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A SIMULATION STUDY TO EVALUATE PROC MIXED ANALYSIS 
OF REPEATED MEASURES DATA 

by LeAnna Guerin and Walter W. Stroup 
Department of Biometry, University of Nebraska, Lincoln, NE 68583-0712 

1. Abstract 

Experiments with repeated measurements are common in pharmaceutical trials, agricultural 
research, and other biological disciplines. Many aspects of the analysis of such experiments 
remain controversial. With increasingly sophisticated software becoming available, e.g. PROC 
MIXED, data analysts have more options from which to choose, and hence more questions about 
the value and impact of these options. These dilemmas include the following. MIXED offers a 
number of different correlated error models and several criteria for choosing among competing 
models. How do the model selection criteria behave? How is inference affected if the correlated 
error model is misspecified? Some texts use random between subject error effects in the model in 
addition to correlated errors. Others use only the correlated error structure. How does this affect 
inference? MIXED has several ways to determine degrees of freedom, including a new option to 
use Kenward and Roger's procedure. The Kenward-Roger procedure also corrects test statistics 
and standard errors for bias. How do the various degree-of-freedom options compare? When is 
the bias serious enough to worry about and how well does the Kenward-Roger option work? 
Some models are prone to convergence problems. When are these most likely to occur and how 
should they be addressed? We present the results of several simulation studies conducted to help 
understand the impact of various decisions on the small sample behavior of typical situations that 
arise in animal health and agricultural settings. 

2. Introduction 

Repeated measures experiments are used in a wide variety of applications, including animal 
health and most agricultural disciplines. Data analysts use several methods to analyze repeated 
measures data, also known as longitudinal data. Before the advent ofPROC MIXED, two of the 
most common methods used were univariate analysis of variance (ANOVA) and multivariate 
analysis of variance (MANOV A). Univariate ANOV A is often called "split-plot in time" analysis 
because of its similarity to the analysis of split-plot experiments. Split-plot-in-time ANOVA 
assumes independent errors, an unrealistic assumption in most longitudinal data. Pre-PROC 
MIXED statistical computing packages for ANOV A, e.g. SAS PROC GLM, have limited 
corrections, such as adjustments to p-values, but lack systematic facilities to handle correlated 
errors. MANOV A allows for correlated errors among repeated measures, but is beyond the 
statistical training level of most biological researchers. More importantly, MANOVA's assumed 
correlated error structure leads to inefficient estimates and low power, and its ability to handle 
missing data is limited and draconian. Beginning the 1990's, comprehensive mixed model 
software, notably SAS PROC MIXED, became available. PROC MIXED allows one to use a 
comprehensive array of correlated error models. For this reason, it has become a standard tool for 
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analyzing longitudinal data. 
However, PROC MIXED's versatility comes at a price. To use PROC MIXED effectively, 

one must 
~ select an appropriate correlated error model. 
~ select an appropriate method to approximate denominator degrees for freedom for 

hypothesis testing and interval estimation. 
~ depending on the correlated error structure, adjust standard errors and test-statistics to 

account for the fact that MIXED defaults are biased. 
Recently, SAS released Version 8, which makes more options available than in past versions of 
PROC MIXED. For choosing an appropriate correlated error model, there are four model 
selection criteria available in Version 8. Keselman et al. (1998) compared the two criteria 
available in the previous version (release 6.12), the Akaike Information Criterion (AIC) and the 
Schwarz Bayesian Information Criterion (BIC). In their simulation study, they found that 1) 
neither the AIC nor BIC consistently chose the right model, 2) the AlC had a somewhat higher 
percentage of correct choices, but also noted that the BIC was incorrectly computed. Version 8 
corrects the BIC. Also, Keselman et. al. noted that many of the correlated error models they used 
were similar and they did not distinguish between AIC or BIC choosing a model that was wrong 
but close versus a model that was wrong and not close. They speculated that choosing an 
incorrect correlated error model that is similar in structure to the "true" model would not 
seriously affect inference, but did not investigate this issue. 

The standard approach to computing test statistics and standard errors in mixed model 
analysis is to substitute estimated variance and covariance components into the theoretical form 
of the information matrix (see section 3 below for a more complete explanation). Kacker and 
Harville (1984) found that this approach produces downward bias in standard errors and upward 
bias in test statistics, except in the case of balanced data in conjunction with i.i.d. random effects. 
Kenward and Roger (1997) obtained a bias correction based on a Taylor Series approximation. 
The Kenward-Roger correction is available in Version 8. Kenward and Roger also obtained an 
approximation for denominator degrees of freedom that is more general than the Satterthwaite 
approximation available in older versions of MIXED. Both degree-of-freedom approximations 
are available in Version 8, as well as the default "containment" method. 

The purpose of this paper is to extend the work begun by Keselman, et. al. to address a 
number of questions about the small sample behavior of mixed model analysis of repeated 
measures data. A simulation study was conducted to answer the following specific questions: 
1. How do the four model selection criteria computed by Version 8 of SAS PROC MIXED 

compare in terms of their ability to "choose the right" correlated error model? 
2. How do Version 8 options to approximate degrees of freedom -- default, Satterthwaite, and 

Kenward-Roger -- compare in terms of their ability to control Type I error? 
3. The Kenward-Roger option also adjusts standard errors and test-statistics. How does this 

procedure perform? 
4. How robust is mixed model analysis to misspecification of the correlated error model? 

This paper is organized as follows. Section 3 reviews repeated measures designs and 
pertinent theory and methods for their analysis using mixed models. Section 4 describes how the 
simulation study was designed and conducted. Section 5 discusses the simulation study results. 
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Section 6 summarizes the main conclusions and topics for future work. 

3. Background: Repeated Measures Design and Analysis using Mixed Models 

Repeated measures designs have the following general structure, illustrated in Figure 1: 
~ There are 2 or more treatments. Let I (~2) denote the number of treatments. 
~ Experimental units (subjects) are randomly assigned to each treatment. The number of 

subjects per treatment, denoted.1;, i=l, 2, ... , I, need not be equal. Subjects may be assigned 
to treatments using any reasonable design - completely randomized, complete or incomplete 
block, row-column, etc. For simplicity, the simulation study in this paper uses a completely 
randomized design. 

~ Each subject is observed at each of K times. The times need not be equally spaced, but are 
typically regularly spaced. Often, their timing reflects the biology of the subjects under 
study, e.g. growth stage. 
The following graph suggests the typical focus of repeated measures experiments. In this 

example, 2 treatments,"test" and "placebo" are compared. 

y 

Test 

Placebo 

Time 

Of interest are: 
~ Treatment x time interaction 

Are changes over time the same (parallel on the graph) for all treatments? 
~ Time effects 

Assuming negligible treatment x time interaction, how does the mean response change over 
time? Assuming non-negligible treatment x time interaction, how does response change over 
time for each treatment? 

~ Treatment effects 
How do the mean responses to treatments differ? Again, this may be averaged over all times 
(treatment main effects) assuming negligible treatment x time interaction, or specific to each 
time (simple effects of treatment given time), otherwise. 
Assuming experimental units are assigned to treatments using a completely randomized 

design, the model equation is: 
_ +a s 1: Y e 

Yijk - ~ i + ij + k + ik + ijk' 
(3.1) 

where Yijk denotes the observation for the jth subject, or experimental unit, on the ith treatment at 
the kth time, ~, ai' 1:k, and Yik are the intercept, treatment main effect, time main effect, and 
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treatment x time interaction, respectively, Sij is the ijth subject effect, assumed i.i.d. N(O,os2), and 
eijk is within subjects error, i.e. random variation among repeated measurements on each subject. 
Within subjects errors are potentially correlated. That is, the vector e;j' defined as e;/= (eij] , eij2' 
... , eijK) is assumed to be distributed MVN(O, ~), where ~ is the covariance matrix among the eijk 
within the ifh subject. The ve'ctors eij are assumed to be mutually independent. Also, eij and Sij are 
assumed to be independent. If a more complex design is used to assign subjects to treatments, it 
is reflected in the model, e.g. by adding a block effect if a randomized block design is used. 

Alternatively, one can express (3.1) by replacing the intercept, time, and treatment effects 
with a treatment-time cell mean, Ilik = Il + (Xi + 1:k + Yik' Thus, the observations, Yij' = (Yij], Yij2, ... 
YijK) ~ MVN(""i , JOS2 + ~), where ,..,;' is the vector of means at the K times for the ith treatment, 
i.e. ""i' = ( Ili], lli2' ... , lliK)' Among the more common covariance models for correlated errors 
are: 

~ Independent Errors, ~ = 102. 

~ Compound Symmetry (CS), 

1 P p P 

p 

p P 1 

where p= correlation between observations on the ifh subject. Note that the compound symmetry 
model can be reexpressed as ~. = J Os 2 + 102, and hence the correlation among repeated 

0 2 
measurements is the same as the interclass correlation S in the independent errors 

0 2 + 0 2 
S 

model. Thus, OS2 in the independent errors model and p in the compound symmetry model are 
confounded; the two are actually equivalent expressions of the same model. 

