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APPLICATION OF COMPUTER INTENSIVE METHODS TO EVALUATE THE 
PERFORMANCE OF A SAMPLING DESIGN FOR USE IN COTTON INSECT PEST 

MANAGEMENT 

J. L. Willers, W. L. Ladner, and 1. M. McKinion 
Genetics and Precision Agriculture Research Unit, Mississippi State, MS 

and 

W. H. Cooke 
USDA Forest Service, Forestry Sciences Laboratory, Mississippi State, MS 

Abstract 

A scouting protocol for cotton insect pests was developed which combines high resolution, 
multispectral remotely sensed imagery with a belt transect that crosses rows of cotton. Imagery was 
used to determine sample site selection while estimating plant bug abundance in a more than 200 
ac. cotton field in 1997. Tarnished plant bug (Lygus lineolaris) counts were acquired using a 
standard drop cloth for each of eight rows along a transect. The sample data indicated that plant bug 
population densities spatially vary as a function of different spectral (color) classes present on the 
imagery. We postulate that such classified images correlate to differences in crop phenology, and 
plant bug populations (especially from early to mid-season) aggregate themselves by these habitat 
differences. Therefore, the population dynamics of Lygus, and possibly other species, can be better 
understood by combining the transect-based sampling plan with remotely sensed imagery. To verify 
and validate this claim, a computer intensive approach was utilized to simulate the performance of 
different sampling plans. The comparison is accomplished with a combinatorial algorithm that 
exhaustively enumerates the original data into unique subsets. These subsets correspond to results 
that could be expected from the use of traditional or alternative sampling plans and compared to 
results from the candidate plan actually used. The results of the enumerative analysis show the 
benefit of multi-band, remotely sensed imagery combined with the use of large sized sample units 
to improve sampling efficiency (and without the need to have large sample sizes). It is of great 
benefit that the enumerative algorithm provided answers to questions of interest without having to 
complete additional fieldwork. 

Key Words: Sampling, enumeration, integrated pest management, remote sensmg, preCISIOn 
agriculture. 

1. Introduction 

Arthropod pests of agricultural crops are one of several causes for yield loss. For example, 
total yearly losses to cotton in 1997 for the United States are estimated to be 9.42%. However, this 
percentage, when converted to dollars, represents a loss to production of more than $785 million 
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(Williams, 1998; 2000). When the cost of control (i.e., money spent to prevent loss) is considered, 
the combined US total is estimated at more than 1.4 billion dollars (Williams, 1998). Significant 
dollars are spent just in collecting the data used to make management decisions to control insects 
and mites in cotton. Cotton insect monitoring costs across the US cotton belt average $6.52/scouted 
acre, for an estimated total of about 57 million dollars. 

The potential exists to improve the management of arthropod pests at lower cost and improve 
yield. Some of the key hemipterous pests (King et aI., 1996) across the Cotton Belt are the plant 
bugs (Lygus lineolaris (P. de B.)), L. hesperus Knight, and the cotton fleahopper (Pseudatomoscelis 
seriatus (Reuter)). The sampling literature for hemipterous pests is quite large, numbering more than 
41 references if crops other than cotton are considered (Willers and Akins, 2000). The key for 
improved management is to better understand the population dynamics of these pests and important 
beneficial insects and spiders. Obtaining good estimates of the spatial and temporal trends of both 
the pest and beneficial insects is necessary. Knowledge of how abiotic factors influence these trends 
is also essential. Today, much is known, but losses in yield still occur. Therefore gaps remain in 
our understanding, both for measuring population abundance and learning how the different 
biological components fit together (Pedigo and Buntin, 1993). 

Previously, Ludwig and Reynolds (1988) discussed how the size (i.e., scale) of the sample 
unit influences the assessment of spatial pattern for arbitrarily defined sample units. In this paper, 
we illustrate how sample unit size and the presence or absence of stratification influence estimates 
of population density for a fixed sample number size (n = 4). It will be argued that sample unit size 
has a tremendous impact upon the precision of population estimates. Consideration of this effect 
of sample unit size (i.e., how big of a unit is searched for insects) is as important as sample number 
(i.e., how many units were searched). The two influences work together, and when accounted for 
in a sample scheme that also employs stratification (as established by multi-spectral imagery), 
dependable estimates of plant bug abundance in cotton can be obtained with less effort and smaller 
sample sizes. 

Other entomologists need to be shown the benefit of these concepts. Therefore, we 
developed an exhaustive enumerative algorithm that could 'resample' a data set acquired through 
the use of imagery, large sized sample units, and use 'small' sample sizes. By setting different 
constraints, the algorithm generated various other sampling plans including one that mimics the 
performance of traditional sampling efforts employed by cotton entomologists (Table 1). The 
algorithm therefore demonstrated the benefit of stratification (by remotely sensed imagery) and 
assessed impacts of different sample unit sizes while holding the sample number size constant (n = 

4). Demonstrating reliable estimates with small sample sizes is important, since entomologists 
desire to save time while scouting large numbers of fields each week. The sample data described 
in this article pertain to selected results from the 1997 crop year (Willers et aI., 1999). These data 
were obtained while sampling cotton for the pest, Lygus lineolaris (or the Tarnished Plant Bug 
(TPB)). 

