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Abstract 

Calculations for the number of per gene replicate spots in microarray experiments are 
presented for the purpose of obtaining estimates of the sampling variability present in 
microarray data, and for determining the minimum number of replicate spots required 
to achieve a high probability of detecting a significant fold change in gene expression. 
Our approach is based on data from control microarrays, and employs standard sta­
tistical estimation techniques. We have demonstrated the usefulness of our framework 
by analyzing two experimental data sets containing control array data. The minimum 
number of replicate spots required on a treatment array were calculated to achieve 
detection of a 3-fold increase in expression with 90%, 95% or 99% confidence. The in­
clusion of replicate spots on microarrays not only allows more accurate estimation of the 
variability present in an experiment, but more importantly increases the probability of 
detecting genes undergoing significant fold changes in expression, while substantially 
decreasing the probability of observing fold changes due to chance rather than true 
differential expression. 

1 Introd uction 

1.1 Gene expression 

A major goal of genomic research involves the determination of gene function, the 
discovery of which ultimately gives investigators fundamental insight into the ways 
genes act to affect the traits exhibited by an organism. The ability of a gene to 
influence an organism's characteristics is the result of the manufacture (expression) of 
proteins by that gene, the identity of which is determined by the gene's genetic sequence 
(DNA). By observing the expression patterns of genes (i.e., determining when genes 
are turned on or off) under various treatment conditions, important clues about gene 
function can be obtained. Studies which investigate such patterns are termed gene 
expression experiments. 

A common method for determining the expression of a gene is to measure the 
amount of mRNA (an intermediate product in protein production) being produced 
by that gene. Although not exact, there is a relatively high degree of correspondence 
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between the volume of mRNA present, and the amount of protein produced. Although 
the ability to measure mRN A levels is not new, microarray technologies! have enhanced 
the performance of such experiments on a grand scale. Specifically, these techniques 
allow researchers to obtain expression data from thousands of genes under various 
treatment conditions in a single experiment. 

1.2 Overview of micro array technology 

A microarray experiment consists of mRN A extracted from cells under different treat­
ment conditions, and specially coated glass slides (the microarrays) to which spots of 
genetic material are attached. In the case of Affymetrix arrays, this material com­
prises oligonucleotides (short genetic sequences) which are synthesized on the array 
itself, while for cDNA arrays the material is complementary DNA (cDNA), which is 
printed onto the array by a robotic tool. In both cases, a single spot on the array 
comprises thousands of strands of identical cDNA which represent the sequence of a 
single gene, with thousands of spots (and thus thousands of genes) able to fit on a single 
array. Although the two technologies share many similarities, here we focus solely on 
the cDNA array. 

In its most simple form, the aim of a cDNA micro array experiment is to measure 
the relative difference in mRN A expression between two different treatment condi­
tions for a collection of genes. This is accomplished by extracting mRNA samples 
from cells under each treatment condition, tagging each sample with fluorescent labels 
(often green (Cy3) for the control condition, and red (Cy5) for the treatment condi­
tion), mixing the mRNA samples together, and then placing the combined mRNA on 
the microarray to allow hybridization (i.e., the process by which the single-stranded 
mRNA in the sample bonds with its matching complementary DNA sequence which 
is attached to the microarray) to occur. Since the sequence for each gene is unique, 
each gene's mRN A will only bond with the unique complementary sequence from that 
gene, which means that each spot only collects mRNA that was produced by the gene 
it represents. Using a laser scanner, the labeled mRNA can be fluoressed, with the 
strength of the observed signal providing an estimate of the amount of mRNA from 
each treatment condition that has hybridized at each spot on the array. The results 
of the laser scanning are stored as a digital image (usually a 16-bit tiff file), which is 
further analyzed by specialized software that locates the position of each spot within 
the image, and provides a quantification of the signal intensities recorded at each spot. 
The set of intensity signals from each of the red and green labels are often referred to 
as channels in array experiments. 

