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ABSTRACT 
Daily peak stream discharge data, collected over time, are typically characterized by a few large 
peaks separated by runs of small values, where peaks correspond to the occurrence of storms. 
Furthermore, the peak discharge on the first day of a storm has little or no relationship to the 
previous day's discharge. These characteristics are not present in standard Gaussian time series 
models in which a zig-zag behavior not conducive to runs of small values is observed and the 
present value always depends on the previous value. However, they can be successfully 
captured with non-Gaussian time series models. 

Daily peak stream discharge between 1926 and 1953 ofKaukonahua Stream, Hawaii is analyzed 
using a new exponential autoregressive (NEAR) time series model. The distribution of the 
length of contiguous periods in which the stream discharge stays below a fixed percentage of the 
average is estimated. This estimate is shown to be closer to the actual distribution than that 
obtained using standard Gaussian time series models, with data from the same stream obtained 
during two disjoint time periods 1926-1952 and 1960-1996 . 

Keywords: stochastic modeling of streamflow; NEAR; exponential autoregressive; runs; non
Gaussian time series. 

1. INTRODUCTION 
The daily peak discharge (in fe/sec) ofKaukonahua Stream, Hawaii, during the period 1926 to 
1953 is presented in Figure 1. This type of data resulting from a natural phenomenon has special 
features such as being bounded below by zero and a heavily positively skewed distribution 
caused by the presence of a few very high peaks separated by runs of relatively small values. 
These characteristics make the shape of the distribution of such data very different from that of a 
Gaussian distribution. Furthermore, transformation to normality, using a logarithmic or a similar 
transformation, can be difficult due to a large number of possible zero or near-zero values. 
These special features of this type of data suggest that they may have been generated from a 
mechanism based on an exponential or a similar distribution. Therefore, the possibility of using a 
non-Gaussian model, perhaps one based on the exponential distribution, should be explored (see 
Perera, 2000). 
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Some of the non-Gaussian time series models that have appeared in the literature include the 
product autoregressive (PAR) model proposed by McKenzie (1982), mixed exponential 
autoregressive (MEAR) model and a mixed exponential moving-average model by Jevremovic 
(1990), the NMEAR(I) model by Lawrance and Lewis (1982), the AREX(I) model by Malisic 
(1987), the exponential moving average model (EMA) and the exponential autoregressive 
moving average model (EARMA) by Lawrance and Lewis (1980), and the new exponential 
autoregressive models (NEAR) by Lawrance (1981). MEAR(I) and MEAR(1) models are 
special cases of the AREX(I) model. The exponential autoregressive (EAR) model discussed by 
Billard and Mohamed (1991) and Sim (1987) is a special case of the NEAR(I) model. All of 
these models are based on the exponential distribution, and except for NEAR models, little 
follow up work on parameter estimation or assessing fit has appeared in the literature. 

The NEAR models were discussed in detail and applied to a series of wind velocity data by 
Lawrance and Lewis (1985). There are many difficulties in using NEAR models with data, 
including parameter estimation and assessing fit, as indicated by Raftery (1985), Rao (1985), 
Chatfield (1985), and others. However, the work by Karlen and Tj0stheim (1988), and Smith 
(1986) has eliminated some of the difficulties in parameter estimation. 

In the present paper, a non-Gaussian model is used to model the data presented in Figure 1, and 
estimate the distribution of length of a contiguous period of low stream discharge. A NEAR 
models is chosen, due to the availability of parameter estimation methods. Also, similar models 
based on the exponential distribution have been used Lewis and Hugus (1982) to model river
flow. However, the above reference did not consider estimation of the distribution of related 
quantities of interest. 

The NEAR(I) model is given by: 

_ {~-1 w.p. a 
~ - + Et , 

o w.p. I-a 
where {Et } is the residual sequence defined as 

(1.1) 

{
Et w.p. P 

E = (1.2) 
t bEt w.p. I-p· 

Here, {Et} is an independent and identically distributed sequence of standard exponential 
variates, p=(I-~)/{I-(I-a)~}, and b=(1-a)~. Chan (1988) showed that the conditions O~a~l, 
O~~~ 1, and a~<1 are both necessary and sufficient for the existence of a stationary and ergodic 
NEAR(I) process. These conditions also define the parameter space Q for a NEAR(I) process. 
The marginal distribution of ~ is standard exponential, and the autocorrelation structure of a 
NEAR(I) model is identical to that of an AR(I) Gaussian autoregressive process given by 
Zt=aZt_1+et, where et~N(O,cJ2), a=a~. Thus the NEAR(I) model establishes a dependence 
structure among exponential random variables analogous to that in the AR(1) model for 
Gaussian random variables. These properties make the NEAR(I) model a good alternative to 
modeling heavily skewed data such as that presented in Figure 1. 
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As seen from (1.1), another characteristic of the NEAR processes is that the current value of the 
time series is allowed to depend on the previous observation only with some probability less than 
unity, whereas in Gaussian ARMA processes, the current value always partly depend on the 
previous observation. This characteristic makes NEAR models particularly appealing in 
situations similar to the present, because the peak stream discharge after a storm has little or no 
dependence on the previous day's peak discharge. On other days, the peak discharge 
presumably depends on the previous day's peak discharge to a larger extent. 

