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Abstract 

A parsimonious covariance structure of repeated measures is often sought for purposes of 
increased power for testing hypotheses about the means, and for insight into the stochastic 
processes governing the repeated measures. For normal data, model selection is often based upon 
likelihood ratio tests or information criteria derived from the likelihood, sometimes 
supplemented with graphical plots of correlations and partial correlations. We exploit the ordered 
nature of repeated measures to decompose the likelihood ratio goodness-of-fit test statistic, and 
display graphical fingerprints associated with the covariance structures to help detect covariance 
structure misspecification, in order to provide guidance in choosing an appropriate structure for 
the data. The proposed methodology is illustrated with simulated repeated measures data and 
then applied to an experiment to compare tillage methods of pasture establishment. 

1. Introduction 

Repeated measurements taken on the same unit have dependencies that must be properly 
accounted for in their analysis. In some cases, an unstructured multivariate approach may be 
used, though it is often desirable to use a parsimonious covariance structure to describe the 
associations among the repeated measures for purposes of increased power for testing hypotheses 
about the means, and for insight into the stochastic processes that govern the repeated measures. 
In normal linear models, this is attained by assuming a particular structure for the covariance 
matrix (Dempster 1972, Lindsey 1993, lennrich and Schluchter 1986, Wolfinger 1993, 
Macchiavelli and Moser 1996, Wolfinger 1996). The covariance structure is often regarded as a 
nuisance parameter, so that the ideal solution is to use a parsimonious covariance model that 
describes well the observed data. If an unrealistically simple covariance structure is selected, the 
tests will be invalid. On the other hand, an unnecessarily complex structure (or no structure at 
all) decreases the power (Macchiavelli and Moser 1997). 

Wolfmger (1993) mentions several steps involved in making inferences about the mean 
parameters in these models. The first step is to fit a mean model (overfitting may be necessary to 
avoid creating spurious dependencies), and then initial covariance structures can be studied using 
relevant theory and graphics. Finally formal statistical techniques can be applied to select the 
fmal covariance structure and make inferences for the mean parameters. From a practical 
perspective, this strategy has two aspects that are critical to ensure a good covariance structure is 
chosen and fit: the selection of the structure and the likelihood optimization problem for fitting 
the selected structure. Methods for choosing appropriate structures are mostly based on model 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2002/proceedings/3



18 Kansas State University 

selection techniques such as a sequence of likelihood ratio tests (Lindsey 1993, Diggle et al. 
1994) or penalized likelihood criteria (Macchiavelli and Arnold 1995). In the related area of 
linear structural equations (Joreskog and Sorbom 1988), indices of goodness of fit and residuals 
have been developed (Browne 1982, SAS 1996). 

We exploit the ordered nature of the repeated measures along with decompositions of the 
covariance matrix to generate partitions of the likelihood ratio test statistic and of graphics to 
produce diagnostics that help isolate and highlight specific problems in the lack of fit of a 
covariance structure. Further, these methods can give guidance in proposing appropriate 
structures to consider. First, we will show how the likelihood ratio test statistic can be 
partitioned, and then we'll show how specific covariance structures can be compared graphically. 
Finally, we'll illustrate these methods with both simulated and real examples. The methods that 
we are proposing are not replacements for existing methodologies, such as the PRISM plots of 
Zimmerman (2000), but are to be used along with these methods. 

2. Partition of the Likelihood Ratio Test Statistic 

Let 

Y = (~""'YT) ~ NT (Ji,I:) (2.1) 

be a T-dimensional vector representing repeated observations on a single experimental unit. 
Consider n independent random vectors (Yp ... , Y n ), each with the same covariance matrix. 

Define 

(2.2) 

and assume a linear model E(YnxT ) = Xnxa0 axT> for some n x a matrix X of full column rank. 