In addition to determining the red and green signal intensities, the software also 
calculates a background intensity for each label color at each spot. The background 
intensity aims to remove factors effecting the intensity levels (such as reflective glare 
from the array surface) directly associated with the presence of hybridized mRNA 
at the spot. This practice is referred to as background correction. Similar corrections 
must also be made for differing average signal intensities between the two channels, and 
across multiple slides. Such normalization procedures generally consist of standardizing 
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the intensities from each channel to a median of one (i.e., by dividing through by the 
median), thus putting all intensities of the same scale2 . 

For an array with only a single spot per gene, the ratio of the two normalized 
background corrected fluorescence intensities at each spot gives an indication of the 
relative abundance of mRNA being produced by each gene under each treatment con­
dition, thus allowing the identification of genes whose mRNA expression levels differ 
between the two treatments. Genes whose mRNA production level changes between 
the two treatment conditions are said to have undergone differential expression. 

1.3 Statistical issues 

When statistically analyzing microarray data there is a common assumption that the 
experimental process is relatively free of variability, with each spot providing a com­
pletely accurate representation of the abundance of each gene product under each 
treatment condition. In reality this assumption is far from true, with variability intro­
duced by the process of extracting and labeling the mRN A, and also by the random 
nature of hybridization. These realizations have prompted the use of replication in mi­
croarray experiments3 as well as the proposal of more comprehensive methods of data 
analysis4 , including methods which incorporate data normalization into the analysis 
process5, 6. 

An obvious statistical hurdle which is encountered in the absence of replication is 
the question of how to determine whether an observed fold change in expression is real, 
or whether it is a result of the inherent variability of the experimental process. The 
estimation of this inherent variability, therefore, is a key component in any statistical 
analysis. Since the observed fold change at each spot in an array experiment provides an 
estimate of the level of differential expression for that gene, most statistical procedures 
aim to determine which observations represent true differential expression by taking 
into account the variation present in the data. This can be thought of as investigating 
the specificity of the experiment, that is, determining whether the observed fold changes 
represent real differential expression. The use of replication, in the form of multiple 
spots for each gene represented on the array, provides additional information about 
this variability, and thus provides a more reliable measure of whether an observed fold 
change represents true differential expression. 

Whether true differential expression can be detected, given the amount of variability 
in the observations is an additional aspect to consider in any microarray experiment. 
That is, if a gene is up-regulated from one condition to another, what is the chance that 
an intensity fold change will be observed? This question addresses the sensitivity of 
a microarray experiment. Replication increases the sensitivity of an array experiment 
by improving the accuracy of the estimates of differential expression, thus improving 
the chance of observing genes which are differentially expressed. 

Typically microarray experiments have suffered from a lack of replicate spots, with 
each gene being represented by a single spot of genetic material on the array. Here we 
refer to microarrays to which mRNA from treatment and control samples is hybridized 
as treatment arrays. If the treatment array does not contain replicate spots, then it is 
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difficult to gain information about the within-array sampling variation present in the 
experiment, thus making it hard to determine whether observed differential expression 
is real, or simply due to chance. 

Despite the limitations of single replicate arrays, there is a scenario in which infor­
mation about the within-array sampling variation can be obtained, without the need 
for replicate spots. In the situation where mRNA is extracted from a cells under a 
single (control) condition, split in two, fluorescently labeled (one half with Cy3, the 
other half with Cy5), and then hybridized to an array, the array can be referred to 
as a control army. Even though there are no replicate spots on the array, each spot 
has two intensity readings from the same sample, and as such they can be considered 
replicates arising from the same sampling distribution for each gene represented on the 
array, assuming that appropriate normalization2 has been performed. Using this as 
our motivation, we outline model-based methods to estimate the sampling variability 
present in control array data, and use this to quantify the number of gene replicate 
spots required to detect a given fold change in expression. The overriding benefit of 
this approach is that this information can then be used to design future experiments 
which will achieve desired levels of sensitivity and specificity. 

