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Abstract 

Kansas State University 

UNCERTAINTY ANALYSIS OF A PIPE MODEL 
BASED ON CORRELATED DISTRIBUTIONS 

Shoufan Fang and George Z. Gertner 

Research Programmer and Professor of Biometrics 
Department of Natural Resources and Environmental Sciences 

University of lllinois at Urbana-Champaign, 
Urbana, IL 61801. 

Traditionally, uncertainty analysis of complex simulation models has been conducted 
based on the assumption of that the components of the model are independent. In practice, 
correlation is universal in ecosystems. This study applied Bayesian estimation and rejection 
sampling to generate correlated random samples for an uncertainty analysis of a process based 
forest growth model, a pipe model. Comparison of error budgets built using independent and 
correlated distributions shows that correlated distributions are very important to provide 
reasonable and realistic simulation and uncertainty analysis. 

1. Introduction 
Variation in the outcome of model simulation is termed as "uncertainty" (Cox, 1977; 

Gertner, 1987). Uncertainty analysis of a model includes both variance analysis and sensitivity 
coefficient analysis (Cox, 1977; Fang, 2000; Gertner, 1987; Sobol, 1993). The variance 
distribution and sensitivity coefficients of a model can reflect the properties of the model and the 
reliability of its predictions. The behaviors and the variance contribution of the model 
components (including both variables and parameters of a model) are used to assess the 
properties of the model and the quality of simulation, and thus to improve the quality of model 
simulation. 

Model assessment analyzes the properties and behaviors of a model at the levels of both 
the whole model and individual components (Cox, 1977; Fang, 2000; Gertner, 1987; Jansen et 
aI., 1994; Rossing et aI., 1994). The assessment at the level of individual components is usually 
based on the uncertainty behavior of a model caused by each component. Sensitivity analysis 
investigates the significance of the magnifying effect of each component but does not discuss the 
variance contribution of each component. Error budget analysis, which is one of the variance 
contribution analysis methods, concerns both the variation of the components and their 
magnifying effect (Gardner et aI., 1990; Gertner, 1987, 1991; Gertner et aI., 1996). Error budgets 
of process models allow us to partition the uncertainty (estimation error) in model projections 
caused by propagation of uncertainty in model inputs (Fang, 2000; Gertner, 1987; Gertner et aI., 
1996). More specifically, it is a catalog that displays the systematic partitioning of the 
contribution of different sources of error. By showing the effect of individual errors and groups 
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of errors on the projection of mUlti-component models, error budgets allow us to assess the 
influence of different sources of uncertainty on the quality of those projections. 
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In uncertainty analysis, many methods have been developed for different types of models 
and systems (Cox, 1977; Downing et aI., 1985; Fang, 2000; Gardner et aI., 1990; Gertner, 1987; 
Gertner et aI., 1996; Jansen et aI., 1994; Keesman and Straten, 1990; Matsumoto et aI., 1994; 
Morris 1991; Mowrer and Frayer, 1986; Noor et aI., 1994; Rossing et aI., 1994; Sarma et aI., 
1993; Sobol, 1993; Summers et aI., 1993). Most of these methods do not consider correlation 
among model components. Independence is ether explicitly stated or implied. One important 
explanation is that when most of these methods were developed, estimation methods could not 
provide correlated joint distribution of model components. As computational Bayesian 
estimation methods have been developed, it is now possible to estimate and generate correlated 
joint distributions of model components (Fang, 2000; Gertner et aI., 1999). In order to adapt to 
this progress in terms of uncertainty analysis, Fang (2000) developed an improved Monte Carlo 
method for building error budgets based on correlated joint distribution of model components. 

The pipe model, a mechanistic forest growth model, has been developed based on the 
pipe theory, self-thinning rule, and carbon-balance (Valentine, 1985 and 1988). It has been used 
in the monitoring, simulation, and projection of dynamics of forest ecosystems (Gertner et aI. 
1996; Gertner et aI. 1999). Gertner et aI. (1996) have built error budgets of the pipe model based 
on mutually-independent model components for red pine (Pinus resinosa Ait.) growing in the 
Great Lakes region of North America. 

