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Abstract 

159 

Microarrays allow the simultaneous assessment of expression levels for thousands of genes 

across various treatment conditions and time. It has been shown that in these experiments 

expression levels can also be affected by factors in the printing of the slide, in the hybridiza­

tion process, and in the post-hybridization process. Recently, variations of the incomplete 

block design were proposed as a way to avoid confounding the expression levels of interest 

with several of these nuisance factors. In this paper, we propose additional design procedures 

to remove factors that contribute to the spatial variability on a slide. This approach requires 

the use of replication, and involves designing how the replicates are to be positioned on the 

slide. We demonstrate these techniques using an experiment involving sixty-four genes, four 

replicates per slide, and five treatment conditions. 
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1 Introduction 

1.1 Overview of microarray technology 

The role of an organism's genes is to regulate cell behavior by the production of proteins. 

Determining which genes actively manufacture (i.e., express) proteins under various condi­

tions, or at certain times, is one of the fundamental questions in genetics, and is the focus of 

what are termed gene expression experiments. Such studies seek to determine when a gene 

is active by measuring the amount of messenger RNA (mRNA) being produced by that gene, 

with the amount of mRN A present strongly associated with the level of protein expressed. 

For many years now, it has been possible to estimate the expression level for a single gene 

by measuring its mRNA production. However, the advent of DNA microarray technology 

(Schena et at., 1996) has made such studies possible on a much larger scale. 

The use of micro arrays allows researchers to obtain data from thousands of genes under 

various treatment conditions, and/or over time, in a single experiment. This wealth of data 

has led to the proposal of many different analytic approaches, with an early preference for 

clustering techniques (Eisen et at., 1998; Tamayo et at., 1999; Holter et at., 2000) gradually 

giving way to methods for determining significant differential gene expression across treat­

ments (Chen et at., 1997; Lee et at., 2000; Kerr, Martin, and Churchill, 2000; Newton et 

at., 2001; Kerr and Churchill, 2001). Although two popular technologies currently exist (the 

Affymetrix oligonucleotide array, and the cDNA array developed at Stanford), the focus here 

is on the cDNA microarray, since it is the most customizable, and thus best suited to the 

application of experimental design. 

A cDNA microarray consists of a collection of spots arranged in rows and columns on a 

glass slide (i.e, microarray). Each spot is comprised of thousands of identical segments of 
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complementary DNA (cDNA) representing the sequence of a single gene. The basic form of 

a cDNA microarray experiment involves investigating expression levels for genes under two 

different treatment conditions (e.g., a treatment and a control). To accomplish this, mRNA 

is extracted from cells under each condition, and labeled with fluorescent tags. These tags 

are often a green (Cy3) label for the control mRNA, and a red (Cy5) label for the treatment 

mRNA. The labeled mRNA is then mixed together and placed on the microarray to allow 

hybridization to occur (i.e., the mRNA bonding to its complementary cDNA sequence). 

After hybridization the array undergoes a washing process in order to remove any unbound 

mRN A from the slide. 

By knowing the identity of each spot (i.e., knowing the gene from which the sequence 

at that spot was derived), the presence of hybridized mRNA quantifies expression by that 

particular gene. To determine the level of expression recorded by each spot, a multi-frequency 

laser scanner is used to excite the fluorescent labels. Scanning produces a pair of image files, 

one for each color of label (often these are referred to as channels), which are then processed 

by a software package to quantify the intensity of the fluorescent signal. By comparing the 

green and red intensities at each spot, changes in intensities between the treatment conditions 

can be observed for individual genes. These changes are referred to as differential expression. 

An obvious statistical hurdle encountered in this situation lies in determining whether an 

observed fold change in expression is "real" (i.e., significant), or whether it is a result of the 

inherent variability of the experimental process. The estimation of this inherent variability, 

therefore, is a key component in any statistical analysis that is proposed. This estimation 

also includes adjusting for, or separating out, known sources of variability in the process. 

The first such separation generally involves subtracting a local background intensity from 

each spot to remove the effect of non-hybridization factors such as glare from the slide. A 
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second correction is usually made via a data normalization procedure, which attempts to 

standardize the data to allow comparisons between channels on an array, as well as across 

multiple arrays. This standardization across channels, however, is not straightforward, with 

a number of different techniques available, each relying on various assumptions (Hegde et 

al., 2000). 