~ First-order Autoregressive [AR(l)] 

1 P p2 pk-l 

P 1 P p2 k-2 

~ 0 2 P 

pk-l 

P 

1 

AR(l) assumes correlation between errors (eijk) w time periods apart is pW. 
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~ Toeplitz (TOEP) 

1 PI P2 Pk-I 

PI 1 PI P2 Pk- 2 
~ a2 

Pk-I PI 1 

~ First-order Antedependence [ANTE(l)] 

a 2 
2 

~ Unstructured (UN) 
~ = [a ij ], where aii = at Note that the unstructured covariance model is conceptually 
similar to the correlation structure assumed when one uses MANOY A to analyze 
longitudinal data, the distinction being that in MANOY A, the covariance matrix among the 
observations, Yijk, is unstructured, whereas with ~=[ aij] the covariance among the errors is 
unstructured. 

Note that ANTE(l) and UN allow for heterogeneous variances at each time of observation. 
There are modifications of CS, AR(1), and TOEP that also allow for heterogeneity at each time. 
Equally spaced times of observation are implicitly assumed for AR( 1) and TOEP, whereas CS, 
ANTE(l), and UN allow for unequal spacing. 

The repeated measures model (3.1) is a special case of the mixed model 
y =Xp +ZU + e 

where ~l- MVN [[ : 1 ' [ ~ ~]J . Hence, y - MVN(X~, V), where V~ZGZ'+R 
X describes the treatment-time design, p is the vector of fixed treatment-time effects, Z describes 
the between-subjects design, u is the vector of random subject effects and e is the vector of 
random errors. Consistent with (3.1), G=Ias2 and R is block diagonal, with each block equal to 
~, the within subject covariance matrix described above. 

PROC MIXED obtains estimates of p and U by solving the mixed model equations: 

XIR -Iy 1 ' 
ZIR -Iy 
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where band u denote the solutions for P and U, respectively. Note that the solution for P is equal 
to the generalized least squares (GLS) solution, b = (XV-1X)-X'V-1y. 

Inference for the mixed model is based on predictable functions, i.e. functions of the form 
K'P + M'U, where K'P is an estimable function. In this paper we focus exclusively on inference 
on estimable functions, i.e. cases where M=O. For known G and R, inference proceeds as 
follows: 

~ Confidence Interval: use the formula K1b ± Za VKI(XIV-IX) K ,where Zais the 

standard normal table value for the 1-(X level of confidence. 
~ Test Ho: K'P = 0: use the Wald statistic, (K'b)' [K(XV-1X)-Kl1 (K'b), which is 

approximately ~ X2rank(K)' 
For unknown G and R, PROC MIXED substitutes restricted maximum likelihood 

(REML) estimates of the variance and covariance components, e.g. REML estimates of OS2 and 
the components of:1: in repeated measures models, directly into the mixed model equations and 
the formula for prediction error variance. Inference proceeds as follows. 

~ Confidence Interval: use K1b ± t(a, v) VKI(XIV-IX) K ,where v = d.f. to estimate 

K'(X'V-1X)- K. Note that v may be "obvious" by inspection or require approximation. 
~ Test Ho : K'P = 0: use the Wald statistic divided by its degrees of freedom, 

(K1b)1 [KI(XIV-IX) -K]-I (K1b) " . 
, WhICh IS approxImately ~ F[rank(K), v] . 

rank(K) 

Kacker and Harville (1984) showed that, except for balanced, variance component~ only 
models, these procedures are biased. Specifically, standard errors obtained from K'(X'VIX)- K 
underestimate the true standard errors based on known K'(X'V-1X)- K. Therefore, except for 
balanced, independent errors (and hence compound symmetry) models, PROC MIXED computes 
standard errors that are biased downward and test statistics that are biased upward for repeated 
measures experiments. The bias can be exacerbated by misspecifying :1:. 

Kenward and Roger (1997) obtained a bias correction for standard errors and test statistics 
that is implemented in SAS Version 8. Also, Version 8 computes two approximations for the 
denominator degrees of freedom, v, in addition to the default containment method: the 
Satterthwaite procedure and the more general procedure of Kenward and Roger. A major focus of 
the simulation study was to assess the severity of the bias caused by using estimated variance 
components for various :1: and for various misspecifications of:1:, and the Kenward-Roger 
procedure's effectiveness in correcting bias. 

Because results can be affected by choice of covariance model, :1:, an important aspect of 
mixed model analysis of repeated measures data involves choosing a suitable :1:. Selection is 
based on evaluating the restricted likelihood. One can either compare covariance structures that 
constitute nested subsets using likelihood ratio tests (see Littell, et. al. (1996) for details) or 
compare model fitting criteria. Model fitting criteria are obtained by applying a penalty function 
to the restricted likelihood to account for differences in the number of parameters for competing 
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~. Version 8 computes four information criteria: 
1. AIC: Akaike (1974) information criterion 
2. BIC: Schwarz (1978) Bayesian information criterion (BIC): 
3. CAlC: Bozdogan (1987) "corrected" Akaike information criterion 
4. HQIC: Hannan and Quinn (1979) information criterion 
SAS on-line documentation for Version 8 (1999) gives computational details for these 
information criteria. As noted earlier, Keselman et. a1. (1998) compared AIC and BIC 
performance in SAS Release 6.12, but in Version 8, two new criteria have been added and the 
computation ofBIC has been corrected. An objective of this study was to re-evaluate model 
selection criteria performance in view of the changes now available. 

A final issue concerns the estimation of the variance-covariance components of G and R. 
As noted above, the repeated measures, the general form ofV(y) = ZGZ' + R is block diagonal 
(Jo/ + ~). For some structures of~, notably CS and UN, the components of~ contain the 
between subj ect variance 0 t In these cases, model (3.1) reduces to 

_ + ex 1: y e (3.2) 
Yijk - )..L i + k + ik + ijk' 

where the eijk are correlated normal random variables as described above. In other covariance 
structures, including all those described above except CS and UN, the components of ~ are at 
least in theory identifiable from Os 2 so that the covariance components of ~ and the between 
subjects variance component 0/ can be estimated separately. That is, in PROC MIXED terms, 
separate REPEATED statement and RANDOM statement for subjects can coexist in the same 
MIXED program. In practice, identifiability problems often prevent the REML algorithm from 
converging when this is done. Some covariance models are more prone to this than others. A 
typical strategy for dealing with this is to drop Sij from model (3.1) and use (3.2) instead. 
However, this strategy risks undesirable impact on the estimate ofK'(X'V-1X)- K and hence on 
statistical inference. This study examined cases where non-convergence was a problem. In most 
cases, non-convergence was a result of MIXED defaults and could be circumvented. We were 
thus able to assess the impact of dropping Sij from the model when it is, in theory, not necessary 
to do so. 

4. Materials and Methods: The Simulation Study 

A simulation study ofPROC MIXED's mixed model analysis of repeated measures data 
was conducted to address the questions listed above at the end of Section 2. The study used a 
simulated experiment consisting of2 treatments, 6 subjects per treatment, and all subjects 
observed at each of 6 time periods. The treatments were arranged in a completely randomized 
design (CRD) with repeated measures, depicted in Figure 1. For each ofthe 72 observations, 
correlated multivariate normal data were generated according to model (3.1). The data were 
generated using 13 scenarios involving three covariance structures with various covariance 
parameter values as follows: 
a. First-Order Autoregressive [AR(l)]. Without loss of generality, the error variance was set 

to 0 2=1. There were six scenarios, representing a factorial combination of two 
autocorrelations (p=0.25 and p=0.75) and three subject variances (0/=0.25, 1.00 and 4.00). 
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b. Heterogeneous First-Order Autoregressive [ARH(l)). The variances of the observations 
at the 6 time periods were 0 2=(0]2, 022, 0/, 0/, 0/,0 62)=(1.50, 1.25, 1.00,0.50,0.25,0.10). 
Again, there were six scenarios representing a factorial combination of two autocorrelations 
(p=0.25 and p=0.75) and three subject variances (05

2=0.025,1.0 and 6.0). The 0/ were 
selected by taking 0.25 x the minimum 0/, 1.0, and 4 x the maximum 0/ 

c. First-Order Antedependence [ANTE(l)). The variances at the six time periods were the 
same as for the ARH(l), i.e. 0 2=(1.50, 1.25, 1.00, 0.50, 0.25, 0.10). The correlations were 
p=(p], P2' P3' P4' Ps)=(0.80, 0.60, 0.60, 0.40,0.40). The subject variance, 05

2, was set to zero. 
Figure 2 gives a summary of the 13 scenarios. A total of 500 simulated data sets were generated 
for each scenario. 

SAS (Version 8) PROC IML code was written to generate the data. The covariance 
matrix ~, was defined according to the above scenarios. A 72x 1 vector of standard normal 
random deviates were generated using SAS's RANNOR function. Denote the vector eij'=(ejj ], ejj2, 
ejj3, eij4' ejjS' ejj6)~MVN(0,1), and e'=(e'll' e']2' ... , e'26)' A 12xl vector of subject effects s, was 
generated as s=osw, where the elements ofw were generated using the RANNOR function. Then, 
the vector of observations was calculated as y=s+ ~ l12e, where ~ 1/2 is the Cholevsky 
decomposition of~. 

