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SIMULATION STUDY OF SPATIAL-POISSON DATA ASSESSING INCLUSION OF 
SPATIAL CORRELATION AND NON-NORMALITY IN THE ANALYSIS 

Rebecca A. Hensberry, David B. Marx, Daryl Travnicek, and Stephen Kachman 
Department of Biometry 

University of Nebraska-Lincoln 
Lincoln, NE 68583-0712 

ABSTRACT 
Spatial correlation and non-normality in agricultural, geological, or environmental 

settings can have a significant effect on the accuracy of the results obtained in the statistical 
analyses. Generalized linear mixed models, spatial models, and generalized linear models were 
compared in order to assess how critical the inclusion of non-normality and spatial correlation is 
to the analysis. Spatially correlated data with a Poisson distribution were generated in a 
completely randomized design (CRD) with 2 treatments and 18 repetitions. Four analyses: 
spatial Poisson, non-spatial Poisson, spatial normal, and non-spatial normal, were conducted on 
the simulated data to compare their power functions. The degree of spatial correlation, size of 
the mean, the dimension of the plots and difference between the two treatment means were 
altered to investigate how the ability to detect differences between the treatments is affected. In 
addition, the range covariance parameter was estimated and compared among the spatial models. 
Some covariance parameter estimates were under-estimated. The size of the field plot and the 
treatment means were increased to assess their effects on estimation of the range. The Reduced 
Maximum Likelihood (REML) covariance parameter estimates were compared to those obtained 
using Maximum Likelihood (ML) estimates. The analysis that incorporated the spatial 
correlation of the observations and used ML to estimate the covariance parameters had the 
highest power and most accurate range parameter estimates. 

1. INTRODUCTION 
One of the most frequently occurring types of agricultural data is obtained by counting 

the characteristic of interest, such as the number of insects, the number of weed patches or the 
number of diseased roots or leaves in each experimental unit. These types of data are generally 
described with the Poisson distribution (Gomez and Gomez, 1984). Often the experimental units 
that are closer together are more closely related. For example the level of fertility in the field 
may decrease as one moves across the field. Two plants beside one another have more similar 
fertility levels than one plant has with another in an opposing comer ofthe field plot. The 
relationship between observations a specified distance apart is known as spatial correlation 
(Goovaerts, 1997). 

There are three ways to characterize the spatial correlation present in the data (Cressie, 
1991). Traditional statisticians prefer to examine the amount of covariance between the 
observations a given distance from one another. Time series analysts may use the correlation 
between observations taken a given amount oftime apart to describe the spatial correlation in 
time. Spatial statisticians choose to use the semivariance, which is a function of the difference 
between observations squared. In this simulation study, the semivariance is used to model the 
spatial correlation present. Several semivariograms are available to model the structure of the 
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spatial correlation present in the field. The spherical covariance structure is most commonly 
used of the various covariance structures available, as it is the most frequently occurring in 
nature (Clark, 1979). The three covariance parameters used to characterize the spherical 
structure are the nugget, range, and sill (Joumel and Huijbregts, 1978). The sill, the upper 
asymptote of the semivariogram, is also characterized as the variance of observations that are 
independent of one another. The range is the distance at which the observations are essentially 
independent. The nugget effect is a measure of small-scale spatial variation and a quantification 
of the amount of measurement error present. In this simulation study, the nugget effect is 
assumed to be zero. 

In order to assess how important the inclusion of spatial correlation and the Poisson 
distribution are in the analysis of data that are known to possess these characteristics, the type I 
error rate, power to detect treatment differences, and the accuracy of parameter estimates were 
compared. The objectives of the simulation study were to simulate spatially correlated Poisson 
data, compare four analyses that have the distributional assumption of Poisson or normal data 
and either include or exclude the spatial correlation between the observations. Finally, the 
results were applied to various field settings, such as rectangular and square plots, large and 
small amounts of spatial correlation, and a small number versus a large number of average 
counts. 

The first part of the data simulation process was to incorporate the spherical covariance 
structure (Isaaks and Srivastava, 1989). This was done using SAS's PROC IML. Starting with a 
normal response variable, the spherical covariance structure is assembled and then multiplied by 
the vector of observations to obtain the spatially correlated response variable. The response 
variable is then standardized and assigned a normal probability value. The Poisson count value 
with the same probability as the standard normal response is then assigned. Essentially, the 
cumulative distribution functions of the normal and Poisson distributions are matched to convert 
the normal response to a Poisson response (Moser, 2000). 