The elements of e are functionally independent. 
Weare usually interested in making inferences about 0 , the mean parameters, while the 

covariance matrix, I:, contains the nuisance parameters. Since the multivariate normal 
distribution is an exponential family, the canonical parameterization for the nuisance parameter 
is not in terms of I: but in terms of the concentration matrix, Q = I:-l. The likelihood for n 
independent observations using this parameterization is: 

L(Y;0,n) ~ (2,,)-"'" Inl"" exp{ -ttr[ n t(Y, -X,0 )(Y, -X,0), ]}, (2.3) 

where Xi is the ith row of X . 

As mentioned before, several structures are commonly used for Q = (wij) or I: = (aij) . 

The compound symmetry structure assumes au = a + band aij = b if i"* j. The first order 

autoregressive model assumes the aij = apHI. The first order antedependence structure assumes 

that wij = 0 if I i - j I > 1. In the particular case of structures defmed only by conditional 
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independence (zeroes in Q), we have a linear exponential family (Dempster 1972, Cox and 
Wermuth 1990). From the likelihood function, it is clear that the MLE of Land Q for complete 

data if no structure is assumed are, respectively, tu = Sand f!u = S-I , where 

(2.4) 

Under a particular structure S, the MLEs of Land Q will be denoted as ts and f!s. 

In order to test the hypothesis that the structure proposed is valid against a general 
unstructured alternative, the likelihood ratio chi-square test statistic can be written as 

X2 =-2logA=nlogltst cil+ I..isf!s£s- I..iuf!u£u, (2.5) 
i=1 i=1 

where £s = ( Yi - XiS s) and £u = ( Yi - XiS u) are the residuals under the proposed structure and 

the unstructured matrices respectively. 
Using spectral decompositions of the covariance matrix we can write 

t-I = i>-~ [~_l_p. p'. ]D-~ (2.6) u u L..... 1 ,U 'U U 
j=1 AjU 

and 

(2.7) 

Here Du is the matrix containing the diagonal elements of t u , and AjU and PjU are the jth 

eigenvalue and eigenvector respectively of Ru = i>~tuDJz, the correlation matrix. 

A similar decomposition can be obtained for t s. U sing these decompositions, the 

likelihood ratio chi-square test statistic can be written as 
n T 

X 2 =LLdij' (2.8) 
i=1 j=1 

where 

In order to have good estimates of the unstructured matrices, the residuals £ need to be 

unbiased. Hence it is better to have a mean "saturated" model (Wolfmger 1993). 
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20 Kansas State University 

Since (2.8) has an asymptotic expected value of df (equal to the difference in the number of 
parameters in the proposed structured and in the unstructured covariances), we can divide each 
component dlj by dfto spot individual contributions that are too large. Other ways of looking at 

the contributions of these components is by adding them up by subjects or by dimensions. Thus, 

t dij or t ~ will indicate if a particular subject is contributing too much to the lack of fit 
)=1 )=1 

of the proposed structure. Similarly, t dij or t d~ will indicate if certain dimensions are 

causing the lack of fit. 

From (2.5) another decomposition of the test statistic can reflect the aspect of the model 

in which there is lack of fit. By substituting :ts = D~RsD~ and :t;) = DJ'RZrDJ' in (2.5), we 

can write it as 

;(2 = nloglDsDc/1 + n loglRsRc/1 + I (ii!s£s - iuiiu£u ). 
i=1 

(2.9) 

We can see that (2.9) can be divided into three terms: one associated with the variance 
structure, one associated with the correlation structure and one associated with the difference in 
the residuals. As before, the contribution of each of these terms to the lack of fit can be studied 
dividing each term by the degrees of freedom: a component much larger than 1 would indicate 
that that particular aspect of the structure is contributing the most to the lack of fit. The terms 
associated with the variance and correlation parts can further be investigated by computing ratios 

and log-ratios of corresponding variances in Ds and Du , and by computing ratios and log-ratios 

of corresponding eigenvalues of Rs and Ru. Note that the component contributions to the 

likelihood ratio statistic are simply n times the component log-ratios. Thus (2.9) can be re
written as 