Each simulated data set was analyzed with each of eight different covariance structures, 
CS, CSH, AR(l), ARH(l), TOEP, TOEPH, ANTE(l) and UN, using PROC MIXED. Three 
denominator degree of freedom calculations, containment (SAS default), Satterthwaite's 
approximation and the Kenward & Roger adjustment, were calculated for each ofthe eight 
covariance structure analyses. Thus, there were 24 analyses per data set. 

Analyses using PROC MIXED were compared using the following criteria: 
1. Type I error rates of overall F-tests for Ho: no Trt main effect, Ho: no Time main effect, 

and Ho: no Trt x Time. 
2. Tests of simple effects, Time 1 vs. Time k for k=(2,4,6) on Treatment 1, and Treatment 1 

vs. Treatment 2 for time k=(l,3,4,6). 
3. Standard errors for each of the simple effects. (not discussed here - to appear in a future 

paper) 
4. Estimates of the covariance parameters. (also not discussed here) 
5. Information Criteria: AIC, BIC, HQIC and CAlC. 

Of particular interest is the observed Type I error rates using each of the denominator 
degree of freedom calculations, and how often each of the four information criteria choose the 
"true" covariance structure. 

5. Simulation Results and Discussion 

The discussion of the results is divided into three subsections. Subsection 5a addresses 
convergence for the ARH(l) model; 5b compares the performance of the model selection criteria; 
5c discusses the Type I error rates for the various analyses. For purposes of this paper, not all 13 
scenarios will be discussed. We have chosen representative scenarios that best illustrate our main 
findings for discussion here. 
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Sa. Convergence 

As noted in section 3, in theory the parameters ofVar(e)=~ and 0/ are identifiable for 
covariance structures other than CS and UN. The repeated measures analyses for simultaneous 
estimation of ~ and OS2 in this study can be implemented by the following example SAS code: 

proc mixed; 
class trt subj time; 
model y=trt time trt*time/ddfm=kr; 

/* or satterthwaite ddfm, containment ddfm, etc. as desired */ 
random subj(trt); 
repeated time/type=ARH(1) subject=subj(trt); 

(5a.I) 

For covariance types ANTE(1), ARH(1), and TOEPH, we encountered convergence problems 
when using this approach. For these types, computational identifiability can sometimes be a 
problem, despite the existence of theoretical identifiability. We focused on the ARH(1) model, 
although the approaches shown here can be adapted for use with the other types. Figure 3 shows 
a typical example. Note that convergence has failed because of an "infinite likelihood" and one 
or more estimates of 0/ are effectively zero. 

This problem can be avoided one of two ways. First, one can drop 0/ from the model, i.e. 
drop the "random subj(trt)" from the PROC MIXED statements. This has been a typical approach 
for PROC MIXED users, as it results in IOO% convergence. How~ver, results in Section 5c 
suggest that one should avoid dropping 0/ except as a last resort. Alternatively, one can use a 
lower bound to prevent estimates of the Ok 2 from approaching zero too closely. We thank Russ 
Wolfinger (SAS Institute, Inc.) for this suggestion. Add the following SAS statement to the 
above code: 

parms 0 1 1 1 1 1 1 O/lowerb=1e-4, 1e-4, 1e-4, 1e-4, 1e-4, 1e-4; (5a.2) 

Note that the starting values shown here are comparable to the OLS parms suggested by SAS 
documentation as a possible way to avoid non-convergence. Figure 4 shows the output for this 
method. Note here that convergence was met, but the test statistics, standard errors and degrees 
of freedom are nonsensicaL The problem here is that the estimates of 0/ are still too close to the 
lower bound, resulting in certain matrices used by the Kenward-Roger adjustment being ill
conditioned. Moving the lower bound further from zero avoids this problem. For example, Figure 
5 shows output when using a lower bound of le-3. The test statistics, standard errors and degrees 
of freedom are much more reasonable. In practice, data analysts would find the optimal lower 
bound -- i.e. the closest to zero that avoids ill-conditioning problems like those in Figure 4 -
through trial and error. However, for this simulation study, in the interest of time we used a lower 
bound of I e-3 throughout. Also to save time, the P ARMs starting values were set to the actual 
variance components used in generating the data. Note, however, that parameter estimates, test 
statistics, standard errors etc. were robust to starting values; convergence mainly depended on the 
lower bound, and not on starting values. Several data sets were examined more closely: 
alternative starting values resulted in at most a few more iterations, but never in failure to 
converge as long as the lower bound was used. Final REML estimates were unaffected by 
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starting values. 
Table 1 shows percent convergence rates for ARH(1) analyses. The first three columns 

depict the 13 scenarios which were generated. The fourth column shows the percent convergence 
rates for the PROC MIXED default estimation procedure when including the 'random subj(trt)' 
(example code 5a.l). The default uses MIVQUE(O) starting values. The fifth column gives 
percent convergence rates when the Parms/OLS starting values are used instead of the default. 
The last column gives percent convergence rates when including the "random subj(trt)" and the 
statement "parms/lowerb=le-3, ..... ,le-3;" where the parms starting values were set to the values 
originally generated. The default and OLS starting values do not attain near 100% convergence, 
even as the subject variation decreases. However, when the parms/lowerb statement is added 
with a reasonable lower bound, all 13 ARH(l) analyses yielded lOO% convergence. 

5b. Model Selection Criteria 

Each of the four model selection criteria calculated in SAS (AIC, BIC, HQIC, and CAlC) 
were analyzed for all data sets generated to determine which of the eight covariance structure 
analyses the criteria chose most often. Table 2 gives the percent of data sets chosen by each 
criteria for the AR(1) generated data sets. In the interest of space, only the Os 2=0.25 and os2=4 
scenarios are given. Note that in this table the "random subj(trt)" and "parms/lowerb=le-
3, .... ,le-3" statements were used for each of the ARH(l) analyses. When the autocorrelation 
coefficient is p=0.25, the four criteria tend to choose CS most often (33.6% to 67.0% of data sets 
chosen), and AR(1), the true model, second most often. When p=0.75 the criteria choose AR(l), 
the true model, most often (55.8% to 91.8% of data sets chosen). For this scenario, the AIC and 
HQIC choose ARH(1) second most often while the BIC chooses TOEP second most often. The 
CAlC is noticeably more conservative throughout, with its stronger penalty. The CAlC chooses 
CS second most often when p=0.75. 

Table 3 gives the percent of data sets for which correlation models were chosen when the 
data were generated as ARH(1). Again, in the interest of space, only the scenarios Os 2=0.25 and 
os2=4 are given. In this comparison, the "random subj(trt)" was dropped from the PROC MIXED 
statements for the ARH(1) analyses. When the generated subject variance to error variance ratio 
is four (i.e. 0/10/=4), the criteria behave sporadically. The AIC and HQIC choose UN most 
often and CS second, whereas the BIC and CAlC choose CS most often and AR(l) second. 
When 0/IOk2=0.25, ARH(l) is chosen most often for all four criteria. For true ARH(l) data, one 
should at least choose a model allowing for heterogeneous variances (i.e. CSH, ARH(l), 
TOEPH, ANTE(l), or UN). When the ARH(l) analyses fail to account for 0/ and 0/ is 
relatively large, the criteria do not consistently choose the same model (or even close to the same 
model). Problems develop when models which do not account for heterogeneous variances are 
chosen to analyze true ARH(l) data. These problems are discussed in Section 5c. 

Table 4 gives the percent of data sets for the various correlation models chosen for the 
same four ARH(1) scenarios. However, now the ARH(l) analyses include the "random subj(trt)" 
and "parms/lowerb=le-3, ... ,le-3" statements. When os2/0/=4, all four criteria consistently 
choose ARH(l), the true model, most often. One exception is the CAlC, once again it tends to 
choose a simpler model; in this case when p=0.75 and 0/IOk2=4 it chooses the AR(1) most. Table 
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4 shows the importance of retaining 0/ in the model for ARR( 1) analyses when the errors are 
truly ARR(1), especially when 0/10/ is large. 

Table 5 shows the percent of ANTE(1) data sets for which a given correlation model was 
chosen by the information criteria. The first table shows the ARR(I) analyses without the 
"random subj(trt)". The second table shows the ARR(I) analyses with the adequate 
parmsllowerb statements (5a.2). In both tables, the ARR(I) is chosen most often and ANTE(I) 
second most often, with the exception again of the CAlC, which chose the AR(1) second most 
often. We would not expect much change among the criteria when comparing the two ways to 
model the ARR(I) since no subject variance was generated for the ANTE(I) data. 

Sc. Type I Error Rates 

Table 6 gives the empirical rejection rates, hereafter denoted Ct e, of the F-tests ofHo: no 
Time x Trt interaction at nominal Ct=0.05, for four AR(I) scenarios. Each of the AR(I) scenarios 
were analyzed with eight different covariance structures in conjunction with the three 
denominator degree of freedom calculations listed in Section 3. Note that the ARR(I) analyses 
were modeled two different ways. The first ARR(1) analysis was modeled omitting 0/ (i.e. the 
"random subj(trt)" statement in PROC MIXED). The second was modeled including "random 
subj(trt)" and the "parms/lowerb=le-3, ... ,le-3" statements. Since time only allowed us to run 
500 simulated data sets for each scenario, empirical rejection rates within the 0.03 to 0.07 range 
form a 95% confidence interval about 0.05,and are hence" acceptable" at the nominal 5% level. 
Unless otherwise noted in the tables, 100% convergence for a given scenario and analysis was 
obtained. 