The experimental design consists of two treatments with eighteen observations per 
treatment in a completely randomized design. A semivariogram range of 2.2 was used to 
illustrate how the four analyses performed in a situation where the correlation between 
observations only stretches a small distance. A range of 10 was also used to model a higher level 
of spatial correlation between observations. Two treatments were used in each simulation. The 
mean of one treatment remained constant, while the mean of the second was changed for each set 
of simulations. The mean of the stationary treatment was chosen to be 15, while the mean of the 
variable treatment was 15, 16, 17, 18, 19, or 20. A second set of smaller means were also 
analyzed, with the stationary mean equal to 2, and the variable mean having values of2, 2.5, 3, 
4,5 or 6. For each scenario 5000 replications were analyzed. In summary, for the set of 
experiments with a square shape, where the experimental units are organized in a 6x6 grid, there 
is a set of experiments with high and low levels of spatial correlation, and within each level of 
spatial correlation there is a set of treatment means that is either large or small (Figure 1). 

The four analyses used either included or excluded the spatial correlation and non­
normality ofthe simulated data set. For the analysis that included the spatial correlation and 
incorporated the distributional assumption of Poisson, the SAS GLIMMIX macro was used with 
the following SAS (v 8.0) programming statement: 
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%glimmix(data=TRT,procopt=method=ml,maxit=200, 
stmts=%str( 
class TRTi 
model N = TRT/ddfm=kri 

Kansas State University 

repeated /sub=intercept type=sp(sph) (lat lng) i 

lsmeans TRTi 
error=POISSON) i 

runi 

The repeated statement allows for correlated errors with a spatial spherical covariance structure. 
The experimental unit (sub =) which exhibits correlated errors is denoted by the word 
"intercept", which suggests that the spatial structure is uniform across the entire field area. The 
non-spatial Poisson analysis was calculated using SAS PROC GENMOD with the following 
programming statement: 

PROC GENMODi 

CLASS TRTi 

RUNi 

MODEL N = TRT/DIST=POISSON TYPE3i 
LSMEANS TRTi 

The spatial analysis with the distributional assumption of normality was employed using PROC 
MIXED, with the response variable being the transformed value, or square root, of the count. 
The following programming statement was employed: 

PROC MIXED method=mli 
CLASS TRTi 

RUNi 

MODEL SN=TRT/ddfm=kri 
REPEATED/SUB=INTERCEPT TYPE=SP(SPH) (LAT LNG) i 

LSMEANS TRTi 

As in the GLIMMIX macro, the subject equal to the intercept allows for uniform spatial structure 
across the entire field. The non-spatial normal analysis was completed using PROC MIXED 
with the following programming statements: 

PROC MIXEDi 
CLASS TRTi 

RUNi 

MODEL SN=TRT/ddfm=kri 
LSMEANS TRTi 

As with the spatial normal analysis, the Poisson response variable was transformed by taking the 
square root ofthe count. The power curves for four analyses were compared for both the square 
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and rectangular designs. The estimates of the range covariance parameter were examined for 
accuracy. Diagnostic efforts to investigate problems with range estimates were conducted for 
larger grid sizes and sets oflarger equal treatment means. Initially, the analysis was conducted 
using Reduced Maximum Likelihood (REML) estimation, and consequentially problems with 
convergence, range overestimation, and incorrect degrees of freedom arose. The known range 
values were 2.2 and 10, such that ranges greater than 500 were excessive and considered to be 
overestimates. Due to the above mentioned problems with REML, the analysis was repeated 
using Maximum Likelihood (ML) estimation of the covariance parameters in an attempt to 
obtain more reliable results. The results presented are those from the ML analysis. The percent 
non-convergence, incorrect degrees of freedom and range overestimates were compared for the 
two estimation methods. 