2 Methods 

2.1 Model fitting 

The basic assumption of the models proposed here is that the intensity reading from 
each distinct genetic segment (gene) on the array has a unique sampling distribution, 
with some true mean intensity (i.e., each gene's expression is addressed individually). 
We also assume that the sampling distribution for each spot's normalized observed 
intensity is strictly positive and unimodal 3,4,7. In order to meet these conditions, we 
focus on models which are based on the log-normal and gamma distributions. These 
distributions were chosen due to the attention they have recently received in the mi­
croarray literature3, 4, and also due to their similarity - the behavior of observations 
arising from these distributions is very similar, often making it difficult to distinguish 
between the two when dealing with small samples8 . 

For each model we propose one common parameter across all spots, and uniquely 
identify each gene through the second model parameter. The shared parameter is 
justifiable since there are only two observations per spot (since there is not enough 
information in the data to accurately estimate two parameters per gene) , and thus by 
pooling this information, more accurate estimates of overall variability can be obtained. 
The forms of the three models for the control array data are as follows, 

Modell: Gil, Ril '" Log-normal(fLi, (j2), i = 1, ... , K 

Mode12: Gil, Ril '" Gamma(a, (3i), i = 1, ... , K 

Mode13: Gil, Ril rv Gamma(ai, (3), i = 1, ... , K 
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where K is the number of genes represented on the array, Gil and Ril are the green 
(Cy3) and red (Cy5) observed intensities for the ith gene. The subscripted 1 on each 
of Gil and Ril indicates that only one replicate spot is used for each gene. Unlike 
the linear models approach5,6 our models do not provide a means to normalize the 
data, thus we assume that the data to which the models are applied have been suitably 
normalized2 in order to remove any undesirable experimental effects (e.g., additional 
variability due to fluorescent labeling or geographic location on the array). The two 
gamma models differ in that the first assumes (like the log-normal model) a constant 
coefficient of variation, while the second assumes non-constancy. In order to determine 
which model best fits the data from the control array, maximum likelihood methods 
are used to obtain estimates of the parameters defined for each of the models, with the 
better fitting model of the two having the higher log-likelihood value. 

2.2 Calculation of replicate numbers 

The statistical justification for placing replicate spots on an array is to provide an 
estimate of the within-array uncertainty present in the intensity readings. For a single 
gene under one of the log-normal or gamma models, it is possible to calculate the prob­
ability of detecting an m-fold increase in expression level, given the estimated model 
parameters (from the control array) for that gene, for a range of replicate numbers. To 
facilitate these calculations, a confidence based fold-change threshold must be chosen, 
such that any gene whose observed fold change is above this threshold is considered as 
having undergone a significant change in expression level. Based on these results the 
smallest number ofreplicates achieving a pre-specified detection probability (e.g., 95% 
confidence) can be determined for each gene. 

Under the log-normal model the calculations involve differences of mean logged in­
tensities for each gene (log(Rd -log(Gi,}) , allowing the normal distribution, N(/-L, cr2 ), 

to be used. In the case of an m-fold increase in expression between control and treat­
ment, this distribution has mean log(m) and variance 2cr2 /Ni , where Ni is the number 
of replicate spots for the ith gene. It is important to note that this result is independent 
of the mean intensity of the control sample, that is, the log-normal model assumes that 
the magnitude of the intensity is not a factor to consider in calculating the number of 
replicates required. 

For the first gamma model (again, assuming a m-fold increase) the fold-change 
estimate can be converted to a proportion of total intensity (Ri./(ik + Cd) allowing 
the gamma representation of the beta distribution9 to be used. This formulation then 
permits a Beta(mNia, Nia) distribution to be used for replicate number calculations, 
the benefit being an eventual closed form calculation of replicate number(s). The 
calculations are identical for the second gamma model, except that the parameters of 
the Beta distribution are now gene specific, that is, a Beta(mNiai, Niad distribution 
is used for replicate number calculations. 