T T n 

;(2 = Lnlog(ui~ / U?u) + Lnlog(iis / iiU)+ I (isns£s - .sunu£u) 
i=1 i=! i=l 

(2.10) 

where Ui~ and uit are the variances from :ts and :tu , respectively, and iiS and iiU are the 
A A 

eigenvalues of Rs and Ru , respectively. 
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3. Graphical Fingerprints 

The eigenstructures of several often-used models for repeated measures are well known, 
and when the time variables are displayed graphically in the space of the eigenvalues, produce 
characteristic plots. For the compound symmetry structure, here given for 4 times, 

a+j3 j3 j3 f3 

j3 a+j3 j3 j3 
1: = (3.1) 

j3 f3 a+j3 f3 

j3 j3 j3 a+f3 
there are two, usually unique, eigenvalues, ~ and Ai;"!' and the set of eigenvectors, E, associated 

with the smaller of the two describe a sphere where 

l~ a:4/l andE'~lr ~I 1 ~ ~ (3.2) 
a -1 0 1 0 

a -1 0 0 1 

and where the eigenvectors are the rows of E'. When the time variables are plotted in this space, 
the time vectors are orthogonal and describe a sphere that indicates equal correlations among any 
pair of time vectors. 

Consider a first-order autoregressive structure for 4 times with covariance matrix 
1 p p2 p3 

1 
0 

1: = (]"2 
P P p" 
p2 P 1 P 

(3.3) 

p3 0 

1 p~ p 

The eigenvalues are 

(3.4) 
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and the associated eigenvectors (in row order) are 

E'= 

a2(p+l)-~ 

a 2 p(p + 1) 

a2(p+l)-~ 

a 2p(p+l) 

-1 

-1 

1 

1 

a 2(p3 -1) + A, 
a 2 pep -1) 

a 2(p3 -1) + ,,1,4 

a 2p(p -1) 

1 

1 

a\p3 -1) + A, 
a 2 p(p-l) 

a 2(p3 -1) + ,,1,4 

a 2 p(p-l) 

Kansas State University 

a2(p+l)-~ 

a 2 pep + 1) 

a2(p+l)-~ 

a 2p(p+l) 

1 

1 

(3.5) 

where the Ai are the elements of J... For a larger number of time periods, such symmetry persists 

among the eigenvalues and eigenvectors. For example, consider a first-order autoregressive 
process with 6 times. When the time vectors are plotted in the first two dimensions 
corresponding with the 2 largest eigenvalues, the structure gives a very symmetric pattern that 
sequentially orders the times (Figure 1). When the time vectors are plotted in the space of the last 
two eigenvectors, a star pattern results (Figure 2). 

Other common covariance structures also have specific patterns, though the actual pattern 
can depend considerably upon the values of the parameters for the structure. We propose that the 
time vectors from the unstructured covariance model and from the proposed (reduced) 
covariance model be plotted in the space of the eigenvectors of the proposed model. In this way, 
one can visually examine the goodness-of-fit of the proposed modei to the unstructured modeL 
In addition, substantial deviations of fit can often suggest reasons for the lack-of-fit. Since the 
variances can have substantial effects on these results, we propose that the fingerprint graphics 
be performed on the correlation matrices, with separate diagnostics used for modeling the 
variances. 

A scaling of the eigenvectors using their corresponding eigenvalues is performed on each 
structure, then a Procrustes rotation of the unstructured covariance matrix time vectors is used to 
most closely match the proposed structure before the graphics are produced. Let Eu and E s be 

the scaled eigenvectors for the unstructured and structured models, respectively, then 

E~Es = UDV' (3.6) 

using the singular value decomposition, so that the Procrustes rotation of Eu to Eu to most 

closely match E sis 

(3.7) 

In addition, the Euclidean distance from one structure to the other is computed following the 
rotation. 
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4. Examples 

To illustrate the methodologies, a simulated data set having a heterogeneous first-order 
autoregressive structure was generated and analyzed. The analysis considered a variety of 
covariance structures available through PROC MIXED of SAS (SAS Institute, Inc., Cary, NC). 
The simulation illustration is followed by the analysis of a pasture forage experiment involving 
repeated measures. 