2. RESULTS AND DISCUSSION 
The first portion of the analysis examined is the type I error rate, or percent 

rejection under the null hypothesis, for both rectangular and square designs (Tables 1-2). Overall 
the rejection rates are fairly close to the expected rate of 0.05 although for a large range the 
spatial normal method seems to overestimate the type I error rate. However, when there is a 
large amount of spatial correlation present, the non-spatial Poisson analysis appears to be under­
rejecting for both large and small treatment means. The power curves were compared for the 
four analyses in the four settings: low spatial correlation and small means, low spatial correlation 
and large means, high spatial correlation and small means, high spatial correlation and large 
means (Figures 2-5). In all four settings used to compare the power curves for the square design, 
the two spatial analyses had power greater than or equal to the two analyses that did not include 
the spatial correlation in the data set. The distributional assumption therefore appears to be less 
influential on the power to detect treatment differences than the inclusion of known spatial 
correlation. The power curves obtained from the square and rectangular analyses were compared 
to determine if any large differences were present in the power for the two design shapes in the 
four settings (Figures 6-9). There did not appear to be large discrepancies between power curves 
for the rectangular and square designs. The range covariance parameters were considered to 
check accuracy of estimation of the analyses when the means are equal (Table 3) and when the 
means are extremely unequal (Table 4). The range covariance parameter estimates for equal 
treatment means were underestimated for the spatial Normal analysis when the known range is 
2.2. The spatial Poisson analysis is underestimating the known range of2.2 more than the spatial 
Normal. When the known range is 10, both spatial analyses are largely underestimating the 
range covariance parameter. The results are similar for extreme unequal means. Three possible 
reasons for range underestimation are the proportion of zero estimates present, the size of the 
design, and the size of the treatment means. The proportion of zero estimates for the range 
covariance parameter estimates for equal and unequal means, and high and low spatial 
correlation settings were checked for the two spatial analyses (Tables 5-6). The proportion of 
zero estimates was approximately 90% for the small range and approximately 70% for the large 
range in the spatial Poisson analysis. In the spatial normal analysis, the proportions of zero 
estimates were approximately 70% and 45% for the small and large ranges, respectively. Based 
on the proportion of zeroes present, the spatial Poisson analysis was less likely to detect spatial 
correlation than the spatial normal analysis. The relatively large percentage of zero estimates is 
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likely to be partially responsible for the underestimates of the range covariance parameter. The 
estimation of the range was examined for larger equal treatment means of 100 and 500, and for 
larger plot sizes to determine effects on the estimates of the range covariance parameters (Table 
7). In the lOx 1 0 grid, as the size of the equal treatment means increases, the estimate of the 
range approaches the true value of 10 for both spatial analyses. When the size of the grid is 
increased from 6x6 to 20x20 and 30x30, the spatial normal analysis the estimate of the range 
improves as well. The spatial Poisson range estimate becomes more accurate as the mean of the 
treatments increases (10x10 grid) yet does not improve as the size of the field plot increases for 
means of 15 (Table 7). The percent non-convergence, incorrect degrees of freedom and range 
overestimates were obtained from all the simulations and compared for REML and ML (Table 
8). The percent nonconvergence for the REML analysis was 0.020% compared to 0.006% for 
the ML analysis. The percent incorrect degrees of freedom for REML and ML are 0.0823% and 
0, respectively. The REML estimation method yielded 15-30% overestimates, while the ML 
estimation method had 0.048% overestimates of the range. The ML estimation is preferable to 
the REML estimation procedure due to lower rates of nonconvergence, lack of incorrect degrees 
of freedom as well as fewer overestimates of the range. 

3. SUMMARY 
The analysis that considered the spatial correlation present in the data set had higher 

power and more accurate rejection rates in a wide variety of settings. The distributional 
assumption appears to be less important in terms of the ability to detect treatment differences 
however; the spatial normal analysis yielded more accurate range estimates overall. The 
maximum likelihood method of parameter estimation provides more favorable results with lower 
rates of parameter overestimation, no incorrect degrees of freedom and less nonconvergence. 
Future research is necessary to determine which analysis is best when there are more than two 
treatments present, the distribution of the data is neither normal nor Poisson, and when the 
design is a randomized complete block instead of a completely randomized design. These 
conclusions are based upon using the SAS GLIMMIX macro for the spatial Poisson analysis. 
Other computational procedures may perform differently. 
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Table 1. Percent rejection under the null hypothesis for the square design, a =0.05. 

Small Range Large Range 
JlA = 2 JlA = 15 JlA = 2 JlA = 15 

Analysis: 
Spatial Poisson 0.0464 0.0434 0.0558 0.0575 
Non-spatial Poisson 0.0418 0.0354 0.0150 0.0096 

Spatial Normal 0.0586 0.0506 0.0694 0.0640 
Non-spatial Normal 0.0398 0.0358 0.0418 0.0368 

Table 2. Percent rejection under the null hypothesis for the rectangular design, a =0.05. 

Small Range Large Range 
JlA = 2 JlA = 15 JlA = 2 JlA = 15 

Analysis: 
Spatial Poisson 0.0546 0.0456 0.0574 0.0586 
Non-spatial Poisson 0.0492 0.0360 0.0176 0.0120 

Spatial Normal 0.0704 0.0538 0.0724 0.0666 
Non-spatial Normal 0.0500 0.0378 0.0436 0.0422 

Table 3. Range covariance parameter estimates ± cr / Fn for equal means. 

