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IMPACT OF VARIANCE COMPONENT ESTIMATES ON FIXED EFFECT INFERENCE IN 
UNBALANCED LINEAR MIXED MODELS 

Walt Stroup, Department of Biometry, University of Nebraska-Lincoln 68583-0712 
Ramon Littell, Department of Statistics, University of Florida, Gainesville, FL 32611 

Abstract: Inference on fixed effects in mixed models depends on standard errors or test statistics 
which in turn depend on estimates of variance and covariance components. For unbalanced 
mixed models, even relatively simple models such as two-way cross-classification models with 
interaction where one factor is fixed and the other is random, dilemmas arise that have received 
inadequate attention to date. For example, if one uses SAS PROC MIXED, one can estimate 
variance components using expected means squares from Type I, II, or III sums of squares, or 
one can use likelihood-based algorithms such as the default restricted maximum likelihood. If 
there is a negative variance component estimate, one can set the estimate to zero and proceed 
with fixed effects inference, or one can allow the variance estimate to remain negative. These 
decisions affect inference on fixed effects in ways that are not generally well-understood. The 
purposes of this presentation are to 1) clarify what the main issues are and 2) present some 
guidelines data analysts can use. 

1. Introduction 

In mixed models, standard errors used to construct confidence intervals and statistics 
used to test hypotheses depend on estimated variance components. The resulting distribution 
theory upon which confidence interval and hypothesis test procedures are based can be affected 
by variance estimation. For linear mixed models with balanced data and uncorrelated random 
effects, distribution theory underlying well-known procedures based on the F and t distributions 
holds exactly. However, for unbalanced data, as well as models with correlated errors, inference 
must be based on asymptotic theory. 

Kacker and Harville (1984) and Kenward and Roger (1997) addressed the impact on 
fixed effect inference in linear mixed models when estimated variance components are used. 
They found that for unbalanced data (as well as models with correlated errors), standard errors 
based on estimated variance components are biased downward and hence test statistics are biased 
upward. The most recent release of SAS® (Release 8) made Kenward and Roger's bias correction 
algorithm available as an option in PROC MIXED. However, the impact of negative variance 
component estimates on fixed effect inference has not received much attention. Furthermore, 
previous work has tended to focus on the behavior of likelihood-based variance estimation, e.g. 
restricted maximum likelihood (REML). However, other variance component estimation 
procedures exist, notably those based on the expected mean squares in analysis of variance. For 
unbalanced mixed models, there are several types of sums of squares, each leading to a different 
set of expected mean squares and hence different variance estimates and different test statistics. 
Swallow and Monahan (1984) compared the precision of various variance component estimation 
procedures, but their study was restricted to variance component estimation per se and did not 
address their impact on fixed effect inference. 
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Applied Statistics in Agriculture 

The purpose of this paper is to present an example of a simple mixed model with 
unbalanced data where the variance component estimate is negative and to examine the 
consequences of various strategies to deal with negative estimates. 

2. Example 

Table 1 describes a multi-location experiment conducted to compare two treatments. 

33 

Specifically, the table gives the number of observations on each treatment at each of the nine 
locations. The data appear in Output 6.22 in Littell, et al (2002). A linear mixed model, assuming 
random locations, is 

Yijk = j.1 + Li + Tj + (TL)Ij + eIjk ' 

h . h kth b . h ·tlz 1 . d ·tlz . h . . h .tlz were Yijk IS teo servatlOn on tel ocatlOn an ] treatment, j.1IS t e Intercept, 1) IS t eJ 

treatment effect, Li is the tlz location effect, assumed independent and identically distributed 

(i.i.d.) N(O,al) , (TL)ij is the il treatment x location effect, assumed i.i.d. N(O, (JiL) , and eijk is 

random error, assumed i.i.d. N(O, (J2). The resulting analysis of variance table has the following 

general form: 

Source of Variation degrees of freedom Expected Mean Square 

location 8 

treatment 1 (J2 + kj (JiL + k2(JZ + QTRT 

trt x loc 8 
2 k 2 

(J + 3(Jn 

error 114 a 2 

The term QTRT is the quadratic form involving the sum of squared treatment effects. Note that 
because the data are unbalanced, the variance components have different coefficients for each 
source of variation. Moreover, the specific values of k j , k2, k3, and QTRT depend on which type of 
sum of squares one uses. 