When the correlation among errors is large (i.e. p=0.75), the CS analyses produce 
excessive empirical Type I errors: Cte=0.10 versus the nominal Ct=0.05. This is expected since the 
large autocorrelation is not modeled in the CS. As the covariance model of analysis becomes 
more complex, the Kenward-Roger adjustment becomes more important for controlling Type I 
errors. For example, when the fourth AR(1) scenario (i.e. p=0.75, os2 =4) is analyzed as UN, the 
SAS default ddfm and Satterthwaite ddfm both give empirical rejection rates of Cte= 0.22 at the 
nominal 5% level. The KR ddfm gives an empirical rejection rate of Cte=0.06. 

Table 7 gives time x trt empirical rejection rates at the nominal 5% level for four ARR(I) 
scenarios and the ANTE(1) scenario. This table underlines the importance of the KR adjustment. 
However, the KR adjustment is not a "cure all." For example, when the ARR(1) scenarios are 
modeled with CS, which does not model correlation or heterogeneous variances, the empirical 
Type I errors for the KR are still excessive (Cte = 0.07 to Cte = 0.10), and are in fact act similar to 
those observed for the default and Satterthwaite ddfm. 

Empirical rejection rates for time comparisons on treatment 1 for two AR(1) scenarios 
(p=0.25, 0/=0.25 and p=0.75, 0/=0.25) are given in Table 8. The tests are, Ho: no Time 1 vs. 
Time k (k=2,4,6) effect on trt. 1 at Ct=0.05. Again, the AR(I) scenarios were analyzed the same 
covariance structure-ddfm combinations noted previously. The Type I errors throughout Table 8 
are fairly stable, with a few cases where the KR adjustment controls Type I error better than the 
other two calculations. The exception is the AR(1) scenario with p=0.75 and 0/10/ =0.25 when 
analyzed as CS and CSH: the Type I errors are excessive regardless of the ddfm method used. 
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Again, CS and CSH do not model the high autocorrelation of the data in this scenario .. 
Table 9 shows empirical rejection rates for treatment 1 vs. treatment 2 contrasts for a 

given time for the same AR(l) scenarios as in Table 8. The tests are, Ho: no trt 1 vs. trt2 effect at 
time k (k=I,3,4,6) at the nominal a=0.05. This table illustrates the fact that treatment simple 
effects within each time period are not affected by the KR adjustment. 

Time contrasts on treatment 1 empirical rejection rates for two ARH(I) scenarios 
(p=0.25, 0/10/=4 and p=0.75, 0/10/=4) are given in Table 10. Type I errors are severely out of 
control when the ARH(l) data are modeled by covariance structures which do not account for 
heterogeneous variance, i.e. CS, AR(l) and TOEP. The KR adjustment provides little if any 
"damage control" when analyzing the ARH(l) data as CS, CSH, AR(I), TOEP, TOEPH and 
ANTE(I). The KR adjustment also provides no damage control when analyzing the ARH(l) data 
as ARH(l) without subj(trt) in the model. However, the KR adjustment significantly improves 
Type I errors for the ARH(l) analyses with the "random subj(trt)" and "parms/lowerb=le-
3, ... ,le-3" statements. The observed Type I error rates for the UN analyses are quite good at the 
nominal 5% level fairly consistently throughout the entire simulation study. 

Table 11 gives empirical rejection rates for treatment comparisons across time for two 
ARH(I) scenarios (p=0.25, 0/10/=0.25 and p=0.75, os2/0k2=0.25). This table shows the 
importance of modeling ARH(I) data with a covariance structure that accounts for heterogeneous 
variances. All three ddfm calculations yield unreasonable Type I error rates for covariance model 
analyses which do not account for heterogeneous variances, i.e. CS, AR(l) and TOEP. Once 
again, the Type I errors for the UN analyses are fairly consistent at the nominal 5% level. 

An example of the variance component estimates for an ARH(I) scenario analyzed as 
ARH(l) with and without 0/ are given in Table 12. For the ARH(l) analysis without 0/, it can 
be seen that the estimates of the variances of the observations at each of the time periods as well 
as the estimate ofthe correlation are severely inflated. For example, in generating the data, the 
variance for the first time period was set equal to 0/=1.50. The ARH(I) analysis with the 
"random subj(trt)" and the "parms/lowerb=le-3, ... ,le-3" statements yields a mean estimate of 
0/=1.50, whereas the ARH(I) analysis dropping the "random subj(trt)" statement yields means 
estimates of 0 12=10.15. Similar results are obtained for the remaining estimates of the variance 
components. The critical importance of retaining 0/ in the model can clearly be seen here. 

Time comparisons on treatment 1 empirical rejection rates for the ANTE(I) scenario are 
given in Table 13, for the tests ofHo: No time 1 vs. time k (k=2,4,6) effect on trt 1 at nominal 
a=0.05. The Type I errors are out of control for all covariance models of analyses other than the 
ANTE(l) and UN, emphasizing the importance of modeling for the heterogeneous correlations 
and variances which were generated by the ANTE(l) scenario. Table 14 gives treatment 1 vs. 
treatment 2 comparisons across time. Results similar to those from Table 13 are obtained for 
these contrasts. 

6. Summary and Conclusions 

Four main questions about PROC MIXED's analysis of repeated measures data were 
posed in section 2. We return to these questions with a summary of the answers this simulation 
study provides. 
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1. How do the four model selection criteria computed by Version 8 of SAS PROC MIXED 
compare in terms of their ability to "choose the right" correlated error model? 
The four criteria vary in their ability to "choose the right" model. In general, the BIC and 

even more strongly, the CAlC, tend to choose simpler models, whereas AIC and, especially, 
HQIC tend to choose more complex models. In terms of type I error control, assuming the 
Kenward-Roger adjustment is used, it is better to err in the direction of a somewhat more 
complex model. More complex models tend to have inflated type I error rates only if one fails to 
use the KR adjustment, whereas excessively simple models have inflated type I error rates that 
ddfm adjustments cannot correct. However, because complex models reduce power, erring too 
far in the direction of complex models is also bad. In this sense, the AIC appears to be the most 
desirable compromise in practice. 

2. How do Version 8 options to approximate degrees of freedom -- default, Satterthwaite, 
and Kenward-Roger -- compare in terms of their ability to control Type I error? 
In all scenarios studied, the Kenward-Roger adjustment was either superior to, or at worst 

equal to, the Satterthwaite and default ddfm options. For the more complex covariance models, 
e.g. ARR(1), ANTE(1), and UN, type I error rate inflation was extremely severe unless the KR 
option was used. These results confirm those obtained by Kenward and Roger (1997) and extend 
them to a larger class of applications. Based on these results, we recommend using the Kenward
Roger option as standard operating procedure and recommend strongly against the use of either 
the default or Satterthwaite alternatives. Note that for balanced variance component-only moaels, 
the Satterthwaite procedure is a special case of Kenward-Roger and hence the two options 
produce identical results. 

3. The Kenward-Roger option also adjusts standard errors and test-statistics. How does this 
procedure perform? 
Consistent with our conclusions for (2), the Kenward-Roger adjustment is essential for 

the more complex covariance structures. In general, we found that the impact is greatest on the 
overall test for Trt x Time interaction and for the simple effects of Time at given treatment 
levels. For simpler covariance structures, e.g. AR(1), the observed bias was trivial, but using the 
KR adjustment certainly did no harm. 

4. How robust is mixed model analysis to misspecification of the correlated error model? 
There is a conventional wisdom or "oral tradition" among those who work with mixed 

models and repeated measures that most of the gain from modeling the covariance comes from 
"getting close." That is, if the data are AR(1), one pays dearly for failing to model autocorrelation 
(i.e. using CS) or for grossly over modeling it (i.e. UN) but similar models (e.g. TOEP) have 
trivial impact on the analysis. However, this "oral tradition" has never been systematically 
studied to our knowledge prior to this simulation study. In general, our results tend to support 
conventional wisdom. This study focused on type I error rates, so the effects of under modeling 
tend to be more obvious. Weare currently extending this work by studying the impact of model 
misspecification on power, where the undesirability of overmodelling should be more obvious. 

One aspect of model misspecification needs to be stressed. This concerns the question of 
modeling the between subject effects (Sij in model 3.1) separately from the covariance among 
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repeated measures. For many practitioners, it is common practice not to model Sij separately, but 
rather to absorb them into the correlated error structure. One practical reason for doing this is to 
avoid convergence problems such as those described in detail for the ARH(1) case. However, our 
results should make it clear that absorbing the variance by dropping the between subjects random 
effect is a form of model misspecification that can have a severe impact on accurate control of 
type I error. For this reason, except for obvious models such as CS, CSH, and UN, where the 
variance and covariance terms are mathematically confounded, we recommend that Sij be 
modeled separately - i.e. separate random and repeated statements as shown in SAS code (5a.1) -
if at all possible unless one can show that OS2 '" 0, independently of the components of~. 
Judicious use of lower and upper bound options in PROC MIXED makes this possible in all the 
cases we observed. 