Various statistical procedures have been proposed for the analysis of microarray data from 

experiments involving multiple treatments (and/or time points) conducted across multiple 

slides (Chen et al., 1997; Lee et al., 2000; Newton et al., 2001). Most of these approaches 

assume that the data have been normalized prior to analysis, and that this normalization 

allows valid comparisons to be made across all these situations. This is a rather strong 

assumption, since it requires that relatively simple normalization procedures (some of which 

involve major assumptions) are able to remove all experimental effects from the data, ex­

cept those resulting from differences in mRNA expression. In an effort to overcome the 

difficulties of data normalization and analysis, a linear models approach to the design and 

analysis of microarray experiments has been proposed (Kerr, Martin, and Churchill, 2000; 

Kerr and Churchill, 2001). This approach advocates identifying factors which can introduce 

variability into the data, and designing micro array experiments which allow the statistical 

estimation of these factors. The benefit to incorporating these potential sources of variation 

into an analysis of variance (ANOVA) model is that data analysis can be performed without 

having to normalize the data a priori. The use of such models in conjunction with appropri­

ate experimental designs means that the analysis can maximize the amount of information 

available from the microarray experiment. 

The purpose of this work is to extend the design and analysis of microarray experiments 

to include sources of variation related to the construction of each slide in an experiment. 
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The sources are 1) the effect of using different pms (on a multiple pin printing tool) to 

print the spots on the slide, 2) the effect of varying amounts of genetic material being 

retrieved by the pins on subsequent visits to the printing tool template, and 3) the effect 

of washing the excess genetic material from the slide. The incorporation of these terms is 

possible because each gene is replicated (i.e., each gene is located at more than one spot) 

and because the printing tool template (i.e., the layout of the slide) is designed to avoid 

confounding these effects with specific genes. The results of a pilot study are presented 

to assess the importance of each of these effects and the results of this study are used to 

demonstrate the improvement in performance of this new model (i.e., power) over the basic 

model of Kerr, Martin, and Churchill (2000), as well as the importance of using replicate 

spots in microarray experiments (Lee et al., 2000; Black and Doerge, 2001). The design of 

the printing tool template is discussed in reference to a study of retrotransposon expression 

involving five treatments. 

1.2 The retrotransposon experiment 

The experiment under consideration is designed to study the activity of retrotransposons in 

maize, specifically what stress mechanisms activate retrotransposons and which retrotrans­

posons act together. In short, a retrotransposon is a transposable element whose transpo­

sition involves a process of reverse transcription with an RNA intermediate similar to that 

of a retrovirus. Experimental factors include the age of the plant, the location of the cells 

within the plant, and the stress mechanism. The levels of each of the factors are presented in 

Table 1. For our purposes, we simplify the experiment and consider the age of the plant and 

the location of the cells within the plant fixed, and focus solely on the five stress conditions. 

A total of sixty-four retrotransposons were selected for the experiment. By construction 
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Table 1: Experimental layout under consideration for the study of retrotransposons in maize. 

One week old plants Two week old plants 
Stress Roots Leaves Root Tips Roots Leaves Root Tips 
A. Heat x x x x x x 
B. Freeze x x x x x x 
C. Flood x x x x x x 
D. Drought x x x x x x 
E. Control x x x x x x 

each slide contains 256 spots, therefore four replicates of each retrotransposon sequence are 

possible. For simplicity the term "gene" will be used in place of "retrotransposon" for the 

remainder of this paper. 

2 Design of Microarray Experiments 

Microarray experiments typically have mRNA from two treatment conditions on each array. 

Thus, if an experiment involves more than two treatments, multiple arrays are required. If the 

arrays are regarded as blocks in an experimental design setting, this suggests an incomplete 

block approach to the analysis. Kerr and Churchill (2001) proposed a "loop" design, which is 

a cyclic block design with block size of two (David, 1963), so as to achieve balance between the 

effect of using different labels for the various treatments (i.e., dye swapping). The simplest 

"loop" design has t slides for t treatments and each treatment appears in two blocks. This 

results in a balanced incomplete block design when t = 3 and a partially balanced block 

design when t ~ 4. With five different stress conditions being considered in this study, the 

"loop" design would consist of five slides (Table 2). 

If both dye and slide are used as blocking factors in a simple "loop" design, there are no 
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Table 2: Loop design layout for a microarray experiment involving five (A-E) treatments. 