The major benefit of the second gamma model's replicate calculation is that it takes 
into account the magnitude of the control intensity, which means that differing numbers 
of replicates are required to detect significant fold changes for genes with different 
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average control intensities. Specifically, genes with lower control (green) intensities 
require a higher number of replicates on the treatment array for the detection of a 
significant fold-change, since the treatment (red) intensity may be small relative to 
the amount of sampling error. For a gene with a large control intensity, however, 
fewer replicates are needed to detect a significant change in expression level, since 
the fold change between control and treatment could potentially be much larger than 
the sampling variation. The absence of this feature in the log-normal model and the 
first gamma model translates to an "average" number of proposed replicates, which 
makes it possible that too few replicates would be recommended for low intensity genes, 
decreasing the accuracy of the estimate of per gene variability and thus increasing the 
chance of failing to detect a gene with a significant change in expression level (type II 
error). 

Both the log-normal and gamma models can be used to determine the probability 
of false positive results (type I error). This situation involves observing an intensity 
fold-change greater than the threshold value, when there is actually no difference in 
expression levels for that gene. A good example of this occurs when a large fold-change 
is observed on a control array, despite the fact that there is no real difference between 
the two samples. This can also happen on a treatment array, making it impossible to 
separate real changes in expression level from those due to sampling variation. If the 
sampling variation is large enough, this situation can easily occur for a single replicate, 
but as the number of replicates increases, the chance of such an occurrence is reduced, 
since the observations are averaged. 

3 Results 

To illustrate our model-based replicate calculation approach, we utilize two publicly 
available data sets which contain control chip data. The first is the Escherichia coli 
data originally published by Richmond et al. lO and further analyzed by Newton et al.,4 

and the second is the yeast sporulation data of Chu et al. ll . The control chip data in 
both cases consist of an array with one replicate spot for each of the genes represented 
on the array, to which a control sample of mRNA (half tagged with Cy3, half with 
Cy5) was hybridized. The arrays were then scanned to produce red and green intensity 
values for each spot. Although there was only a single replicate for each gene, since 
both the red and the green samples were derived from the same source in each case, 
they can be considered as a pair of replicates from the same sampling distribution. The 
data were normalized in the manner of Newton et al.4 , by subtracting the background 
intensity for each gene and then dividing the result by the sum of all the positive 
background subtracted intensities on the chip. These intensities are then multiplied 
by a factor of 10,000 to provide a suitable scale for analysis4. This procedure reduces 
the influence of background fluorescence on the observed intensities. No evidence of 
effects relating to the fluorescent labeling of the samples was noted in either data set. 

Standard maximum likelihood methods and results l2 were used to fit the log-normal 
model to the data from each control chiplo, 11, while the EM algorithm13 was employed 
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to fit the gamma models. These methods gave maximum likelihood estimates of the 
fLi and (]'2 for the log-normal model and (ai, (3) and (a, f3i) parameters for the gamma 
models, as well as a log-likelihood value for the fit of each model. 

Based on the parameter estimates obtained from our model fitting process, each 
model can be used to determine the minimum number of replicates required to detect 
an m-fold increase in mean expression intensity with various degrees of certainty for 
each of the control chips10, 11. For illustrative purposes, we chose to investigate the 
sensitivity and specificity of a fixed fold-change threshold of 2.5 for detecting a 3-fold 
change in gene expression as has been done elsewhere in the literature 14. Based on 
this approach, the results presented here reflect the sensitivity and specificity of using 
a 2.5-fold cutoff to detect a 3-fold change in expression in an experiment involving the 
E. coli or yeast arrays10, 11. The choice of these values is designed to illustrate the 
methods presented here, and are not recommended as a general procedure. In order 
to achieve desired levels of sensitivity and specificity further investigation would be 
needed over a range of (possibly variable) thresholds. 