The purpose of this paper is to briefly report on a study where rejection Bayesian 
sampling and an improved Monte Carlo method for building error budgets were used for a pipe 
model calibrated for Norway spruce (Picea arbies Karst) in Denmark. The error budgets were 
developed and compared for the cases where the joint distributions were assumed independent 
and correlated. 

2. Methodology 
Model description 

The pipe model is a multiresponse nonlinear iterative model. There are three responses 
(state variables) in the model: basal area (BA), pipe length (PL, which can be represented by 
average dominant height), and total volume (TV). There are 20 physiological and scaling 
parameters in the model. Most of these parameters are shared by all state variables. Since the 
components of this model relate to realistic ecosystems, all the components of the pipe model 
have also been called entities (Gertner et aI., 1996). The structure of the pipe model has been 
described in Fang (2000), Gertner et aI. (1999), and Valentine (1988). Valentine (1985 and 1988) 
and Gertner et aI. (1996) defined the model components (Table 1). 
Data 

Observations of Norway spruce stands were collected from 14 thinning experiments in 
even-aged Norway spruce in Denmark (Skovsgaard, 1997). All plots were of the same quality: 
their site index for Norway spruce were all 25 (meters). The plots were all unthinned control 
plots and they were remeasured at regular time intervals through their entire rotation. An 
observation on the plot included age, BA (basal area), PL (pipe length), and TV (total volume) of 
a plot. Fang (2000) described the details of calculating BA and TV from the original 
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measurement based on studies of Madsen and Heuserr (1993) and Hakkila (1989). The simple 
statistics of state variables are listed in Table 2 and the initial state variables estimated using 
observations were listed in the first 3 rows of Table 3. 
Random number generation 

Fang (2000) and Gertner et al. (1999) had developed parameter estimation methods for 
multiresponse nonlinear models based on rejection Bayesian sampling. This study applies the 
developed rejection Bayesian sampling method to generate random sample for simulation and 
building error budgets of the pipe model. 
Simulation Setting 

Two Monte Carlo simulations were conducted in building error budgets of the pipe 
model. One is based on correlated distribution of the model components and the other is based on 
independent distributions. 

In the simulation with correlated distributions, the prior distributions of model 
components for rejection Bayesian sampling were truncated normal distributions. It was assumed 
for the priors that there was no dependence among the marginals of model components. In the 
simulation with independent distributions, probabilities of model components were also assumed 
to be truncated normal distributions (Table 3). The mean vector of independent distribution was 
adapted from the posterior of rejection Bayesian estimation. The distribution of the initial state 
variables (BA, PL, and TV) was estimated using the observations of the Norway spruce stands 
measured from ages 28 and 32 years. The pipe model was used to project growth of the forest 
stand to the age of 60 years. The outputs of simulations at age 60 were used in building error 
budgets. The random sample size was of 30,000 random vectors. More explicit details about the 
simulation settings can be found in Fang (2000). 
Error Budget Building 

Fang (2000) improved the Monte Carlo method to build error budgets based on correlated 
distributions of the model components (see Appendix). The process to generate random samples 
and build error budgets is described in Figure 1. Derivation and properties of the method can be 
found in Fang (2000). 

In built error budgets, overall variance is the variance obtained directly from simulation. 
Total variance is the summation of variance contribution of all model components. The 
proportion of variance contribution of a model component is calculated using its variance 
contribution and total variance. 

3. Results Analysis 
Shown in Table 4 is the established error budget at age 60 of the pipe model based on the 

correlated distribution. Each entity contributed different amounts of variance to different state 
variables. 

For the projected state variable BA at age 60 (Table 4), the largest variance contributor is 
the initial BA itself, which contributes almost 42% variance to the final prediction. The second 
largest variance contributor is entity C, which contributes 28.9% variance to prediction. Entity 
PSI ( If/') contributes 12.88% variation to BA. These entities all concern initial basal area (BA), 

forest density (C), and proportion of the basal area of the dead trees (If/'). All the other entities 
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individually contribute less than 3% variation to model prediction. The smallest variance 
contributors are entities TV, VI, and V2. Their variance contributions are O. They are entities 
concerning the volume of the forest. In the pipe model, they do not appear in the sub-model of 
BA. The overall variance and coefficient of variation (CV) of BA is 47.37 and 11 %, respectively. 

