /2 (a _ l)Ql - 1 (13) 

since Fl,l(') is a monotone increasing function. Simplifying, a 100(1-0:)% equal-tailed con­
fidence interval for e is 

The asymptotic properties of the REML estimator of e follow from the asymptotic 
properties of (5. Burch and Harris (2001) show that 

(15) 

where the asymptotic variance of (5 given by 

_ 2(n-l)(1- p)2 (1 + p(b _1))2 
V(p) = (n _ a)(a - 1) b2 

(16) 

This formula was first derived by Fisher (1925). Using a Taylor expansion approach, it is 
well known that if a function g(.) is differentiable at p and V((5) goes to zero as the sample 
size increases, then 

In our case, g(p) 
terms of pas 

and in terms of e as 

(j aSlZ.,mp N(g(p), (gl(p))2V(p)). (17) 

2/1fsin- l JP and the asymptotic distribution (j can be expressed of 

N - sm \Ip. ----'--------'--------'-----------"--(
2. _ 2(n-l) (1- P)(1+ P(b-l))2) 
1f '1f2(n - a)(a - 1) b2p 

(18) 

(19) 

5 Nonparametric inference 

For maximum utility, inference about e should be robust to choice of the parametric family. 
One way to achieve this is to use nonparametric methods. In this section it is assumed 
that the A are iid with mean 0 and variance ar, the Eij are iid with mean 0 and variance 
a~, and that Ai and Eij are mutually independent with unspecified distributions. For sim­
plicity we will assume a balanced design. Along with a nonparametric point estimator, we 
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construct a nonparametric confidence interval for e using a bootstrap sampling procedure 
for hierarchical data. 

We begin by recognizing that each of the a levels of A may be compared with each of 
the ab values of E to form a U-statistic. Specifically, 

(20) 

where J(.) is an indicator function that takes the value 1 if the condition is true and zero 
if not. Clearly, 0 can never be calculated as it depends on the act~al values of the random 
effects. Nevertheless, it is instr~ctive to explore the properties of e. 

Theorem: The estimator e is consistent for e and has an asymptotic normal distribu­
tion. 

Proof: See technical report by Authors at http://faculty.smu.edu/iharris/pubs.htm. 
Of course, we cannot observe 0, and instead must work with estimated values of A and 

E. This introduces considerable complication to the theory. Simple, or naive estimators of 
A and E are 

Using these, we have that 

and so one can propose using 

Anaive 
2 

?'!?-ive 
2J 

A~aive 
2 

?,!aive 
2J 

y. -y 
L .. 

A - A +E' - E 2 . L .. 

(21) 
(22) 

(23) 
(24) 

(25) 

The presence of the extra terms induces dependence among the A's, and the distribution 
of Ai depends on the distribution of E. These dependences only disappear if we have b -+ 00 

as well as a -+ 00 as outlined in the previously mentioned technical report. From a practical 
viewpoint this might seem problematic, as b is usually small. However, simulation results 
outlined later are encouraging for b ::::: 5. While it is true that Araive and Sjaive play the 

role of A· and E" in that E(Anaive) = E(A) and E(?!~ive) = E(E") the variances of Ar:aive 
2 2J 2 2 2J 2J , 2 

and Sjaive do not equal the variances of Ai and Eij. 

We also consider an estimator of A based on jackknife versions of Q1 and Q2' That is, 
determine Q1( -i) and Q2( -i), where (-i) denotes that Q1 and Q2 are computed by excluding 
the observations in the ith group. It can be shown that 

Var ( _a_ (1 _ (a - 4)Q1(-i) ) (y. _ Y )) 
a-I (a - l)(b - 1)Q2(-i) L .. 

(26) 
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For details of the derivation see the technical report. Note that we require a > 4. An 
alternative estimator of A to consider is 

Ajackknije = 
2 

{ a ( (a-4)Ql(-i) )}(- -) 
max 0, a-I 1 - (a _ l)(b _ 1)Q2(-i) Y i. - Y ... (27) 

Since the argument of the square root and Y i. - Y .. are uncorrelated, E(Aiackknije) = E(A) 
and Var(A{aCkknije) should be close to Var(A). We use ~ackknije to denote the estimator 

of e based on Ajackknije and ?!,?alar = Jb/(b - 1) (r:. - y. ) since 
2 D D 2. 

(2S) 

We now evaluate the practical use of the estimators of e. Using normal or Laplace 
distribution assumptions, simulation results suggest no estimator of the form e uniformily 
outperforms another estimator in terms of MSE for the values of a and b under consider­
ation. For instance, enaive exhibits poor performance when e is small due to large biases. 
However, MSE(enaive) is comparable to the MSE of the other estimator when the pa­
rameter is large. To select the appropriate estimator, we consider the simulated coverage 
probabilities of the two competing nonparametric estimators (enaive and ejackknije) using 
bootstrap confidence intervals. 

Efron and Tibshirani (199S) discuss nonparametric bootstrap estimation techniques 
when resampling is based on nonhierarchical data. The natural layering or nested feature 
of the data in the problems we consider present a complication when compared to the usual 
bootstrap res amp ling methods. Davison and Hinkley (1997, p.100-102) provide an outline 
of the resampling procedure for hierarchical data having two stages of sampling. The 
strategy recommended by Davison and Hinkley (1997) attempts to match the resampling 
variations of the statistics to the variational properties of the data. See the technical report 
for further details. 