This misspecification issue has implications for repeated measure analysis of generalized 
linear models, e.g. the GEE option in PROC GENMOD. This option compels one to absorb the 
between subjects random effects into the covariance structure, much like dropping the "random 
subj(trt);" statement in the ARH(1) analysis. We are currently investigating whether doing this 
has a similar affect on GEE type I error control as we observed in this study. 

Other topics for further investigation include the following. The first is a more careful 
examination of the type I error rate for each model selection criterion by tracing the observed 
rejection rates for the models actually selected for each simulated data set by each criterion. The 
second is documenting the observed standard errors with and without Kenward-Roger 
adjustments and comparing them to theory. Finally, we are following up our study of type I error 
control with a similar study addressing power. 

In summary, this study has clearly demonstrated PROC MIXED's ability to analyze 
repeated measures data, subject to a few caveats. First, use the Kenward-Roger option - always. 
Second, when in doubt, err toward the more complex model -- but not too far! Third, retain the 
separate random between subjects term - do not absorb it into the repeated statement (covariance 
structure) unless theory dictates (as in CS) or there is compelling evidence that OS2 '" O. 
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Figure 1. Repeated Measures Experiment: Generic Description 

2 treatments: P=placebo; T=treated 
6 subjects per treatment; 6 times of observation 

subject 1 2 3 4 5 6 7 8 9 10 11 12 

time II trt =* P P P P P P T T T T T T 

1 

2 

3 

4 

5 

6 
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Figure 2. Covariance Models and Parameter Values for Simulated Data Scenarios 

Scenario Covariance Model p Subject/Error Variance Ratio Error Variance 

~. - I AR~ ____ ··I :~:n~' I ,,' ~ 4 I 

3 I 0.25 1 

~~ -- i --~ ------- 0.75 I as2 / a2 = 1 

-.--~---+-. _.- .-,-----_. -~.--~--~--~ 
i 

5 I 0.25 

6 
-.-1--11 ----------- I--i 0--.~75 .--1 as2 / a2 = 0.25 

_7~_. ____ ~_i,L\RH(-1--) _. _______ +1
1 

_0_.2_5_.1' a s2 = 6 = 4X maximum a j
2 II 

8 I _~~5 __ T-1 ----~-------__i 
9 025 I ~/, (i=1.2,3,4,5,6) 

+----_____ ... J_..... . ... ~ a 2=1 - (1.50, 1.25, 1.00, 

10 I 0.75 ; S I 0.50,0.25,0.10) 
1---.--. -·----··-----·---r----~t---~-·········· .. --_.---.-.--..... -.--- ... -

11 I 0.25 ~ a s- = 0.025 
-~---I = 0.25X minimum a j

2 

12 0.75 I 
i 

13 
! . 

i pj (F1,2,3,4,5) 
I = (0.8,0.6,0.6,0.4,0.4) 

a s2 not 
applicable 

a j2, (i=1.2,3,4,5,6) 
I = (1.50, 1.25, 1.00, 
1 0.50,0.25,0.10) 
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Figure 3. Example SAS PROC MIXED Failure to Converge Using ARH(1) Covariance Model 

Default SAS Code: 

proc mixedj 
class trt subj timej 
model y=trt!time/ddfm=krj 
random subj (trt) i 

repeated /type=arh(l) subject=subj (trt) i 

Results: 

Iteration History 

Iteration Evaluations -2 Res Log Like 

o 306.04081621 

Criterion 

WARNING: Stopped because of infinite likelihood. 

Covariance Parameter Values 
At Last Iteration 

Cov Parm Subject Estimate 

SUBJ(TRT) 6.2934 
Var(1) SUBJ(TRT) 0.8036 

Var(2) SUBJ(TRT) 0.8024 
Var(3) SUBJ(TRT) 1.4419 

Var(4) SUBJ(TRT) 1.11E-12 
Var(5) SUBJ(TRT) 1.11E-12 
Var(6) SUBJ(TRT) 0.06172 
ARH(1) SUBJ(TRT) 0.4079 
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Figure 4. SAS - PROC MIXED ARR(l) Example with Inadequate Lower Bound 

SAS Code: 

proc mixed; 
class trt subj time; 
model y=trtltime/ddfm=kr; 
parms 0 1 1 1 1 1 1 0 / lowerb=O,le-4,le-4,le-4,le-4,le-4,le-4; 
random subj (trt) ; 
repeated /type=arh(l) subject=subj (trt) ; 

Results: 
Convergence criteria met. 

Covariance Parameter Estimates 

COy Parm Subject Estimate 

SUBJ (TRT) 5.7302 
Var(1) SUBJ(TRT) 1.4295 
Var(2) SUBJ(TRT) 1.0437 
Var(3) SUBJ(TRT) 0.6029 
Var(4) SUBJ(TRT) 0.000100 
Var(5) SUBJ(TRT) 0.08502 
Var(6) SUBJ (TRT) 0.1460 
ARH(1) SUBJ(TRT) 0.6852 

Type 3 Tests of Fixed Effects 

Num Den 
Effect OF OF F Value Pr > F 

TRT 10.8 Infty <.0001 
TIME 1 0 0.00 
TRT*TIME 5 17 0.51 0.7616 

Estimates 

Standard 
Label Estimate Error OF t Value Pr > It I 

time1 vs time2 @ trt1 0.03104 0 17 Infty <.0001 
time1 vs time3 @ trt1 0.03509 181.02 0 0.00 <.0001 
time1 vs time4 @ trt1 -0.1228 181.02 0 -0.00 <.0001 
time1 vs time5 @ trt1 -0.4234 0.004046 0 -104.66 1.0000 
time1 vs time6 @ trt1 -0.3892 0.01341 0 -29.02 1.0000 
trt1 vs trt2 @ time 1 1.6224 0 17 Infty <.0001 
trt1 vs trt2 @ time 2 1 .5138 0 17 Infty <.0001 
trt1 vs trt2 @ time 3 1.8407 0 17 Infty <.0001 
trt1 vs trt2 @ time 4 2.0658 0 17 Infty <.0001 
trt1 vs trt2 @ time 5 2.0931 0 17 Infty <.0001 
trt1 vs trt2 @ time 6 1.8802 0 17 Infty <.0001 
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Figure 5. SAS - PROC MIXED ARH(1) Example with Adequate Lower Bound 

SAS Code: 

proc mixed; 
class trt subj time; 
model y=trtltime/ddfm=kri 

189 

parms 0 1 1 1 1 1 1 0 / lowerb=0,le-3,le-3,le-3,le-3,le-3,le-3i 
random subj (trt) i 

repeated /type=arh(l) subject=subj (trt) i 

Results: 
Convergence criteria met. 

Covariance Parameter Estimates 

COy Parm Subject Estimate 

SUBJ (TRT) 5.6966 
Var( 1) SUBJ(TRT) 1 .4781 
Var(2) SUBJ(TRT) 1 .0817 
Var(3) SUBJ(TRT) 0.6315 
Var(4) SUBJ(TRT) 0.001000 
Var(5) SUBJ(TRT) 0.09292 
Var(6) SUBJ(TRT) 0.1537 
ARH(1) SUBJ(TRT) 0.6998 

Type 3 Tests of Fixed Effects 

Num Oen 
Effect OF OF F Value Pr > F 

TRT 10.9 1.70 0.2188 
TIME 5 16.9 3.05 0.0383 
TRT*TIME 5 16.9 0.48 0.7848 

Estimates 

Standard 
Label Estimate Error OF t Value Pr > It I 

time1 vs time2 @ trt1 0.03104 0.3639 16.7 0.09 0.9330 
time 1 vs time3 @ trt1 0.03509 0.4476 16.3 0.08 0.9385 
time1 vs time4 @ trt1 -0.1228 0.4924 10.3 -0.25 0.8080 
time1 vs time5 @ trt1 -0.4234 0.4873 11 .7 -0.87 0.4024 
time1 vs time6 @ trt1 -0.3892 0.5023 12.9 -0.77 0.4525 
trt1 vs trt2 @ time 1 1.6224 1.5465 14.9 1.05 0.3109 
trt1 vs trt2 @ time 2 1.5138 1 .5031 13.7 1 .01 0.3314 
trt1 vs trt2 @ time 3 1.8407 1.4524 12.2 1.27 0.2287 
trt1 vs trt2 @ time 4 2.0658 1 .3781 10 1.50 0.1647 
trt1 vs trt2 @ time 5 2.0931 1.3892 10.3 1. 51 0.1619 
trt1 vs trt2 @ time 6 1.8802 1.3965 10.5 1.35 0.2064 
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Table 1. Percent Convergence Rates for ARH(1) Model Analyses 

Generated 
Covariance Structure With subj(trt) 