Range = 2.2 Range = 10 
/\ /\ 

Range Range 
Analysis: 

Jl A= 2 Spatial Poisson 0.33±0.02 1.70+0.04 

/l B= 2 Spatial Normal 1.01±0.03 2.55±0.04 

/lA = 15 Spatial Poisson 0.24±0.01 1.81±0.04 
/lB = 15 Spatial Normal 1.22±0.03 3.09±0.04 
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Table 4. Range covariance parameter estimates ± cr / Fn for extreme unequal means. 

Range = 2.2 Range = 10 
A A 

Range Range 
Analysis: 

JlA = 2 Spatial Poisson 0.33±0.02 1.83±0.04 

JlB = 6 Spatial Normal 1.07±0.03 2.70±0.04 

JlA = 15 Spatial Poisson 0.23±0.01 1.86±0.04 

!lB=20 Spatial Normal 1.15±0.03 3.11±0.04 

Table 5. Proportion of zero range estimates for equal means. 

Range = 2.2 Range = 10 

Analysis: 
JlA = 2 Spatial Poisson 0.9194 0.6768 

JlB = 2 Spatial Normal 0.7346 0.4756 

JlA = 15 Spatial Poisson 0.9392 0.6764 

!lB = 15 Spatial Normal 0.6794 0.3738 

Table 6. Proportion of zero range estimates for extreme unequal means. 

Range = 2.2 Range = 10 

Analysis: 
JlA = 2 Spatial Poisson 0.9174 0.6582 

JlB = 6 Spatial Normal 0.7216 0.4426 

JlA = 15 Spatial Poisson 0.9422 0.6628 

!lB=20 Spatial Normal 0.6954 0.3728 
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Table 7. Range estimates for larger means and larger design dimensions. 

!J.A = !J.B = 15: !J.A = !J.B = 100: !J.A = !J.B = 500: 

Range = 10 Range = 10 Range = 10 
1\ 1\ 1\ 

Range ± cr/ Jii Range ± cr/ Jii Range ± cr/ Jii 
Size: Analysis: 
6x6 Spatial Poisson 1.81±0.04 

Spatial Normal 3.09±0.04 

10xl0 Spatial Poisson 7.11 ± 0.77 8.25 ± 1.27 9.39 ± 2.71 
Spatial Normal 9.33 ± 0.39 8.64 ± 0.55 9.53 ± 0.21 

20x20 Spatial Poisson 19.10 ± 0.99 
Spatial Normal 9.83 ± 0.29 

30x30 Spatial Poisson 31.87 ± 1.22 
Spatial Normal 9.97 + 0.08 

Table 8. Nonconvergence, incorrect degrees of freedom, and overestimation rate for the REML 
versus the ML method of covariance parameter estimation. 

*Of 0.823% incorrect degrees of freedom only 3% are from simulations with large means 
(!J.A=15). 

Non-convergence 
Incorrect degrees of freedom 
Range over-estimates: 
(Range> 500) 

REML 

0.020 % 
0.823 %* 

15% - 30 % 

ML 

0.006 % 
o 

0.048 % 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/3



Applied Statistics in Agriculture 25 

~ Large means 
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----.. Small means 
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~ Large means 
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Figure 1. Flow chart showing the components of the simulation procedure. 
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Figure 2. Comparison of power curves for square design with small range and small means 
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. Figure 3. Comparison of power curves for square design with small range and large means. 
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Figure 4. Comparison of power curves for square design with large range and small means. 

RqJe=10 J.IA=15 

1.0 ---.------~ 
J.. 0.8 
~ 0.6 
00.4 
a. 0.2 

0.0 
15 16 17 18 19 

Figure 5. Comparison of power curves for square design with large range and large means 
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Figure 6. Comparison of power curves of rectangular versus square design for small range and 
small means. 
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Figure 7. Comparison of power curves of rectangular versus square design for small range and 
large means. 
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Figure 8. Comparison of power curves of rectangular versus square design for large range and 
small means. 
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Figure 9. Comparison of power curves of rectangular versus square design for large range and 
large means. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/3


	SIMULATION STUDY OF SPATIAL-POISSON DATA ASSESSING INCLUSION OF SPATIAL CORRELATION AND NON-NORMALITY IN THE ANALYSIS
	Recommended Citation
	Author Information

	tmp.1446674257.pdf.jjGEH