Dye 
Slide Red Green 

1 A B 

2 B C 

3 C D 
4 D E 

5 E A 

remaining degrees of freedom to test for treatment differences. However, since the goal of 

a microarray experiment is to compare the simultaneous behavior of numerous genes across 

treatments, the interest is in the treatment by gene effects present in the subplot portion of 

the experiment. It is also important to note that by cycling through the treatments, each 

treatment is labeled with both dyes. This balance means potential dye by gene effects are 

not confounded with treatment by gene effects. 

The linear model is 

where Yijklr is the background corrected intensity, Si is the ith slide effect, Tj is the jth 

treatment effect, Ok is the kth dye effect and Gl is the lth gene effect. Fitting all three 

interaction terms and error is only possible when there are replicate spots of each gene. 

Kerr, Martin, and Churchill (2000) didn't consider replicates so the SG term was used as 

error. Additionally, Kerr, Martin, and Churchill (2000) assume all terms to be fixed, while 

we consider slide to be random. The use of a mixed model has been suggested by Wolfinger 

et al. (to appear). One of the key benefits of this approach is the recovery of interblock 

information (Cochran and Cox, 1957), which can be quite substantial when the block size is 
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two. 

2.1 Comparisons of Interest 

We first present standard errors for two hypotheses of interest under the fixed effects model. 

While the mixed effects model standard errors will be different due to the slide and slide 

by gene interaction variances, the general pattern that the standard error depends on the 

distance between the two treatments still holds. Thus, the fixed effects standard errors can be 

useful in designing an experiment. Because of the incomplete structure of the "loop" design 

(t 2:: 3), the slide effects are partially confounded with the treatment effects and the treatment 

by gene effects are partially confounded with the slide by gene effects. Because there is 

general interest in comparisons that involve the treatment by gene effects, the standard 

error depends on whether the slide by gene interaction is included in the model. 

The first comparison we consider assesses whether there is significant differential expres­

sion of a particular gene across two treatments, Ho : jJjl = ~Lj'l, where jJjl is the mean log 

intensity for treatment j and gene l. If the slide by gene interaction term is not included in 

the model, the standard error of this comparison is 

j(t(g + 1 + 2d) - 2(d + 1)2) (J2/tgT, (1) 

where t is the number of treatments, g is the number of genes, T is the number of gene repli­

cates per slide and d is minimum number of slides the two treatments are apart. Referring 

back to Table 2, Treatment A is one slide away from treatment C (and D) but appears on 

the same slide as B (and E). Thus, the standard error for a comparison of a particular gene 

between Treatment A and B (or E) will be smaller than a comparison between Treatment 

A and C (or D). 
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When the slide by gene interaction is included in the model, the standard error is 

y' 2 (d + 1) (t - d - 1) 0'2 / tr. (2) 

Again, the standard error is smaller for those treatments that are closer together in the loop. 

In the former situation (Eq. 1), the difference in standard errors is reduced as the number of 

genes increases. Thus, for large experiments involving thousands of genes, the placement of 

the treatments in the loop has little consequence. However, in the latter situation (Eq. 2), 

the number of genes does not factor into the standard error. Thus, if an experimenter were 

designing a "loop" design and the slide by gene interaction were to be included, it would 

be beneficial to place those treatments that are of more interest to compare closer together 

in the design. If all the comparisons take an equal weight and t is fairly large, it would be 

beneficial to consider other sorts of incomplete block designs. 

In some situations, a particular treatment could lower/increase the expression level in 

all the genes and a pairwise comparison would find differences that may not be of interest. 

An alternative comparison would be to see if two gene expression levels behave in a similar 

manner across treatments. In other words, testing for the pairwise interaction, Ho : !--ljl -

!--ljl' = !--lj'l - !--lj'l'· If there is no slide by gene interaction, the standard error is constant and 

simply y'2O'2 /r. When the interaction is included, the variance is twice that when comparing 

just a single gene (Eq. 2) and the standard error is y'4(d + l)(t - d -1)a2/tr. Again with 

this hypothesis, if the Be term is included in the model, it is important to consider the 

placement of the treatments within the loop. 
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3 The Printing and Washing Process 

3.1 Array construction 

Most experimental design for microarrays has considered the normalization effects but not 

the effects that occur during the printing and washing of a slide. Several recent papers have 

considered a spot effect to account for the spot-to-spot (i.e., spatial) variability inherent in 

microarray slides. Dudoit et al. (2000) adjust for this variability by considering a nonlinear 

smoother for each pin. We take a more systematic approach towards understanding the 

effects that cause this spot-to-spot variability and use this information to determine how 

the gene replicates should be placed on the slide to avoid confounding these effects with the 

treatment by gene effects. 