In Section 2, the deseasonalization of data, required before fitting a stationary time series model, 
is performed. In Sections 2 and 3, a discussion about selecting, fitting and estimation of NEAR 
and ARMA models is given. Section 4 compares estimates of distributions obtained using the 
two approaches, and shows that estimates obtained using a NEAR model is more accurate when 
compared to both the observed data set, and another from the same stream obtained during 1960-
1996. Section 5 includes a summary. 

2. DESEASONALIZATION OF DATA 
Strong seasonal components with periods 365 and 122 days can be easily identified from the tall 
peaks in the periodogram In(A.)=n-II~:'llog(Yt)e-Mfof1og-transformed data in Figure 2, where 
the sequence {Yt } denotes the original data. These two seasonal components can be removed by 
fitting the regression model, 

Yt=exp{~o +~l sin(21ttI365)+~2cos(21ttI365) +~3sin(21ttI122)+~4cos(21ttI122)} . Et 
For this data set, the least squares estimates were Po=1.998, PI =0.148, P2 =0.325, P3 =0.146 and 
P4 =0.081. The estimated residual sequence, 

Et=logYrPo-PI sin(21ttI3 65)-P2cos(21ttI365)-P3sin(21ttI122)-P 4cos(21ttI122) , 
referred to as deseasonalized stream data, is void of any seasonal components and therefore 
suitable for stationary time series modeling. 

3. FITTING A NEAR MODEL 
Since NEAR models have standard exponential marginal distributions, the data must be first 
power transformed to make the mean and the standard deviation equal, and then re-scaled to 
make them equal to unity. For this data set, the transformation x= EO.635/1.357 is appropriate, 
and the selection of this transformation was data-driven. Figures 3 and 4 respectively contain the 
autocorrelation and partial autocorrelation plots of power transformed deseasonalized data. The 
tailing off in the autocorrelation plot and the sudden drop at lag 1 in the partial autocorrelation 
plot suggest an AR(!) autocorrelation structure, and therefore a NEAR(I) model was selected. 
Using the two-stage conditional least squares estimation method proposed by Nicholls and 
Quinn (1982) for random coefficient autoregressive models and used by Karlsen and Tj0stheim 
(1988) for NEAR(2) models, the parameter estimates of the NEAR(1) model were obtained to be 
&=0.749 and P=0.739. Since the true innovation sequence {Et } defined in (1.2) cannot be 
estimated even with the knowledge of the true values of parameters, model checking was based 
on the AR(1)-type residuals, as was done by Lawrance and Lewis (1985). The AR(1)-type 
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resi~uals Rt=Xra~_l are the conditional expectations of the true residuals €t and are estimated 
by Rt=Xr&~_l. The uncorrelated nature of AR(1)-type residuals, as evidenced by the 
autocorrelation plot in Figure 5, indicates a satisfactory fit. 

3. FITTING AN ARMA MODEL 
A transformation suggested by Box and Cox (1964), given by 

x = {(€A-l)/A if A*O 

log(€) if A=O 

is typically applied to the data before fitting a Gaussian model, where the parameter A is chosen 
by using a data-driven mechanism so that the transformed data is approximately normally 
distributed. For this data set, A=- 0.025 was chosen since it makes the skewness of the 
transformed data approximately zero and the normal probability plot almost linear along the 
diagonal. The autocorrelation plot of Box-Cox transformed deseasonalized stream data in Figure 
6 gradually tails off and the partial autocorrelation plot in Figure 7 has a sudden drop at lag 1, 
suggesting that an AR( 1) model may be appropriate. Maximum likelihood estimation yields 
jl=- 0.079, <1>=0.754, and eJ2=0.260 respectively for the overall mean, serial correlation, and 
variance of the innovation sequence. The autocorrelation plot of the residuals in Figure 8 
indicates a satisfactory fit. 