For the projected state variable PL, the largest variance contributors are entities I and 
ALPHA (a). They contribute, respectively, 15.47% and 15.03% of variance. Entities LAMBDA 
(/1, ), ZETA ((), and initial PL also have variance contributions larger than 10%. These 5 entities 

concern complex environmental quality (I), maximum photosynthesis productivity (a), foliar 
dry matter ((), and pipe length (/1, and PL), respectively. Entities BA, C, TV, VI, V2, and PSI 

(If/) contribute no variation to prediction of pipe length. These entities only contribute 

uncertainty to projected BA and TV. The overall variance and CV of PL are 2.06 and 6%, 
respectively. 

For the projected state variable TV, the largest variance contributor is the initial TV, 
which has 19.22% variance contribution. Entities I, ALPHA (a), C, and ZETA (() individually 

contribute 9.6% toI2.3% variation to prediction of TV. These 4 entities concern environmental 
quality (I), maximum photosynthesis productivity (a), forest density (C), and foliar dry matter 
((), respectively. They are all major variance contributors to state variable BA or PL. The initial 

state variable TV is the larggest uncertainty contributor, which contributes about 19% uncertainty 
to the final prediction. The variance of prediction is 13349, which is smaller than that obtained 
from observations, and the corresponding CV is 14%. 

The error budget built based on simulation using independent distributions is listed in 
Table 5. The difference in error budgets between correlated and independent cases are very large. 
Entity I is the largest variance contributor for all the three state variables. It contributes about 
41 % variation to the prediction of both PL and TV. This is at least two times the variation 
contribution of any other entity (Table 5). The variance contributions of the initial PL and TV to 
their corresponding predictions are less than 4%. The overall variances of the predicted BA, PL, 
and TV are 55.7, 34.9, and 78496.9, respectively. For PL or TV, their variances of predictions are 
at least 5 times larger than those obtained using correlated distribution. The CV's of PL and TV 
are, respectively, 26.9% and 33%, which make the predictions meaningless since the confidence 
intervals will be too wide and precision of predictions will be too low. 

4. Discussion and Conclusion 
Error budgets built based on correlated distribution estimated by rejection Bayesian 

sampling and improve Monte Carlo method can demonstrate realistic and reasonable uncertainty 
sources and their contributions. The error budget can also reflect the relationship among the 
entities of the pipe model and ecosystems. An error budget shows the importance and co-effects 
of the entities of the model. 

The initial variation of the state variables of the pipe model is a major uncertainty source. 
Complex environmental quality, foliar dry matter, maximum photosynthesis productivity, self­
thinning factor, and the scalar of new active pipe dry matter are the next important sources of 
uncertainty. The influence of the complex environmental quality and maximum photosynthesis 
productivity is almost the same for each state variable, although their variance contribution for 
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each state variable is different. They are always the top five largest variance contributors. This 
reflected the biological and ecological roles of these entities of the model and ecosystem. 

The assumption of independence of the distribution of the components is unrealistic and 
not suitable for ecosystem simulation and uncertainty analysis, even when the marginal 
distributions of all the components of a model are estimated with observations. In this study, 
given a variance smaller than its estimate for each entity of the pipe model, the overall variance 
from simulation and coefficients of variation are still very large for state variables PL or TV. The 
inflated variation changes the rank of variance contribution so that the contribution of the initial 
state variables becomes very small and unimportant. The over-estimated variation of projection 
caused by complex environmental quality makes the environment factor much more important 
than synthesis and productivity entities. This is not correct in biological and ecological theories. 
When a shorter interval and a smaller variance are assigned to each component of a model to 
reduce overall variation, it also changes the role of important components. The simulation 
outcome based on such reduced independent marginal distributions can not reflect the dynamics 
of real ecosystems. 