The general cDNA microarray printing process involves a multi-pin printing tool and 

a printing tool template, which contains a collection of wells, each well containing genetic 

material which represents the sequence of a particular gene. When a solid pin printing tool 

is used, it first dips into a collection of template wells, each pin into a separate well, and 

collects genetic material on each pin tip. The printing tool then moves to the slide and prints 

this genetic material on the slide. The printing tool is washed off and the process is repeated 

for a different set of wells. The sets of template wells and order of printing depends on the 

particular printing equipment. 

For this experiment, a 4 x 4 printing tool is used. Since there are 256 spots on each slide, 

the printing tool will dip and print 16 times per slide (Figure 1). The upper array of this 

figure represents the printing tool template and the lower array represents a magnification 

of the slide. The numbers 1 through 64 represent the 64 genes in the study. The shaded 

region in the upper array represents the first dip of the printing tool. Because the slide 
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is approximately the same size as the printing tool, the spots that are printed are spread 

throughout the slide. The next set of 16 template wells to be spotted is to the right of the 

shaded region and are printed to the right of each shaded spot on the slide. This process 

is continued until all spots have been printed. This printing process means that there is a 

one-to-one correspondence between the wells on the template and spots on the slide. While 

the sets of 16 wells (4 x 4 subarrays) on the template are associated with one dip of the 

printing tool, a similar 4 x 4 subarray on the slide is associated with a particular pin of the 

printing tool. 

3.2 Pilot study 

Since it is not known whether the different pins and dips involved in the printing process 

have any effect on the size and composition of the spots on the array, both pins and dips are 

considered as potential spot-to-spot effects. For example, if the printing tool dipped a little 

deeper in one set of template wells, more solution could potentially collect on the pins and 

larger spots printed on the slide. Likewise, if one of the pins were larger (or smaller) than 

the others, it could collect and print a different amount of eDNA at the spots. To assess the 

amount of systematic variability due to these two factors, a pilot study was carried out. In 

this study, only one dye (Cy3) and one treatment were considered. On each of three slides, 

the same "gene" (salmon sperm DNA) was printed at all 256 spots. Thus, if there were 

no printing/spatial effects, there should be no systematic differences between spots within a 

slide. 

The observed intensities after hybridization and washing are shown in Figure 2. The 

darker spots represent a lower intensity. For each slide, the intensities were scaled to be 
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between 0 and 1 so the three slides are not directly comparable. It is clear on each slide, 

however, that there is a nonrandom distribution of intensities. For slides 1 and 3, there 

appears to be an increasing trend in intensities from the lower left to upper right while in 

slide 2, it appears to be in the opposite direction. 

This spatial trend suggests another potential source of the spot-to-spot variability. After 

the slide is printed and the mRNA is hybridized, the remaining genetic material is washed off, 

and dried using a centrifuge. Depending on the orientation of the slide within the centrifuge, 

labeled genetic material may be unequally washed off. Because each pin is associated with 

a particular region of the slide, it would be difficult to separate what is due to the pin and 

what is due to the washing effect if all the slides were dried in the same direction. With 

this in mind, slides 1 and 3 were oriented in the opposite direction as slide 2. While Figure 

2 shows washing to be an important source of variability, the intensity patterns in slides 1 

and 3 are different enough to suggest that other factors also playa role. 

To assess the sources of variability in this pilot study, the linear model 

10g(Yijk) = J-L + Si + Dj(i) + P k + SPik + Cijk, 

where Si is the ith slide effect, P k is the kth pin effect, and Dj(i) is the j dip effect within 

the ith slide, was fit to the data. Both slide and dip are considered random effects. 