The default analysis using SAS PROC MIXED uses the following SAS statements: 
proc mixed; 

class loc trt; 
model y=trt/ddfm=kr; 
random loc loc*trt; 

The basic output appears in Table 2. The key results are 

• the estimated location variance (az) is negative and has been set to ° 
• the F-value for treatment is 1.83 with a p-value of 0.2075. 

The PROC MIXED default that sets the negative variance component to zero is a typical 
convention in variance component estimation. This makes sense when one reports a variance 
estimate, per se, or a function of a variance, such as heritability. However, the "set to zero" 
convention upwardly biases the estimate of the variance component in question, has a ripple 
effect on estimates of the other variance components, and hence affects standard errors and test 
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statistics in ways that may not always be understood. Is the "set to zero" convention really 
appropriate for inference on fixed effects and, if not, what are the alternatives? We first examine 
the alternatives. 

In this example, the negative variance component estimate is for "location," i.e., the term 
immediately before "treatment" in the model and the ANOVA table. Data analysts using PROC 
MIXED have tended not to worry about this, but they have worried when the variance 
component for the denominator mean square of the test - in this case a;L -- is negative. Despite 
a lack of systematic published documentation, there is something of an "oral tradition" among 
PROC MIXED users that the "set to zero" default results in an overly conservative test of 
treatment effect. Data analysts have been advised either to use the standard ANOV A F-test, i.e. 

F = MS (tr%s (lac X trt)' or the NOBOUND option, which leaves the estimated variance 

component equal to the negative solution from the REML estimating equation rather than re­
setting the estimate to zero. 

One obtains the NOBOUND option by modifying the first line of the above SAS code as 
follows: 
proc mixed nobound; 

The rest of the program remains the same. Table 3 shows the resulting SAS output. The key 
results are: 

• for the location variance, iTi = -16.06 

• FTRr-1.64 with a p-value of 0.2610 
In this case, the conclusions about treatment effect would probably not be affected, but it is easy 
to see that with certain data sets, they would. 

One can also obtain tests based on the ANOV A table. However, SAS computes several 
different types of sums of squares. With unbalanced data, the resulting expected mean squares, 
variance component estimates, test statistics, and denominator degrees of freedom (which use 
Satterthwaite's approximation based on the denominator term's linear function of mean squares) 
are different for the various types of sums of squares. Table 4 shows the expected means squares 
and reSUlting FTRT statistics as computed by SAS PROC GLM using the following statements: 
proc glm; 

class loc trt; 
model flush=trt loc trt*loc / el e2 e3; 
random loc trt*loc / test; 

Note that Version 8 of SAS PROC MIXED can also compute these ANOVA statistics using the 
option METHOD=TYPEI (or TYPE2 or TYPE3) in place of NOBOUND in the PROC 
statement. 

Table 4 shows the type I, II, and III SS results. For these data, type III and type IV SS are 
identical, so type IV results are not shown. The key results are: 

• fortype ISS, FTRT=0.91, with ap-value of 0.3742 
• for type II SS, FTRT=l.lO, with ap-value of 0.3307 
• for type III SS, FTRr-2.17, with ap-value of 0.1674 

Obviously, these F-values are quite different. Note that the "traditional" 
ANOVA-based estimator follows from Henderson's Method 3 (1953). This is SAS PROC 
VARCOMP's METHOD=TYPE1, which is identical to GLM or MIXED using type I SS. Type 
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II and III SS are not as widely used in variance component estimation, but there is no theoretical 
reason why they cannot be used. How should the data analyst decide which result to report? 

3. Comparison of various approaches 

Comparison can be based on the following criteria: 1) for hypothesis tests, power and 
control of type I error; 2) for confidence intervals, percent coverage. This section first considers 
some issues related to power that can be evaluated analytically, then addresses more 
comprehensive power, type I error, and coverage issues via simulation. 

For the various types of sums of squares, the power of the test of treatment effect is a 

35 

function of the non-centrality parameter, rjJ = QTRT /EMS = QTRT I( 2 k 2 k. 2)' Noting that IE 1(0" + jO"n + 20"L 

k2 is either zero or negligible, the non-centrality parameter is essentially a function of QTR;< . 

One can compute the values of QTRT for each type of SS by adding the option Q to the 
RANDOM statement in the above SAS PROC GLM code, i.e. 
random loc trt*loc / q test; 

The resulting output appears in Table 5. Using these values, the non-centrality parameters of the 
three types of SS are: 

• type I, rjJ = 32.9%.15 = 3.61 

• type II, rjJ = 32.8 JG.14 = 3.59 

• type III, rjJ = 20.9%.66 = 4.50 

By this criterion, the test of treatment effect based on the type III SS should have the greatest 
power. Assuming none of the ANOV A-based tests have inflated type I error rate, the type III is 
the test of choice for this particular design and pattern of unbalanced data. 