5. Summary 
Uncertainty analysis based on correlated distribution can build realistic and reasonable 

error budgets. The relationship between environment and productivity entities can be revealed in 
the reasonable error budgets. Initial state variables play an important role in contributing 
uncertainty to prediction. Uncertainty analysis based on independent distribution can provide 
much higher uncertainty, over-emphasize the importance of environment entities, and under­
estimate the importance of initial state variables and other productivity entities. Both the overall 
uncertainty and rank of uncertainty contributors are not reasonable and reliable. Bayesian 
inference, rejection sampling, and the improved Monte Carlo method are the bases of uncertainty 
analysis using correlation distribution. The new methods provided the possibility to do 
uncertainty analysis based on correlated distributions. 
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Appendix: Uncertainty analysis based on correlated distribution 

Fang (2000) proposed the following improved Monte Carlo method to build error budgets 
based on correlated distribution: 

lIN 
E{var[J(B.,e:-)le:-]} = _._" ([f(B· I .,e:-·)le:-.]-[J(B·2 .,e:-·)le:-.]}2 (AI) 

1 1 1 2 N ~ 1, ,] I,J 1,] 1, ,J I,J I,J 
J=I 

where fee) is the model, e = (BI'···,Bq ), is model component vector, var[f(Bi'e~le~)] is the 

variance contribution of model component Bj , e; = (611 ," ',Bj _ l , -,Bj+I ,·· ·,Bq )', N is sample size. 

Using sampling scheme described in Figure 1, Eq.A1 will provide variance contribution of 
individual model components. Assume that the co-contribution of a model component is 
proportional to its individual contribution, the error budget of a model can be built based on 
Eq.Al. More details can be found in Fang (2000). 
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T bi 1 D f " " f h ( a e e 1llitIon 0 t e entItles lparameters ) f h d I (f 0 t e pIpe mo e rom G I 1996) ertner et a", 
Category Parameter Definition 

State BA total basal area oflive trees at 1.3 m above ground (m2) 

Variables PL average active pipe length (from leaves to feeder roots) (m) 

TV 3 total woody volume (stems, branches, and coarse roots) (m Iha) 

AMAX active basal area at 1.3 m above ground (m2/ha) 

BP units of dry matter consumed per year for maintenance of a unit of active pipe 
dry matter (llyear) 

I scaling variable for annual dry matter production per unit of foliage dry matter 

Pipe and 
(unitless) 

LAMBDA (A) proportion of new active pipe dry matter allocated to wood expansion (unitless) 

P units of woody dry matter per unit woody volume (kg carbon 1m3 ) 
Basal Area RP units of dry matter consumed in the construction of a new unit of woody dry 

matter (unitless) 
Parameters THETA (B) proportion of the average active pipe length corresponding to the average length 

of the deactivating pipes (unitless) 

ALPHA (a) average units of substrate dry matter produced per year per unit of foliar dry 
matter (llyear) 

BZ units of dry matter consumed per year for maintenance of a unit of foliar dry 

Foliar 
matter (llyear) 

RZ units of dry matter consumed in the construction of a new unit of foliar dry 
matter (unitless) 

Parameters TZ average final leaf age (years) 

ZETA (s) units of foliar dry matter in midsummer per unit of active basal area (kg carbon 
1m2) 

Feeder BF units of dry matter consumed per year for maintenance of a unit of feeder root 
dry matter (l/year) 

Root F units of feeder root dry matter in midsummer per unit of active basal area (kg 
2 carbon 1m) 

Parameters RF units of dry matter consumed in the construction of a new unit of feeder root dry 
matter (unitless) 

TF average final feeder root age (years) 

C slope of the log-log relationship between number of trees versus tree of average 
2 basal area (number of treeslm ) 

Dead Tree PSI (If/) proportion of the total average basal area per tree corresponding to the average 
basal area of dead trees (unitless) 

and Branch VI rate of volume lost to shedding of inactive pipe branches as a proportion of the 
product of new active basal area and average active pipe length (unitless) 

V2 rate of disused pipe volume lost to mortality as a proportion of the product of 
Parameters inactive basal area lost to mortality and average active pipe length (unitless) 
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T bl 2 S· I f h b a e ImpJ e statistics 0 teo serve dd ata set. 
State Var.* BA (m 2 ) I PL (m) I TV (m 3 ) 

