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Abstract 
In this study, an uncertainty analysis procedure for joint sequential simulation of multiple 

attributes of spatially explicit models was developed based on regression analysis. This 
procedure utilizes information obtained from joint sequential simulation to establish the 
relationship between model uncertainty and variation of model inputs. Using this procedure, 
model variance can be partitioned by model input parameters on a pixel by pixel basis. In the 
partitioning, the correlation of neighboring pixels is accounted for. With traditional uncertainty 
analysis methods, this is not possible. In a case study, spatial variation of soil erodibility from a 
joint sequential simulation of soil properties was analyzed. The results showed that the 
regression approach is a very effective method in the analysis of the relationship between 
variation of the model and model input parameters. It was also shown for the case study that (1) 
uncertainty of soil erodibility of a pixel is mainly propagated from its own soil properties, (2) 
soil properties of neighboring pixels contribute negative uncertainty to soil erodibility, (3) it is 
sufficient for uncertainty analysis to include the nearest three neighboring pixel groups, and (4) 
the largest uncertainty contributors vary by soil properties and location. 

Keywords: joint simulation, regression analysis, Revised Universal Soil Loss Equation 
(RUSLE), soil erodibility, uncertainty analysis. 
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1. Introduction 

Soil loss in the USA is currently predicted using either the Universal Soil Loss Equation 
(USLE) (Wischmeier and Smith, 1978) or the Revised Universal Soil Loss Equation (RUSLE) 
(Renard et aI., 1997) for the purpose of agricultural, rangeland and environmental management. 
Both USLE and RUSLE are related to rainfall erosivity factor (R), soil erodibility factor (K), 
slope length factor (L), slope steepness factor (S), cover management factor (C), and support 
practice factor (P). These equations consist of empirical model sets derived from an extensive 
database and their model parameters contain uncertainty when using these equations for a 
specific area. Moreover, these factors vary over space and time, depend on other variables, and 
may be correlated with each other. Additionally, errors in sampling, measuring, and modeling 
will lead to uncertainty in the estimate of these factors. These uncertainty sources should not be 
neglected, since they will propagate into the prediction of soil loss. Uncertainty might be 
important, particularly when local estimates are required for management planning. Thus, there 
is a strong need to develop a general methodology for the spatial assessment of uncertainty for 
users of such systems. 

In recent years we have been working on a large project related to the prediction and 
uncertainty analysis of soil erosion using the USLE and RUSLE. Our objectives are to develop a 
general procedure for spatially and temporally predicting soil loss, identifying various errors, 
modeling their propagation, and generating error budgets in order to provide guidelines for error 
reduction and management planning. As one part of the overall of uncertainty analysis for soil 
loss prediction, the study reported here focuses on a method uncertainty assessment of soil 
erodibility factor K used in the USLE when spatially explicit joint simulation methods are used 
for modelling the soil erodibility factor K. The methodology presented here will be extended to 
the full USLE and RUSLE. 

Uncertainty analysis is essential to evaluate and control the quality of model simulations. 
It is the first step to efficiently improve the quality of simulation predictions. There are many 
uncertainty analysis methods for non-spatial simulation models, such as methods based on 
Taylor series, Fourier series, Monte Carlo simulation, and computational experiment design 
(Cox, 1977; Cukier et aI., 1973; Dawning et aI., 1985; Fang, 2000; Fang and Gertner, 2000; 
Gertner et aI., 1996; Jansen et aI., 1994; Parysow and Gertner, 2000; Matsumoto et aI. 1994; 
Sobol, 1993). Functional models are often developed to predict certain resources and properties 
based on mapped attributes. These mapped attributes are input parameters (inputs) of the 
functional models. Often the mapped attributes are correlated spatially. Some of the above 
uncertainty analysis methods have been extended to these spatially explicit functional models 
(Bachmann and Allgower; 2000; Fang et aI. 2000; Heuvelink, 1998; Wang et aI., 2000a). 
However, in these extensions, the uncertainty analysis methods were applied under the 
assumption that mapped attributes were independent in space. 

Joint sequential spatial simulations of multiple attributes have been widely used in 
modelling natural resources, ecological and environmental attributes (Goovaerts, 1997, Mowrer, 
1997, Wang et aI., 2000b). With this type of spatial simulator, it is possible to simultaneously 
account for the spatial correlation of individual attributes, as well as for the correlation between 
attributes. (Gomez-Hernandez and Cassiraga, 1994; Goovaerts, 1997). With sequential 
simulations, when the attributes of interest are correlated, the variability of an attribute of interest 
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at a pixel comes from spatial variability of neighboring pixels as well as variability between the 
attributes. The variation (variance and covariance) of the attribute vector for a pixel is 
determined by auto and cross correlation, and variation of the attribute vectors for neighboring 
pixels. 

When the attributes estimated using sequential joint simulation are used as inputs of a 
functional model, the uncertainty of model predictions on a pixel basis comes from the variation 
of inputs at the same pixel, from variation of neighboring pixels, and from the spatial correlation 
of attributes. When the uncertainty in predictions is assessed, both spatial and non-spatial 
uncertainty sources should be accounted for. 