4.1 Simulated examples 

The simulated data set of 6 time equally-spaced time periods was generated under a 
heterogeneous first-order autoregressive process (ARR(l)), and then a variety of covariance 
structure models were fit to these data. The ARH(1) model fits adequately (X2 = 19.8, df= 14, 
P=0.14), but more interesting are the diagnostics associated with structures such as CS, CSH, 
and AR(1). The CS structure should not be a good fit to either the variances or covariances of 
this data set. This is verified both by the likelihood ratio diagnostics (Table 1), where the 
contributions to the likelihood ratio test are very large for both the variance and covariance 
components, and the fingerprint graphics (Figure 3), where the structure of the correlations is not 
well modeled by the CS structure. For the CSH model, the variances of the data are well 
modeled, the likelihood ratio decomposition (Table 2) has a small contribution to the variances 
and still a large one for the covariances, and so the correlations are again poorly described. The 
AR(1) model describes well the correlations for these data, but does not handle the 
heterogeneous variances wen with a large contribution from the variances to the likelihood ratio 
test (Table 3). Finally, the ARH(1) model is fit to these data and both the correlations (Figure 4) 
and likelihood ratio test components are all small (Table 4). 

4.2 Pasture forages 

In order to compare minimum and non-tillage to conventional methods of pasture establishment, 
4 different treatments were tested in the central humid region of Puerto Rico. The species used 
was Brachiaria decumbens cv. Basilik (Signal Grass). The treatments were: 

1. minimum tillage (one superficial harrow disk pass) followed with seeds broadcast on the 
plot; 

2. minimum tillage, one broadcast application of herbicide, and 45 days later, minimum 
tillage and seeds broadcast on the tilled plot; 

3. minimum tillage, one broadcast application of herbicide, and 45 days later, 2 disc passes 
every 2m (900 grid pattern) followed by seeds broadcast on the tilled plot; 

4. non-tillage, one broadcast application of herbicide, and 45 days later, seeds broadcast on 
the plot; 

5. conventional planting: 2 disc plow passes followed by 2 harrow disc passes then seeds 
broadcast on the plot. 

The experiment was arranged in a randomized complete block design with 3 replicates. 
There were measurements of coverage (average estimated percentages of cover from 10 frames 
thrown at random in each plot), and plant density (average number of plants in the 10 frames). 
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There are 5 repeated measurements, taken at I-month intervals from August to December 200l. 
In this example we analyze the measures of cover. 

Models addressing heterogeneity among the variances of the times are important for these 
data. Consider first the heterogeneous compound symmetry (CSH) model. The likelihood ratio 
test clearly rejects this structure as appropriate for these data (X2 =76.6, df=9, P<O.OOOI) and its 
decomposition clearly shows that the major lack-of-fit is with the correlations (Table 5). The 
fingerprints for this model indicate that some ordering of the times is needed, and also shows that 
this model does not adequately fit (Figure 5). The heterogeneous first-order autoregressive 
process does not fit these data much better (X2 =70.8, df=9, P<O.OOOl) and also has problems 
fitting the correlation structure (Table 6, Figures 6-7). Notice, however, that the fingerprints in 
the last two principal axes suggest that the AR( I) process has captured some of the time-ordering 
of the time vectors (Figure 7). Although the overall contribution to the likelihood ratio test by the 
variances is not large (X2=6.77), there is considerable variation among the individual 
comparisons suggesting some lack-of-fit (Table 7). Contributions to the lack-of-fit, however, are 
very great in dimension 5 comparing correlation structures (Table 8). This would suggest 
problems in modelling well the partial correlations. A two-factor factor analytic model (F A(2)), 
on the other hand does appear to model the data reasonably well (X2 =2.2, df=3, P=0.53). There 
are no large contributions to the likelihood ratio statistic and the observed time vectors are very 
near the fitted vectors in the fingerprint plot (Table 9, Figures 8-9). The decompositions of both 
the variances (Table 10) and correlations (Table 11) show very good fits of this model. The 
unstructured with two minor bands model (UN(3)) also fits these data reasonably well (X2 =0.69, 
df=3, P=O.88) and has diagnostics similar to the F A(2) model. 