Table 3 summarizes the analysis for all three slides and when slide 2 is omitted. By 

omitting slide 2, the variation due to slide orientation is removed. It shows, in both cases, 

that a large percentage of the total variability in the spots can be explained by slide and pin 

effects. Considering all the slides, if dip were omitted from the linear model, the residual 

variance only increases from 0.017 to 0.019. If both dip and pin are removed from the model, 

however, the residual variance increases to 0.100. 
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Differences in the power of a pairwise comparison (e.g., when d = 0 and t = 5) under the 

fixed effects model (Eq. 2) based on the number of replications and inclusion of printing and 

washing effects are shown in Figure 3. Ignoring both pin and dip effects is comparable to 

the original Kerr, Martin, and Churchill (2000) model (with replicates). Including only pin 

effects in the model is possible with at least two replicates (and proper slide design). The 

increase in power when pin effects are included is quite substantial. The probability that a 

fold change of 1.5 would be detected increases from approximately 54% to 92%, even though 

the number of replicates drops from four to two. When four replicates are used with pin 

effects, the power increases to approximately 100%. There appears to be little difference in 

power when adding dip effects to the model. 

4 Designing the Printing Tool Template 

In order to separate the printing and washing effects from the treatment by gene effects, gene 

replicates (i.e., multiple spots on an array representing the same gene) are needed and they 

must be placed on the slide in such a way to avoid confounding. One method of replication 

Table 3: Summary of the variance components in the pilot study when considering all three slides 

and when slide 2 is omitted. 

Slides 1,2,3 Slides 1,3 

Estimate of Percent of Total Estimate of Percent of Total 
Effect Variance Variability Variance Variability 
Slide 0.007 6.2 0.001 0.9 

Dip 0.003 2.2 0.004 5.6 

Slide*Pin 0.089 77.0 0.043 67.0 

Residual 0.017 14.6 0.017 26.5 
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is to create just one replicate within the template and dip numerous times into the same 

sets of wells. Each additional dip is known as an offset (i.e., two dips is known as a double 

offset). The reason this method is not recommended is because the same pin is associated 

with each gene thereby placing the replicate in the same region of the slide and potentially 

confounding it with washing and printing effects. 

Instead, we propose that the replicates be included in the template and arranged in such a 

way that the replicates spots are spread throughout the slide. From a design only perspective, 

this can easily be done on a well by well basis. The problem is that no experimenter would 

be willing to create a template well by well. Instead, an experimenter would use a multi-tip 

pipette to fill several template wells at once. With this in mind, the protocol pictured in 

Figure 4 was developed for this microarray experiment involving four replicates of sixty-four 

genes and an 8-tip pipette. 

First, there is a 96 (8 x 12) well sample plate and the 64 genes are randomly arranged 

on this plate in an 8 x 8 square (Figure 4). The contents of these wells will be passed to 

the template using (for the most part) an 8-tip pipette. The 8-tip pipette allows one to 

pick up material from an entire row or column (i.e., 8 genes) and place the material in the 

template. The template, however, is a 384 (16 x 24) well plate so the pipette places the 

material into every other well. In order to separate the pin and dip effects from the gene 

effect, various genes need to be printed with different pins and with different genes. This 

means each replicate of 64 genes must be ordered differently. To alter the order of each 

replicate, but also use the 8-tip pipette, the replicates are created as follows. 
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Rep 1 The first column of the sample plate is placed every other row in the first column of 

the template. The second column of the sample plate is then placed one well below the 

first in the template thereby completing the first column of the template. This same 

procedure is continued for the 3rd thru 8th columns of the sample plate. 

Rep 2 The same procedure as the first replicate is used except that the first row of the 

sample plate is skipped and then placed at the bottom. 

Rep 3 Rotate the plate 90° and repeat the procedure of Rep 1. This is comparable to now 

interweaving the rows of the sample plate instead of the columns. 

Rep 4 This replicate is generated the same way as Rep 2 using the rotated sample plate. 

This protocol is designed to allow both pin and dip effects in the model. Skipping a row in 

Reps 2 and 4 is necessary only if dips are included. If dips are not considered, rotating the 

sample plate each replicate and interweaving the columns would suffice. 

Combining this design of the slide within the previous "loop" design introduces additional 

terms in the subplot portion of the design. The linear model becomes 

f-L + Si + T j + C k + G l + TGjl + CGkl + SGil + 

Dm(i) + P n + SPin + Eijklmn 

Because each gene cannot be printed with each pin and included in each dip, the treatment 

by gene effects are partially confounded with these effects. We also consider both slide and 

dip effects to be random. 