All existing uncertainty analysis methods are deficient when the spatial correlation and 
neighboring information is considered in uncertainty analysis. The structure of the functional 
model and computational cost can make it very difficult to apply the existing methods. When the 
structure of a functional model does not contain any terms dealing with neighboring information, 
the computationally-efficient uncertainty analysis methods, such as Taylor series and Fourier 
series based methods, can not be used to partition spatial uncertainty contributions. Since 
sequential joint simulation algorithms are usually computationally very intensive, uncertainty 
analysis methods that are based on Monte Carlo simulations can be computationally too 
expensive. Those uncertainty methods based on experimental design are impractical since it is 
very difficult to systematically control sequential joint simulation algorithms to assess 
uncertainty. 

The objective of this study is to develop an uncertainty analysis procedure for spatially 
explicit functional models whose inputs (attributes) are estimated using joint sequential 
simulation. As a case study, the procedure was applied to a model used to spatially predict soil 
erodibility. 

2. Brief review of joint sequential simulation 

In joint sequential simulation of multiple attributes, an expected vector and estimation 
variance matrix of the attributes are obtained for each unknown location of a study area. The 
expected estimate and variance for each attribute are derived from a set of estimates drawn from 
conditional cumulative density functions (ccdfs). Commonly the density functions are assumed 
to be multiGaussian. Given this assumption, for each draw the ccdf is updated by an estimate 
and error variance yielded using a cokriging estimator with the modeled spatial variability of the 
attribute, sample data and previously simulated values given a neighborhood. Updating the ccdfs 
is thus critical for the joint sequential simulation. 

Suppose that a study area is divided into N nodes of a grid and P attributes are estimated. 
In this area, a sample is drawn and the sample data set { zp (up) , up = 1, 2, ... , np, p = 1, 2, ... , P} 

is obtained, and np is the number of sample data for the attribute p. The expectation and variance 
for the attribute pare mp and a: . The simple cokriging estimate Z;Ck (u) and error variance 

a;Ck(u) at the location u for the attribute pare (G6mez-Hernandez, and Journel, 1992, 

Goovaerts, 1997): 
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ill (u) np (u) 

Z;Ck(U) = mp + L Au)ZI (ul) - n;J + ... + L Au)Zp(Up) - mpJ 
u,~l up~1 

np(u) 
(1) 

+ ... + L Au p [Zp (up) - mpJ 
up~l 

n, (u) np (u) 

o-;Ck (U) = o-p - L Au, Cpl (ul-u) - ... - L Aup Cpp (up -u) 
u,~1 up~1 

np (u) 
(2) 

- ... - LAupCpp(up-u) 

where p = 1,2, ... , P; np(u) is the number of sample data and previously simulated values 
available at the location u for the attribute p given a neighborhood; and the number varies from 
location to location. Au

p 
is the weight of the data at location up and Cpp.(up -u) is the cross 

covariance between the estimated attribute k and attribute p' (p' = 1, ... , P). Let h be the 
separation distance of data given a direction, for example, h=u p -u , and Cpp.(O) the covariance at 

the separation distance of zero. Then, Cpp.(h) = Cpp.(O) - ypp.(h) . ypp.(h) is an auto or cross 

semivariogram measuring spatial variability of attributes p and p'. 
The weights Au are the solutions of a linear equation system consisting of the co-

p 

variances and cross co-variances. For the solutions, the semivariograms should be permissible 
covariance functions such as spherical and Gaussian model, and P+ 1 auto and cross co-variances 
matrices should be positive semi-definite. A linear model of coregionalization is thus needed. If 
the data of attributes are not normally distributed, moreover, a normal score transformation is 
needed for each attribute. Then, the transformed data are used in simulation, and the simulated 
values are transformed back to the original data form. 

In a joint sequential simulation, first define a random path to visit each node of the grid 
once. At the uth node to be visited, determine the mean and variance of the ccdf for attribute p 
given the np original data and all (u -1) simulated values at the locations previously visited, and 
from that distribution, draw a value which will become the conditional datum for all subsequent 
drawings. The simulation is done when all N nodes are visited and provided with simulated 
values. Repeating the joint sequential simulation process many times with different visiting paths 
leads to a set of estimates at each location for each attribute. Finally, an expected vector and co­
variance matrix for P attributes at each location is calculated. 

For more details of the joint sequential simulation algorithm, see relevant sections in 
Gomez-Hernandez, and lournel (1992) and Goovaerts (1997). 

3. Uncertainty Analysis Procedure 

Based on attribute maps generated using joint sequential simulation, a functional model 
can be used to make predictions on a pixel basis. Let the functional model be: 

y = !(ZI,Z2"",Zp) 
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where y is the prediction and ZI' Z2"·· ,Zp are the inputs (attributes). Figure 1 illustrates the 

relationship between attributes and prediction maps. The uncertainty of attributes ZI' Z2'··· ,Zp 

determines the uncertainty of y. 

341 

When using joint sequential simulation to estimate attributes, the uncertainty of the 
attributes at one pixel are related to the field observations, spatial variability in terms of auto and 
cross semivariograms, and information from neighboring pixels. Therefore, in uncertainty 
partitioning on a pixel basis, besides the uncertainty of the attributes at the concerned pixel (host 
pixel), the spatial correlation and effect of neighboring pixels should also be considered. 

In a joint sequential simulation, usually several hundred replications are used to estimate 
the attributes at each pixel in a given study area. The mean and variation (variance and 
covariance) of all attributes and the corresponding model prediction can be estimated. From 
these replications, a large amount of information about variation of both attributes and model 
prediction can be extracted from the simulations. 