P (J//(J2 Default SV* 

AR(l) 0.25 4 18 

AR(l) 0.75 4 12 

AR(l) 0.25 62 

AR(l) 0.75 34 

AR(l) 0.25 0.25 94 

AR(l) 0.75 0.25 56 

ARR(l) 0.25 4X max a/ 8 

ARR(1) 0.75 4Xmaxa/ 6 

ARR(1) 0.25 36 

ARR(l) 0.75 18 

ARR(l) 0.25 0.25 min a i2 71 

ARR(l) 0.75 0.25 min a i2 12 

ANTE(l) *** na 26 

* 
** 

SAS Default Starting Values (MIVQUE(O» 
Ordinary Least Squares estimates for starting values 
p =(0.80, 0.60, 0.60, 0.40, 0.40) *** 

With subj(trt) 
OLS** parrns/lowerb 

9 100 

53 100 

66 100 

91 100 

91 100 

87 100 

100 

100 

100 

100 

100 

100 

100 
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Table 2. Percent of Covariance Models Chosen by Four Model Fitting Criteria, AR(1) Data 

Criterion 

Covariance Structure p OS2 / 0 2 Model Analysis AIC HQIC BIC CAlC 

AR(I) 0.25 4 CS 39.6 34.4 49.6 67.0 

CSH 3.4 4.2 2.2 0.6 

AR(I) 28.6 24.6 33.8 29.2 

ARH(I) 11.4 14.4 5.8 2.0 

TOEP 7.8 9.2 5.2 1.0 

TOEPH 2.4 2.6 1.0 0.2 

ANTE(J) 0.6 0.8 0.2 0.0 

UN 6.2 9.8 2.2 0.0 

AR(J) 0.75 4 CS 1.4 1.0 1.6 4.8 

CSH 0.6 0.6 0.8 0.4 

AR(I) 63.8 55.8 79.2 90.0 

ARH(J) 13.8 16.0 7.0 2.0 

TOEP 9.6 11.2 7.2 2.6 

TOEPH 3.2 3.8 2.0 0.0 

ANTE(J) 2.0 2.6 0.8 0.0 

UN 5.6 9.0 1.4 0.2 

AR(I) 0.25 0.25 CS 40.4 33.6 48.8 62.4 

CSH 2.4 2.8 1.2 0.2 

AR(I) 31.4 28.8 37.2 34.6 

ARH(I) 6.6 8.6 4.4 1.6 

TOEP 8.6 10.6 5.2 1.0 

TOEPH 2.6 3.8 1.0 0.0 

ANTE(I) 1.8 2.8 0.6 0.2 

UN 6.2 9.0 1.6 0.0 

AR(I) 0.75 0.25 CS 1.0 0.8 1.8 4.0 

CSH 

0.2 0.2 0.0 0.0 AR(I) 66.0 57.2 82.2 91.8 

ARH(I) 11.6 13.2 6.2 1.6 

TOEP 10.8 12.4 6.8 2.4 

TOEPH 2.2 3.6 1.0 0.2 

ANTE(I) 2.8 4.2 1.0 0.0 

UN 5.4 8.4 1.0 0.0 
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Table 3. Percent of Covariance Models Chosen by Four Model Fitting Criteria, ARH(l) Data 

Criterion 

Covariance Structure p OSl/02 Model Analysis AIC HQIC BIC CAlC 

ARH(l) 0.25 4X max a;' CS 24.0 19.2 41.4 65.0 

CSH 6.2 5.0 5.6 2.4 

AR(I) 17.2 13.4 23.8 27.6 

ARH(I) * 2.6 2.4 3.8 2.4 

TOEP 2.2 2.0 1.8 0.2 

TOEPH 1.4 1.6 1.0 0.0 

ANTE(l) 13.0 11.0 10.0 1.6 

UN 33.4 45.4 12.6 0.8 

ARH(1) 0.75 4X max a;' CS 0.0 0.0 1.0 2.4 

CSH 0.4 0.2 0.4 0.2 

AR(1) 30.8 23.6 50.6 81.2 

ARH(I) * 9.0 6.6 8.2 5.2 

TOEP 4.6 4.4 3.0 1.6 

TOEPH 2.8 3.6 2.4 0.2 

ANTE(I) 35.0 37.2 27.8 8.4 

UN 17.4 24.4 6.6 0.8 

ARH(l) 0.25 0.25X min a;' CS 0.4 0.0 2.0 12.6 

CSH 24.0 21.0 26.2 24.8 

AR(l) 0.4 0.2 1.2 8.2 

ARH(l) • 42.4 38.2 53.0 51.6 

TOEP 0.0 0.0 0.0 0.0 

TOEPH 11.0 12.8 6.0 1.0 

ANTE(1) 11.2 11.6 7.6 1.4 

UN 10.6 16.2 4.0 0.4 

ARH(l) 0.75 0.25X min a;' CS 0.0 0.0 0.0 0.2 

CSH 

0.0 0.0 0.0 

3.2 

AR(1) 0.2 0.0 1.0 8.6 

ARH(I) * 73.8 64.8 84.2 85.2 

TOEP 0.0 0.0 0.0 0.0 

TOEPH 0.0 0.0 0.0 0.0 

ANTE(l) 12.0 14.2 6.8 2.4 

UN 10.8 18.2 4.2 0.4 

* ARH(l) without random subj(trt) effect 
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Table 4. Percent of Covariance Models Chosen by Four Model Fitting Criteria, ARH(1) Data 

Criterion 

Covariance Structure p OS2/0/ Model Analysis AIC HQIC BIC CAlC 

ARH(1) 0.25 4X max a/ CS 7.4 4.6 16.6 39.4 

CSH 2.0 1.8 2.6 1.2 

AR(l) 5.2 2.8 7.2 15.2 

ARH(l)t 67.6 65.6 65.4 43.0 

TOEP 0.2 0.4 0.8 0.2 

TOEPH 0.6 0.8 0.8 0.0 

ANTE(l) 2.2 2.0 1.6 0.6 

UN 14.8 22.0 5.0 0.4 

ARH(l) 0.75 4X max a.' CS 0.0 0.0 0.0 1.6 

CSH 0.2 0.2 0.2 0.2 

AR(l) 14.4 10.0 29.4 57.4 

ARH(l)t 57.6 55.6 54.0 35.8 

TOEP 2.4 1.8 1.0 1.4 

TOEPH 2.4 3.0 2.0 0.4 

ANTE(1) 13.2 14.6 8.4 2.6 

UN 9.8 14.8 5.0 0.6 

ARH(I) 0.25 0.25X min a.' CS 0.4 0.2 2.2 12.8 

CSH 26.4 22.8 31.0 33.0 

AR(l) 1.0 0.8 1.6 9.6 

ARH(llt 37.6 35.2 45.4 41.0 

TOEP 0.0 0.0 0.0 0.0 

TOEPH 12.6 13.8 7.8 1.2 

ANTE(l) 11.4 11.4 8.4 2.0 

UN 10.6 15.8 3.6 0.4 

ARH(l) 0.75 0.25X min ak' CS 0.0 0.0 0.0 0.0 

CSH 1.6 1.2 3.4 3.4 

AR(l) 0.4 0.2 1.4 12.0 

ARH(l)t 64.2 57.0 77.8 79.2 

TOEP 0.0 0.0 0.0 0.0 

TOEPH 1l.5 11.6 7.4 3.4 

ANTE(l) 12.0 13.8 7.4 2.0 

UN 10.4 16.2 2.6 0.0 

t ARH(1) with random subj(trt) effect, lowerb option 
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Table 5. Percent of Covariance Models Chosen by Four Model Fitting Criteria 

Covariance Criterion 

Structure of Data p OS2/0/ Model Analysis AIC HQIC BIC CAlC 

ANTE(I) na cs 0.2 0.2 0.6 2.2 

CSH 3.4 3.6 4.2 4.2 

AR(l) 2 0.6 8.8 27.8 

*ARH(l) 42.6 36.8 55 56.4 

TOEP 0.6 0.6 0.6 0.6 

TOEPH 0 0 0 0 

ANTE(l) 30.2 31.4 23.8 8.4 

UN 21 26.8 7 0.4 

ANTE(I) na CS 0.2 0.2 0.4 2.0 

CSH 2.8 2.6 4.0 5.0 

AR(l) 2.2 1.0 8.8 28.6 

*ARH(I) 42.0 37.0 55.4 54.6 

TOEP 0.6 0.6 0.6 0.6 

TOEPH 0.0 0.0 0.0 0.0 

ANTE(I) 31.4 32.2 24.4 8.8 

UN 20.8 26.4 6.4 0.4 

* P =(0.80, 0.60, 0.60, 0.40, 0.40) 
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Table 6. Empirical Rejection Rates for Test ofRo: No Time x Trt Effect at nominal ex = 0.05 

Method of Analysis 

Covariance Structure DDFM option 

CS 

CSH 

AR(l) 

ARH(I) 

ARH(l) 

TOEP 

TOEPH 

ANTE(l) 

Notes: 

all 

Oet'" 