A simulation study was conducted to evaluate the performance of the bias-corrected 
(BC) bootstrap confidence intervals using the naive and jackknife forms of the estimators. 
Performance was judged by the simulated coverage probability. For a = 10, b = 5, 90% 
BC confidence intervals were built from normal, Laplace, and uniform distributed data for 
e = 0.1, 0.5, and 0.9. Simulation results are displayed in Table 3. In general, the coverage 
probabilities associated with the jackknife estimator are more consistent. This suggests 
that ejackknije is preferred over the naive estimator. A more comprehensive simulation 
study evaluating coverage probabilities for a different values of a, b, p, and a variety of 
distributions may yield additional information. 

6 Example 

Gibbons and Bhaumik (2001) compared the results of copper concentrations as determined 
by seven laboratories. Water samples, prepared by an independent source, were analyzed 
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by the laboratories in a blind interlaboratory study. For brevity reasons, we consider 
that part of the dataset consisting of five replications per laboratory based on a copper 
concentration of zero pg/L. The copper concentrations as measured by the laboratories are 
given in Table 4. Negative values are possible since the copper concentrations are based on 
a linear calibration function. 

Using a one-way random effects model, one can determine how the variability of the 
laboratories contributes to the overall variability of the measurements. If O"i represents 
the variance of the laboratories and 0"5 represents the variance of the measurements within 
laboratories (or error), the intraclass correlation coefficient is p = O"I I (O"I + 0"5). For this 
data, Ql = 230.32, Q2 = 60.08, and p = 0.04. That is, the percentage of variance in copper 
concentrations associated with the variance in laboratories is 4%. 

Recall that the probability of preponderancy (e) and p measure different things. e 
relates to individual measurements, indicating the proportion of individuals for which the 
laboratory effect is "more important" than the error effect. Under normal distribution 
assumptions, fj = 0.13 and a 95% confidence interval for e is (0.00, 0.51). The value of 
0.13 should be interpreted as follows; "in 13% of determinations, the laboratory effect is 
greater than individual measurement error". In this application we find that the intraclass 
correlation coefficient does not clearly indicate the impact laboratories have on the copper 
concentration measurements. The nonparametric estimator using the naive approach is 
0.43 and using the jackknife approach is 0.24. 

7 Some extensions 

It is possible to extend the ideas to models with more than one component. For example 
suppose Y = p -1 A + B j- E. \¥ithout worrying too much about indicies, or whether we 
have crossing or nesting, there are at least two possible extensions to e. The first is 

eA = P(IAI > ma:r(IBI, lEI)) (29) 

the second is 

AA = P(IAI > IB + EI)· (30) 

The first attempts to find for what proportion of individuals is A the greatest of the three 
effects. The second finds for what proportion of individuals is A greater than all other 
effects combined. Similar expressions could be formed for B. Under normal theory, with A 
having variance O"I, B having variance 0"5, and E with variance O"~, then one can show that 

(31 ) 
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8 Summary and conclusions 

We have presented a new parameter, which we call the probability of preponderancy. In the 
one-way random effects model, this probability is the proportion of individuals for whom 
the group random effect is larger than the individual random effect. In genetic applica­
tions this could be interpreted as the proportion of individuals for whom the genetic effect 
dominates environmental effects. This parameter is an appealing complement to the more 
familiar intraclass correlation coefficient since its relevancy does not hinge on a particular 
distribution. We have presented both parametric and nonparametric estimators. Bias­
corrected bootstrap confidence intervals associated with the nonparametric estimators may 
be employed when a ~ 10, b ~ 5. The estimator incorporating a jackknife approximation 
to a scalar exhibits the most consistent coverage probabilities. Actual confidence levels 
depend on the underlying distributions. 

Ideas for the extension of probability of preponderancy to models with more than one 
component of variation were briefly discussed. 
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Source 

Table 1: Relationship between p and (J 

p (J (Normal) 
.01 .064 
.05 .144 
.10 .205 
.15 .253 
.20 .295 
.25 .333 
.30 .369 
.35 .403 
.40 .436 
.45 .468 
.50 .500 

(J (Laplace) 
.091 
.187 
.250 
.296 
.333 
.366 
.396 
.423 
.449 
.475 
.500 

Table 2: ANOVA Table 

df Sum of Squares 

Between Groups a-I 

Within Groups a(b 1) 

Total ab 1 
a b - 2 
I: I: (Yij YJ 
i=l j=1 

Table 3: Comparison of Simulated Coverage Probabilities when I-a = 0.90 

-1.000 
1.000 

-1.000 

e Distribution Naive Jackknife 

Laplace 0.12 0.82 
Uniform 0.76 0.81 

0.5 Normal 0.94 0.93 
Laplace 0.94 0.94 
Uniform 0.93 0.90 

0.9 Normal 0.89 0.88 
Laplace 0.87 0.86 
Uniform 0.89 0.89 

Table 4: Copper Concentrations (ttgjL) 

-2.510 
7.270 
7.140 10.244 
0.280 -2.177 

0.018 
-3.000 
0.000 

-2.000 
-2.000 
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