Gertner et al. (1996) and Parysow and Gertner (2000) proposed a regression analysis 
approach to partition uncertainty of a non-spatial functional model when dealing with large 
amounts of information on model uncertainty from computational experiments. The dependent 
variable for the regression model was the variance of the functional model prediction and the 
independent variables were the variances of the inputs of the functional model. After the 
coefficients of the regression model were estimated, variance contribution of each functional 
model input was determined by plugging its variance into the regression model and setting all 
other terms to be zero. 

The regression approach can be extended to investigate spatial uncertainty propagation of 
a functional model when its inputs are estimated using the joint sequential simulation. Because it 
is very difficult to design a computational experiment when joint sequential simulation is used, 
the regression approach of Gertner et al. (1996) and Parysow and Gertner (2000) needs to be 
modified to meet the properties of spatial uncertainty from the joint sequential simulation. 

Joint sequential simulation itself can provide needed data to develop a model for 
partitioning spatial uncertainty based on the regression approach. A random sample drawn from 
the variation of the predictions and inputs of the functional model obtained from the joint 
sequential simulation are similar to data sets obtained from computational experiments of 
Parysow and Gertner (2000). For spatial uncertainty analysis, the random sample should contain 
not only the variation at the sampled pixels (host pixels) but also that of their neighboring pixels. 
Such a random sample can be used in the regression analysis of spatial uncertainty. 
Correspondingly, the regression model should include the terms for the spatial variability and 
variation of neighboring pixels. The auto and cross covariance terms reflect the effect of both 
spatial variability and variation of neighboring pixels. Since auto and cross covariance are 
dependent on distance, neighboring pixels can be grouped according to the distance to their host 
pixel. The location and number of each neighbor group are shown in Figure 2. 

The regression model used for spatial uncertainty partitioning will be a non-intercept 
model: 

k. P P 

var(y) = .L.L.Lbjjk cov[Zj(u),Z/u+hk)]+c: (4) 
k=O j=1 j'i 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/23



342 Kansas State University 

where var(y) is the variance of the functional model prediction at the host pixel u. Zj and Zj are 

the ith and jth inputs of the spatially explicit functional model; ka is the number of neighbor 

groups (based on Figure 2) included in the regression model; P is the number of inputs of the 

functional model; b's are the coefficients of the regression model; hk is the distance between the 

host pixel and the neighbor pixels of the kth group; and when k=O and ho =0. The 

cov[Zj (u), Zj (u+h k)] is the sum of auto or cross covariance of all neighboring pixels of the kth 

group when hk >0, otherwise it is the traditional covariance or variance (when i=j). The c: is the 

error term. In most realistic simulations, many terms in the regression model will not be 
significant (Eq. 4). For such situations, stepwise regression can be used to select significant 
terms. 

The contribution of a variation term cov[Zj (u),Zj(u + h k )] to the uncertainty of the 

functional model is denoted as var(Y)COVk(Z"Zj) and it is: 

var(Y)COVk(Z"Zj) = bijk cov[Zj(u),Zj(u +h k )] , i=l, ... , P; j=l, ... , P; 

K=O, 1, ... , ka 

Based on an assumption of Fang (2000), var(Y)COVk(Z"Zj) can be decomposed as the contributions 

of Zi and Zj' denoted respectively as var(Y)Z~HOVk(Z"Zj) and var(Y)Z~HOVk(Z,'Zj) The 

var(Y)Z~~COVk(Z"Zj) , as well as var(Y)Z~HOVk(Z"Zj)' can be obtained by: 

var(Y)zk<c-cov (Z Z) = W ik (Zj ,Zj)' var(y)COVk(Z,Z) 
I k l' J I J 

( ) 0,5 
var y covk (Z, ,Z,) 

( ) 0.5 + ()0.5 ' 
h (Z Z) var y cOVk(Z"Z,) var Y COVk(Zj,Zj) 

if var(y)~;v (Z Z) + var(y)~;v (Z Z) :;t 0 
k l' 1 k J' J 

were w ik i ' j = 
1 

otherwise 
2' 

Therefore, the contri bution of Zi (u + h k ) is [denoted as yare y) k]: z, 

Thus, 

p 

var(y)z~ = L: var(Y)Z~HOVk(Z,'Zj) 
j=l 

k, P 

var(y) = L: 2.:: var(Y\k 
k=O i=l ' 

(5) 

(6) 

When model inputs are considered as the uncertainty sources, Eq. 6 is used to partition spatial 
uncertainty of the predictions of the functional model. 

4. Case Study 

The uncertainty analysis procedure for joint sequential simulation was used to investigate 
uncertainty propagation in a case study related to spatial prediction of soil erosion. The spatial 
prediction of soil erodibility was made based on five soil properties (attributes) estimated using 
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joint sequential simulation. Spatial uncertainty partitioning of the soil erodibility is presented 
below. 
Model 

343 

In Revised Universal Soil Loss Equation (RUSLE), soil erodibility factor (K factor) is 
used to reflect the impact of soil properties on soil erosion due to water. The soil properties 
include permeability (PE), structure (ST), and percent of organic matter (OM), sand (SA), and 
silt (SI). Permeability and structure were originally continuous and categorical variables, 
respectively, but they were treated as discrete variables when computing K factor (Wischmeier 
and Smith, 1978). The other three properties, organic matter, sand and silt, are continuous and 
their summation needs to be smaller than 100%. The values of soil erodibility factor K were 
computed from these soil properties according to the following function (Wischmeier and Smith, 
1978): 

K = _1_{2.1.1O-4 . (12 - OM)· [SI· (SA + SI)]1.14 + 2.5· (PE - 3) + 3.25· (ST - 2)} (7) 
100 

The (English) unit of K factor is (ton·acre·hour)/(hundreds of acre·foot·tonf-inch) and tonf is ton 
force. 