SaU·· 

KR*** 

Oef 

SaU 

KR 

Without subj(trt) Oef 

SaU 

KR 

With subj(trt) Oef 

pannsllowerb Satt 

KR 

Oef 

SaU 

KR 
------ ... _------

Oef 

SaU 

KR 

Oef 

SaU 

KR 

UN Oef 

SaU 

KR 

model y=trt/time * 
** 
*** 

model y=trt/time/ddfm=satterthwaite 
model y=trt/time/ddfm=KR 

a 99.6% convergence 
b 98% convergence 

AR(l) Data Generated 

p 0.25 0.75 0.25 

0/ 102 0.25 0.25 4 

0.06 0.10 0.06 

0.11 0.10 0.07 

0.07 0.07 0.06 

0.05 0.06 0.04 

0.07 0.07 0.07 

0.05 0'.06 0.05 

0.05 0.03 0.04 

0.09 0.09 0.07 

0.07 0.07 0.06 

0.04 0.03 0.05 

0.15 0.14 0.18 

0.09 0.09 0.11 

0.06 0.04 0.10 

0.12 0.10 0.12 

0.08 0.08 0.08 

0.05 0.06 0.05 

0.16 a 0.15 b 0.14 

0.10 a O.IOb 0.09 

0.05 a 0.05 b 0.04 

0.14 0.14 0.14 

0.08 0.09 0.09 

0.04 0.03 0.04 

0.20 0.22 0.20 

0.20 0.22 0.20 

0.07 0.06 0.07 

195 

0.75 

4 

0.10 

0.09 

0.07 

0.05 

0.07 

0.05 

0.02 

0.07 

0.06 

0.03 

0.16 

0.11 

0.07 

0.11 

0.08 

0.05 

0.13 

0.09 

0.04 

0.12 

0.10 

0.03 

0.22 

0.22 

0.06 
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Table 7. Empirical Rejection Rates for Test ofHo: No Time x Trt Effect at nominal ex = 0.05 

Method of Analysis 

Covariance 
Structure DDFM 

cs Oef 

Salt 

KR 

CSH Oef 

Satt 

KR 

AR(l) Oef 

Salt 

KR 

ARH(l) Oef 

Without subj(trt) Salt 

KR 

ARH(l) Def 

With subj(trt Satt 

panns/lowerb KR 

TOEP Oef 

Sat! 

KR 

TOEPH Oef 

Sat! 

KR 

ANTE(l) Oef 

Sat! 

KR 

UN Oef 

Salt 

KR 

a 90% convergence 
b 65% convergence 
c 99% convergence 
d 70% convergence 

p 

a,' / a2 

, 

Covariance Model and Parameters for Data Generated 

ARH (I) ANTE(J) 

0.25 0.75 0.25 0.75 ** 

0.25 0.25 4 4 na 

0.07 0.10 0.07 0.10 0.09 

0.08 0.10 0.07 0.10 0.09 

0.08 0.10 0.07 0.10 0.09 

0.12 0.10 0.07 0.09 0.08 

0.07 0.07 0.06 0.08 0.07 

0.05 0.06 0.04 0.06 0.06 

0.09 0.08 0.09 c 0.08 c 0.07 

0.08 0.07 0.08 c 0.07 c 0.06 

0.07 0.06 0.06 c 0.03 c 0.05 

O.ll 0.10 0.08 0.08 0.09 

0.08 0.08 0.07 0.06 0.07 

0.05 0.06 0.04 0.04 0.06 
1---------

0.14 0.13 0.16 0.14 0.11 

0.09 0.10 0.10 0.10 0.08 

0.06 0 .. 07 0.09 0.06 0.06 

0.10 0.10 0.11 0.11 0.12 

0.08 0.07 0.08 0.07 0.09 

0.07 0.06 0.06 0.06 0.06 

0.16 a b 0.13 0.13 d 

0.10 a b 0.08 0.07 d 

0.04 a b 0.04 0.04 d 

0.16 0.16 0.14 0.13 0.16 

0.10 0.11 0.10 0.10 O.ll 

0.05 0.06 0.05 0.05 0.06 

0.21 0.22 0.21 0.22 0.24 

0.21 0.22 0.21 0.22 0.24 

0.06 0.06 0.06 0.06 0.07 
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Table 8. Empirical Rejection Rates For Test ofHo: No Time 1 x Time k (k=2,4,6) Effect Given Trt 1 
AR(1) Data, 0/102 = 0.25, at nominal ex = 0.05 

Method of Analysis p=O.25 p=O.75 

Covariance 
Structure DDFM Time 1 v 2 Time 1 v4 Time 1 v 6 Time 1 v 2 Time 1 v 4 Time 1 v 6 

CS All 0.03 0.06 0.06 0.02 0.10 0.16 

CSH Oef 0.04 0.07 0.08 0.02 0.09 0.15 

Salt 0.03 0.06 0.07 0.02 0.08 0.14 

KR 0.03 0.06 0.07 0.01 0.08 0.13 
-- _. 

AR(I) Oef 0.06 0.06 0.05 0.06 0.07 0.09 

Salt 0.05 0.06 0.05 0.06 0.06 0.07 

KR 0.05 0.06 0.04 0.04 0.05 0.05 

ARH(I) Oef 0.06 0.05 0.04 0.06 0.05 0.05 

Without subj(trt) Salt 0.04 0.05 0.04 0.05 0.05 0.05 

KR 0.05 0.04 0.04 0.05 0.05 0.04 

ARH(I) Oef 0.07 0.07 0.07 0.06 0.07 0.09 

With subj(trt) Satt 
, 

0.04 0.06 0.06 0.05 0.05 0.07 

parmsllowerb KR 0.04 0.06 0.06 0.07 0.05 0.06 
~----~~"------ ----- "-----. .----~--- -.-----~---.--.-~--

TOEP Oef 0.05 0.06 0.08 0.06 0.06 0.08 

Satt 0.05 0.05 0.05 0.06 0.06 0.05 

KR 0.05 0.05 0.05 0.06 0.06 0.05 

TOEPH Oef 0.05 0.07 0.07 0.05 0.06 0.09 

Salt 0.04 0.06 0.05 0.04 0.05 0.06 

KR 0.04 0.06 0.04 0.04 0.05 0.06 

ANTE(I) Oef 0.D7 0.05 0.04 0.09 0.05 0.05 

Salt 0.05 0.04 0.04 0.05 0.04 0.04 

KR 0.05 0.04 0.04 0.04 0.04 0.04 

UN Oef 

0.05 0.05 0.05 0.05 0.04 0.06 Salt 0.05 0.05 0.05 0.05 0.04 0.06 

KR 0.05 0.05 0.05 0.05 0.04 0.06 
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Table 9. Empirical Rejection Rates for Test ofRo: No Trt 1 vs Trt 2 Effect at Time k 
AR(l) Data, OS2/02 = 0.25, at nominal a: = 0.05 

Method of Analysis p=O.25 p=O.75 

Covariance 
Structure 

CS 

DDFM 

Def 

Satt 

KR 

Time! Time 3 

0.05 0.04 

0.05 0.04 

0_05 

0.04 

Time 4 Time 6 Time! Time 3 Time 4 Time 6 

0.06 0.05 0.05 0.06 0.06 0.06 

0.06 0.05 0.05 0.05 0.06 0.06 

OJ)6 0.05 0_05 0.05 0.06 0.06 
----+----------------------- -------.---

CSH Def 0.07 OJ)7 0.06 0.09 0.07 0.08 0.09 0.08 

Satt 0_05 0.05 0_05 0.05 0.04 0.06 0.06 0.06 

KR 0.05 0_05 0_05 0.05 0.04 0.06 0.06 0.06 

AR(J) Def 0.05 0_05 0.06 0.05 0.05 0.06 0.07 0.07 

Satt 0.05 0_04 0.06 0.05 0.05 0.05 0.06 0.06 

KR 0.05 0_04 0.06 0.05 0.05 0.05 0.06 0.06 

ARH(J) Def 0.07 0.07 0.06 0.08 0.07 0.07 0.08 0.08 

Without subj(trt) Sat! 0.05 

KR ,0.05 ----- -----._- -----+------

0.04 0051' 005 

005 005 

0 05 

------ ---- ------ -----

0.06 0.04 

0.05 

0.05 

005 0.06 0.07 

0.07 

ARH(J) Def I 007 0.06 0.06 0.08 0.07 0.06 0.07 0.08 

With subj(trt Sat! 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.07 

pamls/Jowerb KR -+' 0.05 0.04 
--------,---------- -------

TOEP Def 0.05 0.04 
I 

Satt 

KR 

0.05 

0.05 

0.04 

0.04 

____ o~~--~~---~~---

0.05 

___ 0_07 __ 

::: I ::: ::: ::: ::: 

1).05 

0.06 

0.06 

0.06 
------- ._--- ------ --+-----

TOEPH Def 0.07 0.07 0.06 0.08 0.07 0.08 0.07 0.08 

Sat! 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.06 

KR 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.06 
- ------------

ANTE(J) Def 0.07 0.07 0.06 0.09 0.07 0.08 0.08 0.09 

Sat! 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.07 

KR 0.05 
----- ----_ .. _ .. _-,,-------- --,--: ---

0.06 0.05 0.05 0.05 0.05 0.06 0.07 

U:--l Det" 

0.05 0.06 

0.05 0.05 0.05 0.05 0.06 0.07 

Sat! 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.07 

KR 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.07 
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Table 10. Empirical Rejection Rates For Test ofHo: No Time 1 x Time k (k=2,4,6) Effect Given Trt 1 
ARH(l) Data, OS2/02 = 4X max Ok2, at nominal ex = 0.05 