If one runs the type III test in PROC MIXED, one encounters a final complication. Table 
6 shows the PROC MIXED output for the METHOD=TYPE3 option. Note that in addition to the 
ANOVA F-statistic, 2.17, MIXED computes its approximate Wald-type F-statistic from variance 
component estimates obtained from type III EMS. The resulting approximate F is equal to l.71 
with a p-value of 0.248l. Again, the question arises: which F should a data analyst use? 

To help provide guidance to data analysts, power characteristics of the various methods 
of obtaining F were compared. Power was compared via simulation because the small sample 
characteristics of REML default, REML-nobound, and approximate Wald-based F tests using 
ANOV A variance component estimates cannot be assessed analytically. The following tests were 
compared 

• REML default-based approximate F 
• REML nobound-based approximate F 
• type I MS ratio F-test 
• type II MS ratio F-test 
• type III MS ratio F-test 
• approximate F using variance component estimates from type I EMS 
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• approximate F using variance component estimates from type II EMS 
• approximate F using variance component estimates from type III EMS 

The simulation used a design identical to the set up of the example in the previous section. Two 

scenarios were investigated: one where negative estimates of cri are likely and one where 

negative estimates of cr~L are likely. 

The first simulation set the variance components to 0"2 = 1, o"z = 0.01, and O"~L = 0.25 . 
Power was simulated by generating 1000 simulated experiments for treatment mean differences 
of 0, 0.2, 0.4, 0.6, 0,8, and 1.0, and determining the number of times the null hypothesis of no 
treatment effect, i.e. Ho: ;=0 for allj, was rejected at a=0.05. For the simulated data with 
treatment mean difference equal to zero, the rejection rate was also obtained for approximate F 
tests using maximum likelihood (ML), as opposed to REML, estimators of the variance 
components. 

Figure 1 shows the power curves. Because O"Z was close to zero, negative estimates 

(cri) occurred in roughly 50% of the simulated data sets. Several points emerge: 

• The ML variance component estimate yields an inflated F statistic and a type I error rate 
a little over twice the nominal a=0.05 criterion. This is typical of ML variance 
component estimates, which are biased downward, and thus produce upwardly biased F 

statistics even without negative variance component estimates. Setting a negative cri to 

zero further deflates cr~L thus upwardly biasing F even more. ML variance component 
estimates should never be used in conjunction with fixed effect inference in mixed 
models. 

• REML-default variance component estimates produced inflated test statistics and hence 
type I error rates roughly twice the nominal a=0.05 criterion. One can immediately 
conclude that the REML default is an unacceptable procedure when negative variance 
component estimates occur. 

• All of the other procedures - the REML-nobound and all ANOV A-based methods - have 
observed rejection rates essentially equal to the nominal a=0.05 criterion. Hence, any of 
these procedures would be acceptable from the viewpoint of controlling type I error. 

• For the ANOV A-based procedures, the results are consistent with the evaluation of non­
centrality parameters for the various types of SS discussed earlier. The F test using the 
MS ratio based on type III SS had a somewhat higher rejection rate, i.e. somewhat greater 
observed power, for all non-zero treatment mean differences. 

• The ANOV A tests that use MS ratios have somewhat greater observed power than the 
approximate Wald-type Fusing ANOVA-based variance component estimates. 

• The observed power of the REML-nobound test was similar to that of the type III MS 
ratio ANOVA test. However, the REML nobound procedure was prone to convergence 
failure due to infinite likelihood. Failures to converge varied between 1.2% and 2.9% of 
the simulated data sets at the various levels of treatment mean difference. Variation in 
convergence failure rate appeared to be strictly random: there was no apparent 
relationship between failure rate and size of mean difference. 
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Figure 1 also shows the theoretical power curve assuming known variance components, 
computed using a procedure described by Stroup (1999). The REML-default power curve 
exceeds the theoretical power, but only because its type I error rate is inflated and it is therefore 
not a valid procedure. Note that none of the legitimate tests of treatment effect obtain an 
observed power equal to the theoretical power. Such is the price of additional variability inherent 
in using estimated rather than known variance components. 