In the case study, the five inputs were jointly estimated using the joint sequential 
simulation, and soil erodibility values were derived using Eq. 7. 
Study Area and Data 

The study area of 87,890 hectares is located in east Texas. Its geographical location is 
between the longitude 97°55'01.1" and 97°30'01.1" Wand latitude 31°25'00.6" and 31°00'00.7" 
N. The soil is generally shallow to moderately deep and clayey, underlain by limestone bedrock. 
The elevation of this area ranged from 180 m to 375 m above sea level with 90 percent of the 
area below 260 meters (Tazik et al. 1993). The slopes ranged from 0° to 33° with most the slopes 
in the range of 1° to 3°. The dominant vegetation includes grass, shrub and tree. 

Soil samples were collected from 192 plots over the entire area and analyzed in a 
laboratory in terms of soil properties. Measured soil properties include all inputs needed for Eq. 
7. Descriptive statistics for the sampled soil attributes are listed in Table 1. 
Spatial Simulation 

The study area was divided into 440 X 440 pixels. The size of each pixel was 100 x 100 
m2 • The joint sequential simulation described above was used for the spatial prediction of five 
soil properties. The estimation of permeability and structure was performed as continuous 
variables and was converted into integer values in computing the K factor based on their 
marginal distributions and the generated values. The joint simulations were replicated 500 times. 
Across the 500 replications, the expected values and covariance matrix of the inputs and 
predictions using Eq. 7 were obtained at each location. 

The omni-directional auto and cross semivariogram models measuring spatial correlation 
of the five soil properties were derived based on the field observations using spherical variogram 
models (Table 2). Each of the semivariogram models obtained consisted of two spatial structures 
with the first range of 30 x 100 meters and the second range of 250 x 100 meters. The 
semivariogram models had different nugget parameters and sill parameters. The different sill 
parameters indicated that the spatial variability in structure varied depending on the soil 
properties (Table 2). Figure 3 shows examples of some of the auto and cross semivariograms. 
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Spatial distribution maps of the estimated mean and the variance of K factor are 
displayed in Figure 4. Estimated K factor ranged from 0.095 to 0.449 and its variance ranged 
from 0.0000 to 0.0099. The estimates of K factor and its variances were very large at the north 
and west edge of the study area, and both estimates and variances were low in patches in the 
south, east and northwest areas. In most of the study area, the estimated K factor was about 0.25 
and the corresponding variance ranged from 0.005 to 0.006 (see Figure 4). 
Sampling Spatial Uncertainty 

A systematical random sample was drawn from the results of joint simulation to develop 
the regression partitioning model. Among the 440 x 440 pixels used in the simulation, 484 pixels 
were selected from a 22-row by 22-column grid. For each of the selected pixels, neighboring 
pixels were selected as illustrated in Figure 2. At each host pixel, both the variance of K factor 
and all variance and covariance terms of the five soil properties were recorded from the 500 joint 
simulations. For the neighboring pixels, the auto and cross covariance terms of the soil properties 
were also recorded. Table 3 lists some of the descriptive statistics from the systematic sample. 
Uncertainty partitioning 

Equation 4 was the general form of the regression model used for partitioning. Its 
dependent variable was the variance of K factor, and the independent variables were the 
covariances of soil properties: OM, SA, SI, PE, and ST. Six regression models were specified for 
comparison of the effects of neighboring groups. Modell only considered the host pixel and 
neighbor group 1 variables. Model 2 included the variables in Model 1 and, in addition, neighbor 
group 2 variables. This was continued until six neighbor groups were included in the regression 
model (see Table 4). The stepwise regression was carried out using SAS ®. The estimated 
coefficients of the regression models are listed in Table 4. The R-squares of all the regression 
models were larger than 0.999 and the p-values of all listed coefficients were smaller than 0.024. 

Except for var(ST) (variance of soil structure, i.e., covariance of ST and ST), all variance 
and covariance terms of the soil properties from the host pixels were selected in all six regression 
models. In Model 3, all variance and covariance terms from the host pixels and most auto and 
cross covariance terms from the neighbor groups were selected. In Models 4, 5, and 6, some auto 
or cross covariance terms from the closer neighbor groups were not selected but their 
corresponding terms from the farther neighbor groups were selected (Table 4). 

The influence of those immediate neighboring pixels to the host pixel should first be 
considered since spatial correlation decreases as distance increases. The most reasonable 
regression model should be the model that selected most of the terms from the immediate 
neighbor groups, since there was almost no difference in the quality in terms of goodness of fit of 
Models 1 to 6. Therefore, Model 3 was used to partition spatial uncertainty of K factor in this 
case study. 