5. Summary 

Both numerical and graphical decompositions of covariance structures are shown to be 
useful diagnostics for model selection for repeated measures covariance structures. The 
likelihood ratio test statistic for comparing structures with an unstructured alternative is written 
in terms of comparisons of variances, correlations, and residuals, and so lack-of-fit can be 
attributed to specific components which may suggest alternative structures to consider. In 
addition, the time vectors of the repeated measures are plotted in the space of the principal 
components of the fitted covariance structure, and the unstructured fit is projected into this same 
space providing a graphical assessment of fit. These tools should be complementary to existing 
diagnostics for repeated measures covariance structure model selection. 
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Table 1. Likelihood ratio test (df= 19) decomposition for the ARH(1) data fitted with a 
h d t (CS) d 1 omogeneous compoun symmetry mo e. 
Component Contribution to Chi-square Contribution! df 
Variances 111.8 5.9 
Correlations 124.8 6.6 
Residuals 0.0 0.00 
Total 236.6 12.5 

Table 2. Likelihood ratio test (df=14) decomposition for the ARH(l) data fitted with a 
heterogeneous compound symmetryJCSH) model. 
Component Contribution to Chi-square Contribution! df 
Variances 0.6 0.05 
Correlations 80.5 5.75 
Residuals 0.0 0.00 
Total 81.1 5.80 

Table 3. Likelihood ratio test (df=19) decomposition for the ARH(1) data fitted with a 
homogeneous first-order autore sressive (AR(1)) model. 
Component Contribution to Chi-square Contribution! df 
Variances 118.4 6.2 
Correlations 44.2 2.3 
Residuals 0.0 0.00 
Total 162.6 8.5 

Table 4. Likelihood ratio test (df= 14) decomposition for the ARH(1) data fitted with a 
heterogeneous first-order autoregressive CARH(1)) model. 
Component Contribution to Chi-square Contribution! df 
Variances -2.4 -0.17 
Correlations 22.2 1.59 
Residuals 0.0 0.00 
Total 19.8 1.42 

Table 5. Likelihood ratio test (df=9) decomposition for the pasture forage data fitted with a 
heterogeneous compound symmetry (CS) model. 
Component Contribution to Chi-square Contribution! df 
Variances 11.5 1.3 
Correlations 65.1 7.2 
Residuals 0.0 0.00 
Total 76.6 8.5 
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Table 6. Likelihood ratio test (df=9) decomposition for the pasture forage data fitted with a 
heterogeneous first-order autoregressive CARB(1)) model. 
Component Contribution to Chi-square Contribution! df 
Variances 6.8 0.75 
Correlations 64.0 7.12 
Residuals 0.0 0.00 
Total 70.8 7.87 

Table 7. Likelihood ratio test C df=9) decomposition of variances for the pasture forage data fitted 
with a heterog eneous first-order autoregressive CARRO)) model. 