The choice of variance component estimator also affects confidence intervals for 
estimable functions of the fixed effects. Table 7 shows the observed percent coverage for 95% 
confidence intervals for treatment mean difference computed from the REML default, REML 
nobound, and ANOV A type III SS procedures. The REML nobound and ANOV A procedures 
produce observed coverages of 0.9473 and 0.9450, respectively, close to the nominal 95%. On 
the other hand, because the REML default results in an underestimate of the standard error of the 
treatment difference, the observed coverage is only 0.9170. 

Table 8a shows additional detail for the REML default, REML nobound, and ANOV A 
Type III F tests. The rejection rates for differences of 0 through 0.8 are di vided into those for all 

simulated data sets and those for which a~ was negative. Rejection rates were consistently lower 

when a~ was negative. Also, the rejection rates for the REML default were relatively more 

inflated relative to the other two methods when a~ was negative. This is expected, because 

setting a~ to 0 tends to deflate aiL and thus inflate F. Note that the rejection rates for the REML 

default when a7~ was positive were actually lower than ANOV A type III. This suggests that a 

strategy using ANOVA Type III for negative a~ and REML for positive a~ might actually be 
somewhat conservative. 

A second simulation was done with 0'2 = 1, a~ = 0.5, and aiL = 0.01. This was done to 

check the "oral tradition" mentioned earlier regarding negative estimates of aiL' The results 
appear in Table 8b. For the lower treatment mean differences (0, 0.2, and 0.4) the results tend to 
support conventional wisdom. Rejection rates for REML default do appear to be excessively 
low. However, the results also contain surprises. For larger treatment mean differences, the 
situation reverses: if anything, the ANOV A type III F-test appears to be overly conservative! 

Also, for data sets for which aiL was negative, rejection rates for the REML nobound-based F­

test are much greater than ANOV A type III, yet the overall power characteristics of REML 
nobound are about right. Unfortunately, REML nobound also showed a 10.6-15.0% failure to 
converge rate with these simulated data sets. 

4. Discussion and Conclusions 

Negative variance component estimates can and do affect fixed effect inference in linear 
mixed models. This is true for all variance components in the model, not merely the variance 
component associated with the denominator error term. The simulation results suggest that there 
is much we still do not know about the behavior of these tests when negative variance estimates 
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are obtained. Nonetheless, despite the limited nature of the simulation and a few surprises, some 
general guidelines for the data analyst do emerge. These are: 

• for negati ve variance estimates of the term preceding the fixed effect of interest (e.g. 
"location" in the example in this paper), setting the estimate to zero inflates the type I 
error rate and reduces coverage by confidence intervals 

• for negative variance estimates of the termfollowing the fixed effect of interest (e.g. 
"location x treatment" in the example), setting the estimate to zero deflates the rejection 
rate, resulting in an excessively conservative test and loss of power 

When one obtains a negative variance component, one should therefore override "set to zero" 
defaults such as the one used by SAS PROC MIXED. 

The standard ANOV A F tests based on ratios of mean squares yield acceptable control of 
type I error, as does the REML nobound option. On the other hand, one should never use straight 
maximum likelihood variance components for inference on fixed effects because it does not 
control type I error. 

Among the procedures that do control type I error and allow variance component 
estimates to go negative, there are no simple answers. REML nobound appears to have more 
consistent power characteristics, but there is no guarantee that it will converge. For unbalanced 
data, the different types of SS produce different results. All of them control type I error 
acceptably, but their power characteristics differ. Although the example in this paper showed the 
type III SS maximizing power, different designs and patterns of unbalance may result in a 
different type of SS having greater power. Therefore, one should compare the non-centrality 
parameters of each type of SS for a given data set before deciding which to use. The classical 
ANOV A tests based on ratios of linear functions of mean squares have greater, or at least equal, 
power than the approximate Fusing ANOVA-based variance component estimates computed by 
PROC MIXED. Unfortunately, the power characteristics of even the best of the ANOVA-based 
procedures (Type III in this paper's example) were not entirely consistent, e.g. the excessively 

conservative results with large treatment differences and small (j~L' 
This paper has considered only one configuration of unbalanced data from a simple 

variance-component-only mixed model. However, the implications of negative variance 
component estimates even in these examples make it obvious that this subject has not received 
adequate attention. Clearly, there is much to learn even about relatively simple models. For more 
complex models, several issues remain to be addressed. For example, how do negative variance 
component estimates affect inference with correlated error models, such as repeated measures or 
spatial data? How do negative variance component estimates affect degree of freedom or bias 
adjustment algorithms, e.g. Kenward and Roger's procedure? Finally, how do all of these issues 
translate to nonlinear mixed models? All of these questions could be expanded to include 
inference on EBLUP's involving random effects. These are among the questions that need to be 
addressed in future research. What this presentation makes clear is that negative variance 
components cannot be ignored and that the defaults that many data analysts have used without 
comment often result in misleading or outright incorrect inference. 
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Table 1. Description of design used in example by number of observations per 
location x treatment combination 