Sample Size 97 
Min. Age 15 

State Var. 13.58 7.28 82.94 
Max. Age 54 

State Var. 55.76 21.50 881.12 
Mean Age 34.2 

State Var. 42.87 14.39 520.52 
Covariance 90.54 

Matrix 28.73 12.92 
1814.75 711.42 41641.74 

*State Var. represents state variables. 
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T bl 3 T a e runcate d norma I eli 'b . stn utlOn 0 f h t d I e pIpe mo e use d f b 'ld' or U1 mg error b d u Lgets. 
*Distribution Bounds * *Independent ***Prior 

Entity Lower Upper Mean Standard Mean Standard 
Deviation Deviation 

BA (m2/ha) 30.0 57.4 43.64 3.38 43.64 4.70 

PL(m) 10.0 16.0 13.00 0.774 13.00 1.08 

TV (m3 ) 300.0 634.0 464.35 51.71 464.35 76.95 

AMAX (m2/ha) 20.0 32.252 28.48054 2.03 26.126 8.0 

BP (per year) 0.018 0.024 0.02098 0.00001 0.021 0.0063 
I 0.2 1.0 0.58422 0.0807 0.6 0.18 
A 0.55 0.95 0.75957 0.0712 0.75 0.23 

P (kg c/m3) 195 255 221.2586 12.59 225 66.0 

RP 0.12 0.24 0.17896 0.0237 0.18 0.054 
() 0.55 0.95 0.8826 0.0359 0.75 0.23 

a 5.0 8.2 6.49595 0.625 6.6 2.0 
BZ (per year) 0.35 0.60 0.47474 0.0510 0.48 0.15 

RZ 0.12 0.24 0.1804 0.0233 0.18 0.054 
TZ (year) 5.5 8.5 6.95784 0.615 7 2.1 

r; (kg c/m2 ) 150 264 204.4994 22.66 208 62.4 

BF (per year) 0.018 0.024 0.02095 0.00001 0.021 0.0063 

F (kg c/m2) 302.3 522.3 413.9908 45.09 412.3 150 

RF 0.12 0.24 0.18044 0.0236 0.18 0.054 
TF (year) 1.5 2.5 1.9931 0.200 2 0.6 

C 0.65 0.95 0.80643 0.0611 0.8 0.24 

If/ 0.3 0.9 0.59117 0.101 0.6 0.18 

VI 0.075 0.225 0.12545 0.0255 0.15 0.045 
V2 0.60 0.90 0.69522 0.0506 0.75 0.23 

*Both distributions share the same bounds. The state variables BA, PL, and TV are estimated 
using observations of Norway spruce from Denmark at the ages of 28 to 32 years. 
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**The mean vector is estimated by rejection Bayesian estimation with the prior in ***, standard 
deviation is 0.7416 times of the estimated standard deviation. 

***Prior for rejection Bayesian estimation. The standard deviation of all entities, except BA, PL, 
and TV, is computed based on a coefficient of variation of 30%. 
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Table 4. Error budget of the pipe model based on correlated distribution for Norway spruce in 
Denmark. Var[fCOpe;)le;], variance contribution of OJ' is represented by Var[fCOj ;)1,], 

Proportion is the proportion of the variability of the projected state variable at age 60 years due to 
th ft e en Hy. 

Projected BA PL TV 
State 

Variables 
Entity Var [f C Op·)I-] Proportion Var[f COp)I·] Proportion Var [f COP')I-] Proportion 