Time V(Fitted) VCFull) VR Log(VR) LR 
T1 39.94384 27.938965 1.430 0.3575 5.36 
T2 75.514134 40.247919 1.876 0.6293 9.44 
T3 164.86238 116.72184 1.412 0.3453 5.18 
T4 120.34904 172.24677 0.699 -0.3585 -5.38 
T5 92.973475 156.70796 0.593 -0.5221 -7.83 
Sum 6.77 

Table 8. Likelihood ratio test C df=9) decomposition of eigenvalues of correlation matrix for the 
pasture for del. age data fitted with a hetero eneous first-order autore2"ressive CARR(1)) mo 

Dimension E(Fitted) E(Full) ER Log(ER) LR 
D1 2.668577 2.4523415 1.088 0.0845 1.27 
D2 1.1511716 1.5197386 0.757 -0.2778 -4.17 
D3 0.5622654 0.8462221 0.664 -0.4088 -6.13 
D4 0.3496942 0.1776492 1.968 0.6772 10.16 
D5 0.2682918 0.0040487 66.267 4.1937 62.91 
Sum 64.03 

Table 9. Likelihood ratio test (df=3) decomposition for the pasture forage data fitted with a two-
factor factor analytic (F A(2)) model. 
Component Contribution to Chi-square Contribution!df 
Variances 1.1 0.37 
Correlations 1.1 0.37 
Residuals 0.0 0.00 
Total 2.2 0.74 
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Table 10. Likelihood ratio test (df=3) decomposition of variances for the pasture forage data 
fitted with a tw o-factor factor analytic (F A(2») model. 

Time V(Fitted) V(Full) VR Log(VR) LR 
Tl 27.355754 27.938965 0.979 -0.0211 -0.32 
T2 36.894511 40.247919 0.917 -0.0870 -1.30 
T3 117.46876 116.72184 1.006 0.0064 0.10 
T4 188.15693 172.24677 1.092 0.0883 1.33 
T5 171.04193 156.70796 1.091 0.0875 1.31 
Sum 1.11 

Table 11. Likelihood ratio test (df=3) decomposition of eigenvalues of correlation matrix for the 
pasture fora D"e data fitted with a two-factor factor analytic (FA(2») model. 

Dimension E(Fitted) E(Full) ER Log(ER) LR 
D1 2.5959044 2.4523415 1.059 0.0569 0.85 
D2 1.3151454 1.5197386 0.865 -0.1446 -2.17 
D3 0.8912489 0.8462221 1.053 0.0518 0.78 
D4 0.1935569 0.l776492 1.090 0.0858 1.29 
D5 0.0041443 0.0040487 1.024 0.0234 0.35 
Sum 1.10 
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Figure 1. Endpoints of 6 time vectors plotted in 
the space of the first two eigenvectors and then 
connected in sequential order for a first-order 
autoregressive process. 
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Figure 3. Endpoints of the 6 time vectors for 
the ARH(1) data fit with a homogeneous 
compound symmetry (CS) model plotted in the 
space of the first two principal axes. 
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Figure 2. Endpoints of 6 time vectors plotted in 
the space of the last two eigenvectors and then 
connected in sequential order for a first-order 
autoregressive process. 
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Figure 4. Endpoints of the 6 time vectors for 
the ARH(1) data fit with a heterogeneous first
order autoregressive CARR(l» model plotted in 
the space of the first two principal axes. 
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Figure 5. Endpoints of the 6 time vectors for 
the pasture forage data fit with a heterogeneous 
compound symmetry (CSH) model plotted in 
the space of the first two principal axes. 
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Figure 6. Endpoints of the 6 time vectors for 
the pasture forage data fit with a heterogeneous 
first-order autoregressive (ARR(l» model 
plotted in the space of the first two principal 
axes. 

Figure 7. Endpoints of the 6 time vectors for Figure 8. Endpoints of the 6 time vectors for 
the pasture forage data fit with a heterogeneous the pasture forage data fit with a two-factor 
first-order autoregressive CARR (1 » model factor analytic (F A(2» model plotted in the 
plotted in the space of the last two principal space of the first two principal axes. 
axes. 
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Figure 9. Endpoints of the 6 time vectors for 
the pasture forage data fit with a two-factor 
factor analytic (F A(2)) model plotted in the 
space of the last two principal axes. 
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