Table 4 summarizes the sources and degrees of freedom for the dip/pin model and the 

spot effect model. Fitting a spot effect is comparable to fitting gene, slide by gene, and 
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Table 4: ANOVA tables (source and degrees of freedom) for this microarray experiment using a 

spot effect (left column) and dip/pin effect (right column) 

Spot Pin, Dip 
Effect DF DF 
Slide 4 4 

Dye 1 1 
Trt 4 4 

Trt*Gene 252 252 
Dye*Gene 63 63 
Spot 1275 

Gene 63 63 
Slide*Gene 252 252 
Rep(Slide*Gene) 960 

Pin 15 
Dip(Slide) 75 
Pin*Slide 60 

replicate within slide by gene effects which total 1275 degrees of freedom. When dip and pin 

effects are fit in place of a spot effect, the model has 810 fewer parameters. Thus, provided 

that pin and dip factors account for a large portion of the spatial variability, a great reduction 

in the number of model parameters is possible. 

5 Discussion 

While there has been a lot of recent work in the area of design for microarray experiments, 

there has been little investigation into the printing and washing effects that contribute to the 

spatial variability within a slide. This small microarray experiment provides the opportunity 

to set up a design protocol for the slide itself that greatly improves the power of detecting 

differential gene expression. While our proposed protocol is experiment specific, the ideas of 
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replication on a slide and designing the slide so that the replicates aren't confounded with 

various printing and washing effects should be considered in any microarray experiment. For 

example, in our pilot study, it was the pin and slide effects that contributed the most to the 

overall variability of a spot on the array. Including pin effects is comparable to printing the 

gene replicates with different pins. Since pins are associated with a particular location of 

the slide, this means that the replicates should be spread out on the slide and not printed 

near each other, as an offset would do. 

The pilot study provided us with an opportunity to investigate the printing and washing 

effects while keeping everything else constant. Further studies involving the use of two 

dyes would allow comparison of this model with the spot effect model. The pilot studies 

results suggest that a lot of the spot-to-spot variability is removed by pin and slide effects. 

If this were the case in general, then designing the slide appropriately would substantially 

reduce the number of model parameters making the analysis of these large data sets more 

manageable with current software packages. 

One comparison issue not considered in this paper is the multiplicity issue. For example, 

an experiment involving arrays of g genes and t treatments would contain gt(t -1) /2 pairwise 

comparisons. Currently, various multiple comparison procedures such as adjusted p-values 

(Westfall and Young, 1993) and controlling the false discovery rate (Benjamini and Hochberg, 

1995) have been proposed, although in at least one case the techniques employed have been 

criticized for their conservatism (Dudoit et at., 2000). 

Biotechnological advances, such as microarray technologies, are obviously providing levels 

and magnitudes of genomic data that were unimaginable even five years ago. As such, how 

science is being performed is changing simply because of the data being generated. While the 

sheer magnitude of these data may answer some very demanding questions, there are more 
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intricate questions that can only be addressed through proper statistical design and analysis 

of experiments. Our contribution via this work is to provide the scientific community with a 

perspective for analysis that relies on design of experiments to address sources of variation 

inherent in all microarray studies. Once designed properly, the data supplied by these array 

experiments can be easily analyzed using standard statistical software procedures (SAS, S­

Plus, or R). We also predict that much of what we are learning, suggesting, and implementing 

for the design and analysis of microarray experiments will be directly applicable to the next 

generation of genomic data, namely protein expression data. 
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Figure 1: The printing process for one slide in this experiment. The template contains four 

replicates of the 64 genes. The shaded numbers represent the first dip in the template and where 

these spots are placed on the slide. 
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Figure 2: Distribution of intensities for the three slides of the pilot study. Slides 1 and 3 were 

washed in a direction opposite of that for slide 2. There appears to be a right to left, top to bottom 

trend in intensities. 
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Figure 3: Power curve for a pairwise comparison (0: = .05) involving treatments on the same slide 

(Eq. 2). The solid line is for the model that includes both pin and dip effects (0'2 = 0.016, r = 4), 

the dotted curve is for the model the does not include these effects (0'2 = 0.110, r = 4), the short 

dashed curve is for the model that includes pin effects (0'2 = 0.019, r = 2), and the long dashed 

curve is for the model that includes pin effects (0'2 = 0.019, r = 4). 
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Figure 4: The proposed design of the template for this experiment involving 64 genes and four 

replicates. Replicates 1 and 2 are generated from the plate shown on the left. Replicates 3 and 4 

are generated in a similar manner after the plate has been rotated 90°. 
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