LOC TRT 

Frequency A B Total 

42 2 1 3 

43 14 14 28 

44 5 6 11 

45 11 11 22 

46 6 7 13 

47 6 7 13 

48 7 8 15 

49 10 10 20 

50 4 3 7 

Total 65 67 132 
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Table 2. Default output from SAS PROC MIXED 

Effect TRT 

TRT A 

Effect 

TRT 

Covariance Parameter 
Estimates 

Cov Parm 

LOC 
LOC*TRT 
Residual 

Estimate 

o 
75.3629 
447.57 

Type 3 Tests of Fixed Effects 

Num 
OF 

Den 
OF 

9.3 

F Value 

1.83 

Pr > F 

0.2075 

Differences of Least Squares Means 

Standard 
TRT Estimate Error OF t Value Pr > It I 

B -7.8198 5.7728 9.3 -1.35 0.2075 
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Table 3. Output from SAS PROC MIXED with REML nobound option 

Effect 

TRT 

Covariance Parameter 
Estimates 

Cov Parm 

LOC 
LOC*TRT 
Residual 

Estimate 

-16.0628 
93.4778 
446.87 

Type 3 Tests of Fixed Effects 

Num 
DF 

Den 
DF 

4.58 

F Value 

1.64 

Pr > F 

0.2610 

Differences of Least Squares Means 

Standard 
Effect TRT _TRT Estimate Error DF t Value Pr > It I 

TRT A B -7.5903 6.1898 4.58 -1.23 0.2793 
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Table 4. Output from SAS PROC GLM: EMS and FTRT for various types of SS 

Source 

TRT 
LOC 
LOC*TRT 

Source 
TRT 
Error 

Type I Expected Mean Square 

Var(Error) + 9.1461 Var(LOC*TRT) + 0.04 Var(LOC) + Q(TRT) 
Var(Error) + 7.1543 Var(LOC*TRT) + 14.213 Var(LOC) 
Var(Error) + 7.0585 Var(LOC*TRT) 

Tests of Hypotheses for Mixed Model Analysis of Variance 

DF 
1 

6.5931 

Type I SS 
1134.560964 
8236.875597 

Mean Square 
1134.560964 
1249.317056 

F Value 
0.91 

Pr > F 
0.3742 

Error: 0.0028*MS(LOC) + 1.2929*MS(LOC*TRT) - 0.2957*MS(Error) 

Source 

TRT 
LOC 
LOC*TRT 

Source 

TRT 

Type II Expected Mean Square 

Var(Error) + 9.1385 Var(LOC*TRT) + Q(TRT) 
Var(Error) + 7.1543 Var(LOC*TRT) + 14.213 Var(LOC) 
Var(Error) + 7.0585 Var(LOC*TRT) 

Tests of Hypotheses for Mixed Model Analysis of Variance 

DF Type II SS Mean Square F Value Pr > F 

1377.550724 1377.550724 1 .10 0.3307 

Error 6.5739 8212.186760 
Error: 1.2947*MS(LOC*TRT) - 0.2947*MS(Error) 

1249.204926 

Source 

TRT 
LOC 
LOC*TRT 

Type III Expected Mean Square 

Var(Error) + 4.6613 Var(LOC*TRT) + Q(TRT) 
Var(Error) + 7.0585 Var(LOC*TRT) + 14.117 Var(LOC) 
Var(Error) + 7.0585 Var(LOC*TRT) 

Tests of Hypotheses for Mixed Model Analysis of Variance 

Dependent Variable: FLUSH 

Source DF Type III SS Mean Square F Value Pr > F 

TRT 1843.572090 1843.572090 2.17 0.1674 

Error 11.689 9943.710652 850.710718 
Error: 0.6604*MS(LOC*TRT) + 0.3396*MS(Error) 
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Table 5. Output from SAS PROC GLM: QTRToutput for various types of SS 