For the log-normal model, the probability, P*, of detecting a 3-fold increase using 
a 2.5-fold cutoff in observed intensity of gene i (averaged over Ni replicates) is given 
by, 

2A2 
P (z > log(2.5)) = P*, where z "" N(log(3.0), ;i ). (1) 

Inverting this equation demonstrates that Ni depends only on P* and 0-2 , that is, the 
number of replicates required depends only on the desired certainty of detecting a 3-
fold increase and the common variance term, and not the specifics of an individual 
gene. Similarly, for the first gamma model P* is given by 

P (w > 2.5 ) = P*, where w "" Beta(3Nia, Nia). 
1 + 2.5 

In contrast, for the second gamma model P* is given by 

(2) 

(3) 

so that the number of replicates for gene i, Ni, is dependent on both P* and ai 
(the location parameter for gene i). Simply put, for the gamma model, the number 
of replicates required to detect a 3-fold change depends on both the desired level of 
certainty, and the mean control intensity of gene i. 

Similar calculations can also be made to investigate the probability of false positive 
detections. For the log-normal model this probability is given by, 

2A2 
P (z > log(2.5)) = P*, where z "" N(O, ;i ). (4) 

which corresponds to the probability an observing a fold change above the cutoff of 
2.5, given that there was no true differential expression. For the gamma models the 
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probability is 

P ( 2.5) 
w> 1 + 2.5 (5) 

These methods are now applied to the control array data setslO, 11. For both data sets 
the distributions have been truncated to reflect the data points in which we are most 
interested. That is, the lower intensity observations which make up 95%-99% of the 
data sets. 

3.1 E. coli data 

The Richmond et al. 10 control chip data consist of an array of 4290 genes. Table 1 
contains the estimated scale parameters and log-likelihood fits for the log-normal and 
gamma models, applied to the E. coli data 10. The log-likelihood values indicate that 
the first gamma model tends to fit the data more closely than do the other models. 
Fig. 1 (a,c,e,g) contains plots of the observed data, and plots of simulated data based 
on the fitted gamma and log-normal model. The appearance of the plots suggests that 
the variability predicted by the second gamma model underestimates that of the data, 
while the log-normal slightly overestimates this variability. The first gamma model 
appears to produce results which most closely resemble the data. 

Using equations (1), (2) and (3), graphs (Fig. 2) relating the required number of 
replicates for given detection probabilities can be produced specifically for the E. coli 

data10 . The graphs differ for each model due to the fact that for the second gamma 
model the mean intensity affects the number of replicates required, whereas this is not 
true for the log-normal model, nor for the first gamma model. Fig. 2a demonstrates 
the use of the log-normal model for the E. coli data lO , and relates the number of 
replicates required to detect a 3-fold increase in expression level with 90%, 95% and 
99% probability. Since the scale of the horizontal axis is continuous, the next highest 
integer is suggested in order to maintain each confidence level, that is, three replicates 
for 90% confidence, four replicates for 95% and six replicates for 99%. Similar data 
is shown in Fig. 2c for the first gamma model, with two replicates required for 90% 
confidence, three replicates for 95% and five replicates for 99%. 

Fig. 2e provides results for the required number of replicates under the second 
gamma model (detection probabilities 90%, 95% and 99%), although the presentation 
is different to allow for the dependence of the replicate numbers on the mean control 
intensity. For the Richmond et al. 10 experiment the numbers of replicates required 
(based on the mean control intensity observed on the control chip) for the gene of 
interest is determined by locating the approximate mean intensity (vertical axis) value 
intersecting the confidence level curve related to the desired detection probability, and 
reading off the necessary number of replicates (rounding to the next highest integer) 
required for an individual gene (horizontal axis). An example is illustrated on the graph 
for any gene with a normalized control intensity of 10.0 (this value is approximately 
the mode of the intensity distributions for both normalized data sets). In this case the 
gamma model predicts that two, four or seven replicates of each gene would be needed 
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to detect a 3-fold increase in expression with respective 90%, 95% or 99% confidence 
when using an observed 2.5-fold significance threshold. 