Method of Analysis p=O.25 p=O.75 

Covariance 
Structure DDFM Time 1 v 2 Time I v 4 Time 1 v 6 Time 1 v 2 Time 1 v4 Time 1 v 6 

CS All 0.11 0.11 0.08 0.04 0.13 0.15 

CSH Def 0.10 0.10 0.08 0.03 0.12 0.13 

Salt 

0.09 0.09 0.07 0.03 0.11 0.12 KR 0.08 0.08 0.06 0.03 0.10 0.12 

AR(I) Def 0.14 0.10 0.07 0.14 0.10 0.09 

Salt 

0.14 0.10 0.07 0.14 0.09 0.07 KR 0.12 0.09 0.07 0.07 0.04 0.03 

ARH(I) Def 0.09 0.01 0.00 0.12 0.05 0.03 

Without subj(trt) Salt 0.09 0.01 0.00 0.11 0.05 0.03 

KR 0.08 0.01 0.00 0.09 0.04 0.02 

ARH(I) Def 0.06 0.07 0.08 0.08 0.07 0.08 

With subj(trt Salt 0.05 0.06 0.07 0.06 0.06 0.06 

pam'Sflowerb KR 0.04 0.06 0.06 0.05 0.04 0.05 
-------~-.----~--~ 

TOEP Def 0.13 0.10 0.09 0.13 0.09 0.08 

Salt 

0.13 0.10 0.07 0.13 0.08 0.06 KR 0.13 0.10 0.07 0.13 0.08 0.06 

TOEPH Def 0.11 0.08 0.07 0.11 0.07 0.06 

Salt 

0.10 0.06 0.05 0.10 0.05 0.04 KR 0.09 0.05 0.04 0.09 0.04 0.04 

ANTE(I) Def 0.08 0.01 0.01 0.09 0.04 0.04 

Salt 

0.05 0.01 0.01 0.05 

0.D3 0.04 

KR 0.04 0.01 0.00 0.05 0.02 0.03 

UN Def 0.05 0.05 0.06 0.05 0.04 0.06 

Salt 

0.05 0.05 0.06 0.05 0.04 0.06 KR 0.05 0.05 0.06 0.05 0.04 0.06 
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Table 11. Empirical Rejection Rates for Test ofRo: No Trt 1 vs Trt 2 Effect at Time k 
ARH(I) Data, OS2/02 = 0.25X min 0/, at nominal ex = 0.05 

Method of Analysis p=0.25 p=0.75 

Covariance Time Time Time Time Time Time Time 
Structure DDFM 1 3 4 6 1 3 4 

cs Def 0.16 0.09 0.02 0.00 0.16 0.11 0.03 

Salt 0.16 0.09 0.02 0.00 0.15 0.11 0.02 

KR 0.16 0.09 0.02 0.00 0.15 0.11 0.02 

CSH Def 0.07 0.09 0.06 0.09 0.06 0.09 0.09 

Salt 0.04 0.06 0.04 0.05 0.04 0.07 0.06 

KR 0.04 0.06 0.04 0.05 0.04 0.07 0.06 

AR(I) Def 0.15 0.09 0.02 0.00 0.16 0.10 0.03 

Salt 0.15 0.09 0.02 0.00 0.15 0.09 0.02 

KR 0.15 0.09 0.02 0.00 0.15 0.09 0.02 

ARH(I) Def 0.07 0.09 0.06 0.09 0.06 0.08 0.08 

Without subj(trt) Salt 0.05 0.06 0.05 O.U5 0.05 0.05 0.06 

KR 0.05 0.06 O.OS 0.05 0.05 0.05 0.06 
_._--------------_._--- -----_._------_._------- '--.--_ .. __ ._--_ .. _- ---

ARH(I) Def 0.07 0.09 0.05 0.08 0.07 0.08 0.08 

With subj(trt Salt 0.05 0.06 0.04 0.05 0.05 0.05 0.06 

parrns/lowerb KR 0.05 0.06 0.04 0.05 0.05 0.05 0.06 

TOEP Def 0.15 0.08 0.02 0.00 0.15 0.10 0.03 

Salt 0.15 0.08 0.02 0.00 0.15 0.09 0.02 

KR 0.15 0.08 0.02 0.00 0.15 0.09 0.02 

TOEPH Def 0.07 0.10 0.06 0.08 a a a 

Salt 0.04 0.06 0.04 0.04 

KR 0.04 0.06 0.04 0.04 

ANTE(I) Def 0.07 0.08 0.06 0.09 0.07 0.09 0.08 

Salt 0.05 0.07 0.04 0.05 0.05 0.06 0.06 

KR 0.05 0.07 0.04 0.05 0.05 0.06 0.06 

UN Def 0.05 0.07 0.04 0.05 0.05 0.06 0.06 

Salt 0.05 0.07 0.04 0.05 0.05 0.06 0.06 

KR 0.05 0.07 0.04 0.05 0.05 0.06 0.06 

a 65% convergence 

Time 
6 

0.00 

0.00 

0.00 

0.08 

0.06 

0.06 

0.00 

0.00 

0.00 

0.08 

007 

0.07 

------.~---

0.08 

0.07 

0.07 

0.00 

0.00 

0.00 

a 

0.09 

0.07 

0.07 

0.07 

0.07 

0.07 
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Table 12. An Example of Covariance Parameter Estimates for ARR(l) Analysis 

True Covariance 
Parameters for ARH(1) with 

Covariance ARH(I) Generated subj(trt) & ARH(1)w/o 
Parameter Data parms/lowerb subj(trt) 

0 2 s 6.00 6.08 na 

0 2 
I 1.50 1.50 10.15 

0 2 
2 1.25 1.24 9.57 

0 2 
3 1.00 1.04 8.04 

0 2 
4 0.50 0.53 6.38 

0.2 , 0.25 0.23 5.31 

0 2 
6 0.10 0.12 5.01 

P 0.25 0.24 0.92 
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Table 13. Empirical Rejection Rates For Test ofRo: No Time 1 x Time k (k=2,4,6) Effect Given Trt 1 
ANTE(l) Data, at nominal ex = 0.05 

Method of Analysis 

Covariance 
Structure DDFM Time 1 v 2 Time 1 v 4 Time 1 v 6 

cs all 0.01 0.12 0.11 

CSH Oef 0.00 0.08 0.09 

Salt 0.00 0.06 0.07 

KR 0.00 0.06 0.07 
---_._._--

AR(I) Oef 0.05 0.10 0.07 

Salt 0.05 0.10 0.07 

KR 0.03 0.09 0.06 

ARH(l) Oef 0.02 0.07 0.09 

Without subj(trt) Salt 0.02 0.06 0.07 

KR 0.02 0.06 0.07 

ARH(l) Oef 0.02 0.08 0.09 

With subj(trt) Salt 0.02 0.06 0.07 

pamlS/lowerb KR 0.02 0.06 0.07 
--. --------~ ---~. ----------

TOEP Oef 0.04 0.08 0.06 

Salt 0.04 0.08 0.05 

KR 0.04 0.08 0.05 

TOEPH Oef a a a 

ANTE(I) Oef 0.08 0.06 0.06 

Salt 0.06 0.05 0.05 

KR 0.05 0.05 0.05 

UN Oef 0.06 0.05 0.05 

Salt 0.06 0.05 0.05 

KR 0.06 0.05 0.05 

a 70% convergence 
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Table 14. Empirical Rejection Rates for Test ofRo: No Trt 1 vs Trt 2 Effect at Time k, (k=1,3,4,6) 
ANTE(1) Data, at nominal ex = 0.05 

Method of Analysis 

Covariance 
Structure DDFM Time 1 Time 3 Time 4 Time 6 

cs all 0.19 0.09 0.02 0.00 

CSH Oef 

0.08 0.08 0.06 0.05 

Salt 0.06 0.06 0.04 0.04 KR 0.06 0.06 0.04 0.04 

AR(l) Oef 0.19 0.09 0.02 0.00 

Salt 0.18 0.09 0.01 0.00 

KR 0.18 0.09 0.01 0.00 

ARH(l) Oef 0.10 0.08 0.04 0.05 

Without subj(trt) Salt 0.09 0.06 0.03 0.03 

KR 0.09 0.06 0.03 0.03 

ARH(l) Oef 0.10 0.08 0.04 0.05 

With subj(trt) Salt 0.09 O.OE 0.03 0.Q3 

parms/10werb KR 0.09 0.06 0.03 0.03 
-~---.. -------.---~-- -_._-- ----- -----------~------ ---------- ------._--

TOEP Oef 0.18 0.09 0.02 0.00 

Salt 0.18 0.08 0.01 0.00 

KR 0.18 0.08 0.01 0.00 

TOEPH all a a 

ANTE(l) Oef 0.08 0.07 0.06 0.07 

Salt 0.05 0.05 0.04 0.05 

KR 0.05 0.05 0.04 0.05 

UN Oef 0.05 0.05 0.04 0.05 

Satt 0.05 0.05 0.04 0.05 

KR 0.05 0.05 0.04 0.05 

a 70% convergence 
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