Quadratic Forms of Fixed Effects in the Expected Mean Squares 

TRT A 
TRT B 

TRT A 
TRT B 

TRT A 
TRT B 

Source: Type I Mean Square for TRT 

TRT A 

32.99242424 
-32.99242424 

TRT B 

-32.99242424 
32.99242424 

Source: Type II Mean Square for TRT 

TRT A 

32.80309690 
-32.80309690 

TRT B 

-32.80309690 
32.80309690 

Source: Type III Mean Square for TRT 

TRT A 

20.97586951 
-20.97586951 

TAT B 

-20.97586951 
20.97586951 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2002/proceedings/4



Applied Statistics in Agriculture 45 

Table 6. Output from SAS PROC GLM: QTRT output for various types of SS 

Type 3 Analysis of Variance 

Sum of 
Source OF Squares Mean Square 

TRT 1 1843.572090 1843.572090 
LOC 8 7081.377266 885.172158 
LOC*TRT 8 8512.586561 1064.073320 
Residual 114 49684 435.825358 

Source Expected Mean Square 

TRT Var(Residual) + 4.6613 Var(LOC*TRT) + Q(TRT) 
LOC Var(Residual) + 7.0585 Var(LOC*TRT) + 14.117 Var(LOC) 
LOC*TRT Var(Residual) + 7.0585 Var(LOC*TRT) 
Residual Var(Residual) 

Error 
Source Error Term DF F Value Pr > F 

TRT 0.6604 MS(LOC*TRT) + 0.3396 MS(Residual) 11.689 2.17 0.1674 
LOC MS(LOC*TRT) 8 0.83 0.5995 
LOC*TRT MS(Residual) 114 2.44 0.0178 
Residual 

Covariance Parameter 
Estimates 

Cov Parm Estimate 

LOC -12.6728 
LOC*TRT 89.0063 
Residual 435.83 

Type 3 Tests of Fixed Effects 

Num Den 
Effect DF DF F Value Pr > F 

TRT 4.97 1. 71 0.2481 

Differences of Least Squares Means 

Standard 
Effect TRT - TRT Estimate Error DF t Value Pr > I t I 

TRT A 8 -7.9297 6.0625 4.97 -1.31 0.2481 
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Table 7. Percent coverage of Confidence Interval for estimate of treatment difference 

Method s.e.(diff) % Cont Lim Coverage 

theory 0.3037 0.9500 

REML 0.2783 0.9170 
default 

No Bound 0.2961 0.9473 

Type 3 0.2948 0.9450 
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Table 8. Simulation Results: Observed Rejection Rates for Ho: no treatment effect from 
tests based on REML-default, REML-nobound, and Type 3 ANOV A 

a. (J~ = 0.01, (J~L = 0.25 

Power All Simulated Data Sets Data Sets where cr~ < 0 
Trt from 

REML I REML I Type 3 Pet REML I REML I Type 3 Diff Theory Default nobound* ANOVA Neg Default nobound ANOV A 
0 0.050 0.083 0.052 0.054 47.8% 0.063 0.030 0.032 

0.2 0.090 0.111 0.092 0.079 47.5% 0.118 0.056 0.062 
0.4 0.214 0.240 0.188 0.199 46.4% 0.209 0.114 0.125 
0.6 0.413 0.495 0.423 0.413 45.2% 0.477 0.312 0.307 
0.8 0.638 0.727 0.634 0.643 45.6% 0.684 0.525 0.527 

* Nobound failed to converge in 1.2-2.9% of simulated data sets 

b. (J~ = 0.5, (J~L = 0.01 

Power All Simulated Data Sets Data Sets where cr~L < 0 
Trt from 

REML I REML I Type 3 Pct REML I REML I Type 3 Diff Theory Default nobound* ANOV A Neg Default nobound ANOV A 
0 0.050 0.026 0.052 0.044 52.2% 0.044 0.108 0.055 

0.2 0.163 0.080 0.134 0.102 50.4% 0.119 0.255 0.139 
0.4 0.489 0.396 0.455 0.408 52.2% 0.483 0.624 0.473 
0.6 0.822 0.764 0.784 0.728 52.8% 0.830 0.897 0.822 
0.8 0.969 0.952 0.959 0.898 53.0% 0.977 0.995 0.961 

* Nobound failed to converge in 10.6-15.0% of simulated data sets 
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Figure 1. Power curve for tests of treatment effect using various variance component 
estimators 
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• NoBound failed to converge in l.2 - 2.9% of simulated data sets 

• estimate of al negative ;0::: 48% of data sets 

• ML estimate shown only for Trt Effect=O.O 
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