The error budget based on the average of the systematic sample showed that the 
uncertainty of K factor mainly came from the host pixels. The neighboring pixels had a negative 
uncertainty contribution (Table 5), implying that the neighboring information reduced 
uncertainty of the host pixel. At the host pixels, the largest uncertainty contributor was var(SI), 
which contributed over 48% uncertainty to the K factor. However, SI was the second largest 
contributor of the total uncertainty due to the large negative contribution from its covariance with 
other soil properties (Table 6). ST contributed the smallest proportion (about 13%) of total 
uncertainty. In neighbor groups, SI and ST were the largest negative uncertainty contributors. 
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The product of the estimated mean and variance of K factor was used to select "hot" and 
"cold" spots for uncertainty analysis. The pixels with the largest (hot spot) and smallest (cold 
spot) product of mean and variance were selected. Spatial uncertainty partitioning showed that 
the uncertainty at both spots came from their corresponding host pixels (Figure 5). Due to 
different cross covariance, the contributions from the neighboring pixels were different in sign 
(positive or negative) and amount of uncertainty even when they belonged to the same neighbor 
group. All neighboring pixels at the cold spot had a negative contribution, while about half of the 
neighboring pixels at the hot spot had positive contribution (Figure 5). The spatial uncertainty 
contributions of the host pixels at the interested spots are listed in Table 7. 

A transect was selected in the study area to assess the spatial uncertainty contribution 
across pixels. All host pixels were positive uncertainty contributors and neighboring pixels were 
mainly negative uncertainty contributors along the selected transect (Figure 6). Negative 
uncertainties from the neighboring pixels ranged from 5% to 10% of the positive uncertainties 
from the host pixels. The closer neighbor groups produced a larger amount of absolute 
uncertainty (Figure 6). 

Figures 7 and 8 illustrated the contributions of the five soil properties at the host pixels 
and neighbor groups along the transect line. The largest contributors varied by soil properties and 
location. 

5. Discussion and Conclusion 

In this study, a joint sequential simulation was integrated with an uncertainty analysis 
procedure to partition uncertainty from spatially estimated multiple attributes. The cross-spatial 
variability among the attributes was introduced into the joint simulation, which should be the 
basis of spatial uncertainty analysis. We did not show the details of the results from the joint 
sequential simulation, since the focus of this paper was on building spatial uncertainty budgets. 
However, the joint simulation reproduced well the joint spatial statistics of the attributes. 

The results of the joint sequential simulation for several soil properties in this case study 
showed that both the variances of a spatially explicit model and the variation of the model inputs 
are close to being symmetric and approximately normally distributed. The assumption of 
normality can thus be acceptable for the distribution of variation of spatial simulation. The 
approximately normal distribution makes it possible to analyze the relationship between 
variation of models and that of model inputs using regression analysis. 

Both the final regression models and spatial uncertainty partitioning showed that the first 
three neighbor groups are sufficient for an initial regression model. The final regression model 
obtained can explain the uncertainty propagation of the spatially explicit model from its inputs. 
The coefficients express the sensitivity of the corresponding independent variables of the 
regression model. Since there is no intercept, the uncertainty propagated from the variation of an 
input to the model is the product of the variance (or covariance or cross covariance) of the input 
and the corresponding coefficient. 

The integration of the joint sequential simulation with the uncertainty analysis procedure 
in this study has made it possible to take into account the spatial correlation of multiple attributes 
and the effect of neighborhood when partitioning uncertainty. Most of the uncertainty of a model 
comes from the variation of the model inputs at the concerned (host) pixel. The spatial 
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correlation among model inputs may contribute positive or negative uncertainty. Discarding the 
spatial correlation among model inputs may result in large bias in predicting model variance. On 
the other hand, the neighbors of a host pixel usually contribute negative uncertainty through 
cross correlation, indicating a reduction in total uncertainty of the host pixel, although the 
uncertainty contribution from neighboring pixels occasionally is positive. This implies that 
neglecting the cross-spatial correlation in regression analysis may lead to overestimating the 
uncertainty contribution of model inputs for most pixels of a study area. The uncertainty 
contribution of neighboring pixels could be totally different even when they have the same 
distance to a host pixel. The largest and smallest uncertainty contributors vary by soil properties 
and location. 

Generally, uncertainty of a spatially explicit model comes from the distribution of model 
inputs, sampling, measurements, data processing, and spatial simulation. In this study it was 
assumed that there were no errors in sampling, measurements, and data processing. The only 
uncertainty sources of a spatially explicit model considered here were the distributions of its 
inputs and the simulation process. 
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Table 1. Description of the measured soil properties. OM, SA, SI, PE, and ST represent organic 
matter, san d '1 bT d . 1 , Sl t, permea 11ty, an structure, respectIvely. 

OM(%) SA(%) SI (%) PE ST 

Mean 6.44 13.80 52.48 4.35 3.43 
Standard deviation 4.48 11.30 7.12 1.12 0.66 
Minimum 0.3 1.0 30.0 2 2 
Maximum 45.1 54.0 70.0 6 4 

Table 2. Estimated parameters of auto and cross semivariogram models based on observations of 
soil properties: percentage of organic matter (OM), sand (SA), silt (SI), class of permeability 
(PE) d (ST) U' f 100 , an structure mto ranges: meter. 