The situation of false positive detection for the log-normal model is considered in 
Fig. 2b. The dashed lines on the graph indicate the probability of observing a false 
positive result in an experiment with only a single replicate spot for each gene. As 
shown in Fig. 2b, the approximate value 0.016 is in rough agreement with the pro­
portion of false positives (0.009) observed in the control array data. As the number of 
replicates increases, the chance of observing a false positive result decreases dramati­
cally. The false positive probabilities for the first gamma model are shown in Fig 3d. 
Fig. 2f contains similar data for the second gamma model, although the probability 
now depends on the mean control intensity for each gene. As for the other two models, 
this probability decreases as the number of replicate spots for each gene is increased. 

3.2 Yeast sporulation data 

The Chu et alY control chip data consists of an array of approximately 6200 genes (a 
single replicate spot per gene), each with a a control sample split in two and labeled 
with Cy3 and Cy5 as in the E. coli data10 . 

The estimated scale parameters and log-likelihood fits for the log-normal and gamma 
models are shown in Table 1. As for the E. coli data10 , the first gamma model appears 
a better log-likelihood fit than the other two models. Again the spread of the points 
in Fig. 1 suggests that the variahility of the data is underestimated by the second 
gamma model, and slightly overestimated by the log-normal model, but this time the 
first gamma model severely underestimates the variability of the data. 

Using equations (1), (2) and (3) for detection probability calculation, the minimum 
number of replicates needed to detect a 3-fold increase in expression were calculated for 
various confidence levels. Fig. 3a contains replicate number versus detection probabil­
ity for the log-normal model. These results predict that two, three, or four replicate 
spots for each gene would be needed on a treatment chip to detect a 3-fold increase 
with 90%, 95% and 99% confidence respectively, when an observed 2.5-fold increase is 
used to declare significance. Note that these numbers are less than those for the E. 
coli data, and are the result of the sporulation data containing less sampling variation. 
For the first gamma model (Fig. 3c) only one replicate is required for 90% and 95% 
confidence, while 2 are required for 99% confidence. 

For the second gamma model, the required number of replicates per gene is pre­
sented in Fig. 3e. Again, an example is given for a gene with a normalized control 
intensity of 10.0. For the sporulation data the second gamma model predicts that any 
such gene would require one, two, or three replicates to detect a 3-fold increase in ex­
pression with 90%, 95% and 99% confidence, respectively. Again, the smaller amount 
of sampling variation in the sporulation data results in a noticeably lower number of 
replicates being required than for the E. coli data. The issue of false detections in 
the sporulation data is addressed for the log-normal and gamma models in Fig. 3e 
and 3f. The small amount of sampling variation present in the data, however, makes 
it extremely unlikely for a large fold change to be seen when no difference between 
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treatment and control exists, even in the case of genes with very low intensities. 

4 Summary 

Preliminary analysis utilizing control array data can be employed for the purpose of 
designing experiments which minimize the number of replicates that are needed to 
achieve a high probability of detecting significant fold changes on a treatment array. 
Furthermore, using a gamma model.. we have shown that replicate calculations can even 
be performed on an individual gene basis. That is, the number of replicates needed for 
a treatment array can be calculated for each gene, with genes having a high control 
intensity receiving less replicates, and those with a low control intensity receiving more. 

Despite the flexibility of the second gamma model, and the better log-likelihood fit 
of the first gamma model, the approach which appeared to give the best visual fit to 
the data was the log-normal model. The fact that both gamma models provided a good 
(log-likelihood) fit is most likely due to the large number of very small observations 
(i.e., intensities close to zero) in the data. This underlying data structure makes it 
probable that the gamma models systematically underestimated the variability of the 
relatively small number of high intensity observations, as can be seen in Fig. 1. Based 
on these results, we believe that the log-normal distribution is an appropriate choice 
for the investigation of sampling variability in the microarray experiments examined 
here. 