4. ESTIMATING THE DISTRIBUTION OF LENGTHS OF DROUGHTS 
A drought can be interpreted as a contiguous run of days in which the stream discharge stays 
below an arbitrary but fixed percentage (e.g. 40% or 20%) of the average for the season under 
consideration, and it corresponds to a run of values in the deseasonalized series which are less 
than the same percentage. The distribution oflengths of droughts (runs below 40% of the 
average) is approximated via simulation for both AR( 1) and NEAR( 1) processes using parameter 
combinations similar to those estimated using transformed deseasonalized data from the period 
1926-1953. This approximation is then compared to the drought length distribution from the 
same stream for the "future" period 1960-1996. 

Figure 9 presents a comparison of 
(i) a simulated distribution of the lengths of droughts obtained by simulating an AR(I) process 

oflength 1,000,000 defined by Xt-0.754~_1 =-0.079+Zt, where {Zt} is a sequence of 
independently and identically distributed variates with mean 0 and variance 0.260 (dotted 
line), 

(ii) a simulated distribution of the lengths of droughts obtained by simulating a NEAR(I) 
process oflength 1,000,000 defined by (1.1) and (1.2), where a=0.749 and 13=0.739 
(broken line), 

(iii) observed distribution oflengths of droughts during the period 1926-1952 (thick solid line), 
and 

(iv) the distribution oflengths of droughts observed at the same location of the same stream 
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during the "future" time period 1960-1996 (thin solid line). 

The distribution of lengths of droughts appear to have changed during the later period compared 
to the earlier period, as indicated by (iii) and (iv). However, both ofthe observed distributions 
(iii) and (iv) are closer to distribution (ii) than they are to distribution (i), indicating that in this 
situation, estimate of the distribution of lengths of droughts obtained by using a NEAR( 1) model 
is more accurate compared to those obtained using an AR(l) model. Moreover, curve (ii) 
intersects with curves (iii) and (iv), indicating that average length of a drought estimated using a 
NEAR(1) model is close to its observed value. In contrast, curve (i) stays completely to the left 
of (iii), consistently underestimating the length of a drought. This phenomenon is probably due 
to the zig-zag type behavior of Gaussian ARMA models, which is not conducive to runs of small 
values. Similar results were obtained when 20% was used to define a drought, instead of 40%. 

Table 1 contains the statistics for measuring discrepancy between curves (i) and (iii), (ii) and 
(iii), (i) and (iv), and (ii) and (iv) in Figure 9, and quantitatively confirms the above 
observations. Based on absolute difference and squared difference metrics, using a NEAR(l) 
model in this instance has reduced the "distance" between the estimated and observed 
distributions of length of drought by 30-57% for the "current" period 1926-1952, and by 13-14% 
for the "future" period 1960-1996, compared to using a Gaussian AR( 1) model. 

5. SUMMARY 
In order to satisfactorily model certain types of real data, non-Gaussian time series models are 
needed. Even with a transformation to normality, the Gaussian models may not perform as well 
as some non-Gaussian models, as illustrated with the present data set. For this particular data 
set, the NEAR( 1) model is shown to fit well and produce a more accurate estimate of the 
distribution of length of droughts, compared to a Gaussian AR( 1) model. This emphasizes that 
additional difficulties encountered in using these models are sometimes worth the effort. 
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Figure 1: Daily peak discharge ofKaukonahua Stream, Hawaii during 1926-1953 

1000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

o~~~~~~~~~~~~~ 
1925 1930 1935 1940 1945 1950 1955 

Figure 2: Periodogram of the log-transformed stream data 
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Figure 3: Autocorrelation plot of the power transformed deseasonalized data. 
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Figure 4: Partial autocorrelation plot of the power transformed deseasonalized data 
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Figure 5: Autocorrelation plot of the AR(1)-type residuals obtained from a NEAR(I) model 
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Figure 6: Autocorrelation plot of the Box-Cox transformed deseasonalized data 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lag 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/16



Applied Statistics in Agriculture 231 

Figure 7: Partial autocorrelation plot of the power transformed deseasonalized data 
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Figure 8: Autocorrelation plot of the residuals obtained from fitting an AR(l) model 
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Figure 9: Comparison of cumulative distributions of lengths of droughts (i) estimated using an 
AR(1) model, (ii) estimated using a NEAR(1) model, (iii) observed during the "current" period 
1926-1952, and (iv) observed during the "future" period 1960-1996. 
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Table 1: Discrepancy statistics between predicted and observed distributions of lengths of droughts 

Between Estimated and Observed During Between Estimated and Observed During 
the "Current" Period 1926-1952 the "Future" Period 1960-1996 

Reduction Reduction 
Metric Obtained Obtained 

Using Using 
AR(I) NEAR(1) NEAR(1) AR(I) NEAR(I) NEAR(1) 

Sum of absolute 1.132 0.792 30.0% 0.586 0.510 13.0% 
differences 

Sum of squared 0.079 0.034 57.0% 0.022 0.019 13.6% 
differences 
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