Soil property Nugget Sill(l) Range(l) Sill(2) Range(2) 

OM OM 6.154129 lO.11377 30 0.794887 250 
OM SA -7.60947 0.438051 30 -5.56359 250 
OM SI 6.740964 -0.60269 30 -1.4687 250 
OM PE -1.73727 -0.02959 30 -0.22453 250 
OM ST -0.84803 -0.2821 30 -0.2474 250 
SA SA 84.64614 3.837834 30 39.02297 250 
SA SI -37.2626 5.137836 30 10.2965 250 
SA PE 0.579084 -0.42573 30 1.557183 250 
SA ST 0.411975 -0.3042 30 1.795053 250 
SI SI 37.85565 7.018695 30 2.717lO7 250 
SI PE -0.31864 -0.57219 30 0.411934 250 
SI ST -0.11901 -0.37802 30 0.470051 250 
PE PE 0.856336 0.047263 30 0.065929 250 
PE ST 0.309037 0.033279 30 0.058792 250 
ST ST 0.211705 0.030194 30 0.126057 250 

T bi 3 D a e escnptIve statIstIcs 0 f 1 d sample f . l' l' uncertamty rom spatIa Slmu atlOn. 
Variation* Mean SD** Skewness Variation Mean SD Skewness 

Var(K) 0.0057 0.001 -0.816 Var(OM)2 -22.776 0.891 -0.718 

Var(OM) 1.175 0.248 -0.624 Cov(OM,SA)2 21.825 1.625 0.489 

Cov(OM,SA) -2.115 0.602 0.063 Cov(OM,SI)2 -22.156 1.186 1.172 

Cov(OM,SI) 1.136 0.395 0.351 Cov(OM,PE)2 5.427 0.256 0.136 

Cov(OM,PE) -0.383 0.076 0.144 Cov(OM,ST)2 2.618 0.141 0.744 

Cov(OM,ST) -0.214 0.041 0.527 Var(SA)2 39.437 20.095 -0.988 

Var(SA) 94.872 8.358 -3.229 Cov(SA,SI)2 59.322 7.709 -0.362 

Cov(SA,SI) -21.832 3.844 0.293 Cov(SA,PE)2 2.845 0.906 0.025 

Cov(SA,PE) 1.274 0.455 0.146 Cov(SA,ST)2 3.156 0.616 -0.088 

Cov(SA,ST) 1.176 0.285 -0.203 Var(SI)2 27.970 6.518 -0.624 

Var(SI) 45.302 3.648 -3.855 Cov(SI,PE)2 -0.549 0.593 0.184 

Cov(SI,PE) -0.492 0.297 0.145 Cov(SI,ST)2 0.203 0.373 -0.134 

Contined next page 
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(Table 3 continued) 