BA 21.468 41.89% 0.000 0.00% 0.0 O.OO~ 

PL 0.794 1.55% 0.803 10.66% 75.7 0.31~ 

TV 0.000 0.00% 0.000 0.00% 4752.9 19.22~ 

AMAX 0.722 1.41% 0.000 0.00% 1000.6 4.05~ 

BP 0.058 0.11% 0.060 0.79% 142.4 0.58~ 

I 1.313 2.56% 1.164 15.45% 3051.5 12.34~ 

/!, 1.125 2.19% 0.989 13.13% 256.7 1.04~ 

P 0.382 0.74% 0.508 6.75% 1274.6 5.15~ 

RP 0.044 0.09% 0.062 0.82% 155.6 0.63~ 

° 0.062 0.12% 0.377 5.01% 8.3 0.03~ 

a 1.185 2.31% 1.132 15.02% 2863.0 11.58~ 

BZ 0.214 0.42% 0.212 2.81% 519.2 2.1O~ 

RZ 0.002 0.00% 0.002 0.03% 3.1 0.01~ 

TZ 0.021 0.04% 0.023 0.31% 54.8 0.22~ 

( 0.959 1.87% 0.932 12.37% 2394.3 9.68~ 

BF 0.002 0.00% 0.002 0.03% 1.5 0.01~ 

F 0.771 1.50% 0.623 8.27% 1498.8 6.06~ 

RF 0.074 0.14% 0.058 0.76% 139.4 0.56~ 

TF 0.639 1.25% 0.587 7.79% 1499.0 6.06~ 

C 14.819 28.91% 0.000 0.00% 2907.6 11.76~ 

If/ 6.599 12.88% 0.000 0.00% 1333.3 5.39~ 

VI 0.000 0.00% 0.000 0.00% 340.0 1.38~ 

V2 0.000 0.00% 0.000 0.00% 454.0 1.84~ 

Total 51.251 100.00% 7.533 100.00% 24726.2 100.00~ 

Overall 47.368 2.063 13349.0 
CV* 11% 6% 14% 

*CV represents Coefficient of variation. 
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Table 5. Error budget of the pipe model based on independent distribution for Norway spruce in 

Denmark. Var[f(Bpe;)je;], variance contribution of Bj' is represented by Var[f(Bp·)j·]. 

State BA PL TV 
Variables 

Entity Var [f (Bp-)j·] Proportion Var[f(Bj ,)j.] Proportion Var[f (Bp·)j·] Proportion 

BA 11.560 19.37% 0.000 0.00% 0.0 0.00% 
PL 0.393 0.66% 0.386 l.1O% 34.4 0.04% 
TV 0.000 0.00% 0.000 0.00% 2674.8 3.34% 

AMAX 0.920 1.54% 0.000 0.00% 1723.8 2.15% 
BP 0.000 0.00% 0.000 0.00% 0.0 0.00% 
I 12.574 21.07% 14.538 4l.22% 33735.0 42.15% 

/L 4.414 7.39% 4.333 12.28% 1084.9 1.36% 
P 0.308 0.52% 0.582 l.65% 1328.6 1.66% 

RP 0.025 0.04% 0.055 0.16% 13l.3 0.16% 
8 0.175 0.29% 0.807 2.29% 16.5 0.02% 

a 5.842 9.79% 6.698 18.99% 15819.8 19.76% 
BZ 0.115 0.19% 0.122 0.35% 286.5 0.36% 
RZ 0.002 0.00% 0.000 0.00% l.2 0.00% 
TZ 0.012 0.02% 0.012 0.03% 26.4 0.03% , 4.628 7.75% 6.012 17.04% 13938.7 17.41 % 

BF 0.000 0.00% 0.000 0.00% 0.0 0.00% 
F l.281 2.15% 0.952 2.70% 2289.5 2.86% 

RF 0.037 0.06% 0.030 0.08% 68.1 0.09% 
TF 0.759 l.27% 0.745 2.11% 1780.5 2.22% 
C 1l.332 18.99% 0.000 0.00% 277l.8 3.46% 
If/ 5.308 8.89% 0.000 0.00% 1249.2 l.56% 

VI 0.000 0.00% 0.000 0.00% 452.7 0.57% 
V2 0.000 0.00% 0.000 0.00% 627.4 0.78% 

Total 59.685 100.00% 35.273 100.00% 80040.9 100.00% 
Overall 55.745 34.925 78496.9 

CV* 12% 26% 33% 

*CV represents Coefficient of variation. 
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Figure 1. Diagram of the uncertainty analysis. N is the sample size, q is the total number of 
model components, P(X) is the prior distribution of model components, equation f[G(W),Y] is 
the envelope function in rejection sampling, computation of variance contribution refers to 

Appendix, Xi= Xi ' and Xi - = X~ = (Xi.l ,···, Xi,j_l' W j' Xi,j+l"", Xi,q)'. 
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