By analyzing two separate data sets, the effect of differing amounts of sampling 
variability has been seen. The smaller sampling variation present in the Chu et al. 

data 11 clearly resulted in both models recommending less replicates per gene on a 
treatment chip than for the Richmond et al. data 10. This underscores the importance 
of performing a control chip experiment to assess sampling variability before construct­
ing a treatment chip, and also illustrates why a standard number of replicates cannot 
be proposed to cover all microarray experiments. 
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Table 1. Results of Model Fitting 
E. coli data 10 

Model Common parameter Log-likelihood 
Yeast sporulation data 11 

Common parameter Log-likelihood 
Log-normal 
Gamma 1 
Gamma 2 

8-2 =0.0458 -18342.87 
&=45.7039 -17356.58 
,8=0.319 -17911.07 

8-2=0.0151 -18127.07 
&=132.61 -16715.70 
,8=0.124 -19055.26 

Estimated common parameters and log-likelihood values after fitting the gamma and 
log-normal models to the E. coli control chip data10 and the yeast sporulation control 
chip data11 • 
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Fig. 1. Plots of observed (a,b) and simulated (Log-normal model (c,d), Gamma model 1 (e,f), Gamma 

model 2 (g,h)) Cy3 and Cy5 data. Plots (a,c,e,g) relate to the E. coli control array data10 , and (b,d,f,h) 

relate to the yeast sporulation control array datall , 
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Fig. 2. E. coli control array datalO. (a) Log-normal model probability of detecting a 3-fold increase in 

expression level using a 2.5-fold observed mean cutoff for N replicates of a single gene. Lines indicate 90%, 

95% and 99% confidence. (b) Probability of false positive (observing a mean 2.5-fold increase in intensity 

when no true difference in expression level exists) as the number of replicates increases under the log-normal 

model. Dashed lines on graph indicate the probability of false positive when only one replicate is used. (c) 

Probability of detecting a 3-fold increase in expression level using a 2.5-fold observed mean cutoff for N 

replicates of a single gene under the first gamma model. Lines indicate 90%, 95% and 99% confidence. (d) 

Probability of false positives under the first gamma model. (e) Number of replicates required to detect a 

3-fold increase in mean control intensity using a 2.5-fold observed mean cutoff, based on the second gamma 

model. Curves represent 90%, 95% and 99% confidence levels. Straight lines give example of number of 

replicates needed for gene with mean control intensity of 10.0. (f) Probability of false positive for one, two, 

or three replicates under the second gamma model. 
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Fig. 3. Yeast sporulation control array datall . (a) Log-normal model probability of detecting a 3-fold 

increase in expression level using a 2.5-fold observed mean cutoff for N replicates of a single gene. Lines 

indicate 90%, 95% and 99% confidence. (b) Probability of false positive (observing a mean 2.5-fold increase 

in intensity when no true difference in expression level exists) as the number of replicates increases under the 

log-normal model. Dashed lines on graph indicate the probability of false positive when only one replicate is 

used. (c) Probability of detecting a 3-fold increase in expression level using a 2.5-fold observed mean cutoff 

for N replicates of a single gene under the first gamma model. Lines indicate 90%, 95% and 99% confidence. 

(d) Probability of false positives under the first gamma model. (e) Number of replicates required to detect 

a 3-fold increase in mean control intensity using a 2 .. S-fold observed mean cutoff, based on the second gamma 

model. Curves represent 90%, 95% and 99% confidence levels. Straight lines give example of number of 

replicates needed for gene with mean control intensity of 10.0. (f) Probability of false positive for one, two, 

or three replicates under the second gamma model. 
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