Cov(SI,ST) -0.087 0.182 -0.041 Var(PE)2 0.425 0.119 

Var(PE) 0.965 0.071 -5.106 Cov(PE,ST)2 0.058 0.063 

Cov(PE,ST) 0.325 0.031 -2.281 Var(ST)2 0.548 0.060 

YareST) 0.351 0.028 -4.121 Var(OM)3 -23.941 0.883 

Var(OM)1 -21.906 0.888 -0.728 Cov(OM,SA)3 21.769 1.603 

Cov(OM,SA)l 21.818 1.685 0.190 Cov(OM,SI)3 -22.068 1.138 

Cov(OM,SI) 1 -22.149 1.142 1.083 Cov(OM,PE)3 5.423 0.255 

Cov(OM,PE)1 5.413 0.256 0.198 Cov(OM,ST)3 2.647 0.138 

Cov(OM,ST) 1 2.590 0.140 0.662 Var(SA)3 38.542 20.434 

Var(SA)1 41.035 21.304 -1.010 Cov(SA,SI)3 59.012 7.684 

Cov(SA,SI)l 59.787 8.273 -0.509 Cov(SA,PE)3 2.891 0.902 

Cov(SA,PE) 1 2.832 0.931 0.085 Cov(SA,ST)3 3.155 0.590 

Cov(SA,ST) 1 3.151 0.649 -0.171 Var(SI)3 26.788 6.938 

Var(SI) 1 28.670 6.350 -1.626 Cov(SI,PE)3 -0.481 0.605 

Cov(SI,PE)1 -0.553 0.631 -0.062 Cov(SI,ST)3 0.247 0.384 

Cov(SI,ST) 1 0.141 0.383 0.125 Var(PE)3 0.412 0.132 

Var(PE)1 0.428 0.120 -1.139 Cov(PE,ST)3 0.053 0.068 

Cov(PE,ST)l 0.064 0.065 -0.400 Var(ST)3 0.545 0.064 

Var(ST)1 0.551 0.063 -1.624 

Var(OM)4 -48.838 1.722 -0.741 Cov(SA,ST)5 3.193 0.567 

Cov(OM,SA)4 43.421 2.889 0.948 Var(SI)5 26.137 5.936 

Cov(OM,SI)4 -44.141 1.947 1.082 Cov(SI,PE)5 -0.333 0.575 

Cov(OM,PE)4 10.850 0.474 0.354 Cov(SI,ST)5 0.298 0.345 

Cov(OM,ST)4 5.323 0.263 0.894 Var(PE)5 0.415 0.110 

Var(SA)4 78.234 36.440 -1.151 Cov(PE,ST)5 0.053 0.062 

Cov(SA,SI)4 116.803 11.454 -0.316 Var(ST)5 0.540 0.056 

Cov(SA,PE)4 5.938 1.203 -0.045 Var(OM)6 -25.942 0.875 

Cov(SA,ST)4 6.435 0.901 -0.399 Cov(OM,SA)6 21.745 1.651 

Var(SI)4 52.964 11.182 -2.300 Cov(OM,SI)6 -22.003 1.119 

Cov(SI,PE)4 -0.948 0.833 0.126 Cov(OM,PE)6 5.430 0.253 

Cov(SI,ST)4 0.484 0.532 0.038 Cov(OM,ST)6 2.707 0.136 

Var(pE)4 0.819 0.189 -3.018 Var(SA)6 38.207 21.186 

Cov(PE,ST)4 0.108 0.107 -1.214 Cov(SA,SI)6 57.468 7.964 

Var(ST)4 1.086 0.113 -2.036 Cov(SA,PE)6 2.986 0.937 

Var(OM)5 -25.608 0.858 -0.682 Cov(SA,ST)6 3.213 0.639 

Cov(OM,SA)5 21.722 1.574 0.493 Var(SI)6 25.686 7.196 

Cov(OM,SI)5 -21.979 1.065 1.007 Cov(SI,PE)6 -0.322 0.623 

Cov(OM,PE)5 5.431 0.250 -0.039 Cov(SI,ST)6 0.320 0.362 

Cov(OM,ST)5 2.695 0.136 0.617 Var(PE)6 0.397 0.133 

Var(SA)5 38.317 18.721 -0.723 Cov(PE,ST)6 0.043 0.068 

Cov(SA,SI)5 57.394 7.693 -0.279 Var(ST)6 0.534 0.063 

Cov(SA,PE)5 2.909 0.812 0.079 

*The numbers following variance or covariance terms indicate that they are auto or cross 
covariance of the order of neighbor groups. **SD represents standard deviation. 
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Table 4. Estimated coefficients of the regression models in which different neighbor groups were 
considered. When a term in a model has a coefficient with the symbol "-", it indicates that this 
term was not selected in regression analysis, and the symbol "NA" indicates that this term was 
not considered in the model. 

Model Modell Model 2 Model 3 Model 4 Model 5 Model 6 
Candidate terms Host pixel in Modell in Mode12in Model 3 in Model 4 in Model 5 in 

in model addition addition addition addition addition addition 
N.G.1 N.G.2 N.G.3 N.G.4 N.G.5 N.G.6 

Selected Term* Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
Var(OM) 0.001020 0.000995 0.000977 0.000994 0.001010 0.000986 
Cov(OM,SA) -0.000204 -0.000200 -0.000209 -0.000205 -0.000204 -0.000211 
Cov(OM,SI) -0.000518 -0.000504 -0.000507 -0.000512 -0.000516 -0.000520 
Cov(OM,PE) -0.001480 -0.001500 -0.001480 -0.001410 -0.001400 -0.001440 
Cov(OM,ST) -0.001280 -0.001210 -0.001210 -0.001360 -0.001330 -0.001330 
Var(SA) 0.000015 0.000015 0.000014 0.000014 0.000014 0.000014 
Cov(SA,SI) 0.000051 0.000051 0.000053 0.000053 0.000052 0.000052 
Cov(SA,PE) 0.000140 0.000156 0.000153 0.000149 0.000151 0.000151 
Cov(SA,ST) 0.000215 0.000180 0.000194 0.000205 0.000210 0.000205 
Var(SI) 0.000059 0.000058 0.000061 0.000063 0.000063 0.000063 
Cov(SI,PE) 0.000406 0.000410 0.000401 0.000406 0.000406 0.000411 
Cov(SI,ST) 0.000450 0.000438 0.000420 0.000427 0.000426 0.000421 
Var(PE) 0.000568 0.000608 0.000547 0.000518 0.000524 0.000530 
Cov(PE,ST) 0.002090 0.001540 0.001750 0.002390 0.002420 0.002280 
YareST) - 0.001110 0.001000 - - -
Cov(SA) 1 0.000004 0.000004 0.000003 0.000002 0.000002 0.000002 
Cov(SA,SI) 1 -0.000003 - -0.000003 -0.000003 -0.000002 -0.000003 
Cov(SI)1 -0.000007 -0.000006 -0.000006 -0.000006 -0.000006 -0.000005 
Cov(ST)1 -0.000672 -0.000542 -0.000415 - - -
Cov(SI,ST)2 NA - -0.000044 -0.000048 -0.000047 -0.000053 
Cov(ST)2 NA -0.000718 -0.000517 -0.000335 -0.000332 -
Cov(SA)3 NA NA 0.000002 0.000002 0.000002 0.000002 
Cov(PE,ST)3 NA NA -0.000362 -0.000326 -0.000345 -0.000324 
Cov(ST)4 NA NA NA -0.000270 -0.000207 -0.000236 
Cov(SA)5 NA NA NA NA - 0.000002 
Cov(SA,SI)5 NA NA NA NA -0.000003 -
Cov(SA,ST)5 NA NA NA NA - -0.000032 
Cov(SA,SI)6 NA NA NA NA NA -0.000002 
R-square 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 
Max{P-value} 0.0008 0.0109 0.0164 0.0170 0.0232 0.0135 

*The number k (k=l, ... ,6) behind a term indicates that this term was from neighbor group k. 
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Table 5. Uncertainty contribution of variation of inputs of K factor model based on the average 
of the systematically sampled spatial uncertainty (in Table 3). 

Variation* 
Host pixel N.O.1** N.O.2 N.O.3 

Contribution Contribution Contribution Contribution 
Var(OM) 0.001148 - - -

Cov(OM,SA) 0.000443 - - -
Cov(OM,SI) -0.000576 - - -
Cov(OM,PE) 0.000567 - - -
Cov(OM,ST) 0.000259 - - -

Var(SA) 0.001312 0.000104 - 0.000084 
Cov(SA,SI) -0.001166 -0.000149 - -
Cov(SA,PE) 0.000194 - - -
Cov(SA,ST) 0.000228 - - -

Var(SI) 0.002743 -0.000173 - -
Cov(SI,PE) -0.000197 - - -
Cov(SI,ST) -0.000037 - -0.000009 -

Var(PE) 0.000528 - - -
Cov(PE,ST) 0.000569 - - -0.000019 

YareST) 0.000351 -0.000229 -0.000283 -
Subtotal 

0.006366 -0.000447 -0.000292 0.000065 
11l.84% -7.86% -5.13% 1.15% 

Total var(K)= 0.005691 
.. 

*VanatIOn terms are traditIOnal vanance/covariance and auto/cross covariance in host and 
neighboring pixels, respectively. **N.O. represents neighbor pixel group. The numbers follow 
N.O. are the orders of neighbor pixel groups. 

T bi 6 S . I a e ipatIa error b d u Lget 0 f h t e average plxe lb d ase h I d on t e sampe . I ncertainty. spatIa u 
Soil property Host pixel N.O.1 N.O.2 N.O.3 

Contribution Contribution Contribution Contribution 

Var(OM) 20.17% - - -
OM Cov(OM,X) 8.80% - - -

Subtotal 28.97% - - -
Var(SA) 23.05% l.82% - 1.48% 

SA Cov(SA,X) 0.37% -1.15% - 0.00% 
Subtotal 23.42% 0.68% - 1.48% 

Var(SI) 48.20% -3.04% - -
SI Cov(SI,X) -21.14% -1.48% - -

Subtotal 27.06% -4.52% - -
Var(PE) 9.28% - - 0.00% 

P Cov(PE,x) 9.80% - - -0.34% 
Subtotal 19.08% - - -0.34% 

YareST) 6.17% -4.02% -4.98% 0.00% 
ST Cov(ST,x) 7.15% 0.00% -0.15% -0.34% 

Subtotal 13.31 % -4.02% -5.13% -0.34% 
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Table 7. Uncertainty contribution of the selected spots of the study area from their corresponding 
host pixels. 

Soil property Cold Spot Hot Spot 

Var(OM) 0.000688 25.15% 0.002391 30.35% 
OM Cov(OM,X) 0.00028 lO.23% 0.000924 11.72% 

Subtotal 0.000967 35.38% 0.003314 42.07% 

Var(SA) 0.000372 13.61 % 0.001492 18.94% 
SA Cov(SA,X) -0.000096 -3.49% 0.000l27 1.61 % 

Subtotal 0.000276 10.11 % 0.001619 20.55% 

Var(SI) 0.002354 86.ll % 0.002459 31.22% 
SI Cov(SI,X) -0.00l144 -41.86% -0.00l511 -19.18% 

Subtotal 0.001210 44.25% 0.000948 12.03% 

Var(PE) 0.000481 17.60% 0.000497 6.30% 
P Cov(PE,x) 0.000465 17.02% 0.000635 8.06% 

Subtotal 0.000946 34.62% 0.001132 14.36% 

YareST) 0.000368 13.44% 0.000269 3.41% 
ST Cov(ST,X) 0.000362 13.23% 0.000403 5.11% 

Subtotal 0.000729 26.67% 0.000671 8.52% 

Total 0.002734 151.03% 0.007878 97.54% 

Figure 1. Relationship between attributes (information levels) (ZI ' Z2'" " Zp) and model 

prediction (y). 
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N.O.6 

N.O.5 N.OA N.O.3 N.OA N.O.5 

N.OA N.O.2 N.O.l N.O.2 N.OA 

... N.O.6 N.O.3 N.O.l H.P. N.O.l N.O.3 N.O.6 . .. 

N.OA N.O.2 N.O.l N.O.2 N.OA 

N.O.5 N.OA N.O.3 N.OA N.O.5 

N.O.6 

Figure 2. Location of pixels of neighbor groups (N.O. 's) of a concerned pixel (host pixel, H.P.). 
The host pixel is in the center. 
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Figure 3. Auto and cross semivariogram models of (a) OM, (b) OM and SA, (c) ST, and (d) SA. 
Unit of distance: 100 meter. 
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Figure 4. Spatial distribution of (a) estimated K factor [unit: (ton·acre·hour)/(hundreds of 
acre·foot-tonfinch)] and (b) variance of K factor obtained using joint sequential simulation. 
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Figure 5. Spatial variance contribution to K factor at the cold spot (a) and the hot spot (b). The 
center bar in each figure is the host pixel, while the neighboring bars are the neighboring pixels 
contributions. A black cap on a bar indicates a negative uncertainty contribution to the K factor 
of the host pixel. 
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Figure 6. Spatial uncertainty propagation of the selected transect. H.P. represents host pixels. 
N.G. represents neighbor group. The numbers following N.G. are the orders of neighbor groups. 
The small image under the legend shows the location of the transect in the study area. 
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Figure 7. Uncertainty of K factor from soil properties at the host pixels along the selected 
transect. (a) and (b) are actual and percentage uncertainty contributions, respectively. 
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Figure 8. Uncertainty contributed from soil properties at the pixels of neighbor group 1. 
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