2. Methodology 

The foundation for the improved sampling scheme is based upon the classical line-intercept 
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sampling (LIS) design described by Kaiser (1983), Lucas and Seber (1977), McDonald (1980; 1991), 
and Thompson (1992). Willers et ai. (1992) and Willers and Akins (2000) describe in detail the 
adaption of LIS concepts to row crop applications. General notes of interest on this modified LIS 
(MLIS) technique are found in Willers (1998). Additional concepts relevant to the use of MLIS for 
cotton insect sampling and for the results of this study are described in Pielou (1977), Thompson 
(1992), and Willers et ai. (1990a,b; 1992). 

a. Sampling Procedure (MLIS) 

Transect lines up to eight (crop) rows in length are established perpendicular to the row 
direction in commercial cotton fields. The number of plant bugs discovered on a drop cloth (after 
insects are dislodged onto the cloth by vigorous shaking of plants) are counted for every row. The 
points of beginning (i.e., origin) for these transect lines are placed within areas of the field where the 
crop is judged to be homogenous for such characteristics as growth rate, height, canopy 
development, and fruit load. Establishing the boundaries andlor extent of these homogenous areas 
(i.e., strata) is accomplished using multi-spectral, remote sensing imagery (Schrader and Pouncy, 
1997; Willers et ai., 1999). Thus, the use of high-resolution, multi-spectral imagery is an integral 
part of the MLIS sample design. 

h. Classical LIS estimator and modification for MLIS 

The classical LIS estimator (Kaiser (1983), Lucas and Seber (1977), McDonald (1980; 
1991» is now briefly described. To estimate the attribute totals, f (i.e., the No. TPB per acre), for 
all y in A, a simple equation can be used. Sample data (y) collected from the i-th quadrat along a 
transect line of known length is substituted into the following equation: 

n 

W/l L (y) 
I 

i~l 

(1) 

where I is the drop cloth width and W is a reference baseline of known length used to scale the 
sample data to unit area (A). 

Through the use of algebra, eqn. (1) can be manipulated into a form that reflects the row crop 
environment. This form is a simple expression (eqn. 2; Willers et ai., 1999) that readily estimates 
the number (f) of plant bugs per acre (or 0.405 ha). Here, the total number of bugs (either the 
number of teneral adults or nymphs, respectively, or the combined count of teneral adults and 
nymphs) observed from the transect is divided by the total number row feet (or meters) sampled (i.e., 
the drop cloth length (/, the side that lies parallel to the rows) multiplied by number of rows (n) 
sampled along aline). The quotient is multiplied by the linear row feet per acre (R) (or number of 
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linear meters per 0.405 ha) applicable to the reference area, A, as shown in eqn. 2. Both forms 
(eqns. 1 and 2) are useful in the analysis of results typical ofthose described in this study. 

n 

Y (Ey ; / (n */)] *R (2) 
;=1 

c. Image acquisition and processing 

Specific details about the acquisition of remotely sensed imagery by aircraft and color 
examples of images (after computer enhancement) of cotton fields are found in Seal (1999) and 
Willers et ai. (1999). We summarize the computer processing of these images into a format that was 
useful for selection of stratified sample sites within a field of cotton (ca. 200 acres in sizes). The 
images used in this study required band-to-band registration. Each band was acquired by a separate 
camera positioned at a slightly different look angle in the aircraft bay which results in band-to-band 
mis-registration. Control points common to each band were chosen to facilitate warping of each 
band to the near infrared (NIR) band. Although the green band showed road intersections a bit more 
clearly than the NIR band, the longer wavelengths of the NIR band provided the most spatially 
accurate standard for band-to-band warping procedures. Whenever possible, right angle road 
intersections were used for control points. In cases where road intersections were not available, 
other less desirable control points were used. A first order polynomial equation (McCloy, 1995) was 
used to fit the image data to the control image (i.e., NIR band). The pixels in bands other than the 
NIR band were changed in their position and orientation and it was necessary to resample these 
bands. Nearest neighbor resampling (Lillesand and Kiefer, 1987) was used to assign radiometric 
values to the slightly altered (spatially) pixels in the output images. Nearest neighbor resampling 
assigns the radiometric value of the closest pixel in the input matrix (original image) to the output 
image disregarding the slight offset. This method is computationally simple and avoids altering 
original input pixel values (Lillesand and Kiefer, 1987). A target minimum of 12 control points was 
used for 'warping' each band to the near infrared (NIR) band. These points were distributed as 
evenly as possible across each image. Once each band was rectified to the NIR band, all bands were 
combined in a single co-registered multi-band image. This final image was used to select sample 
points in the cotton field. 

d. Exhaustive enumeration algorithmfor generation of competing sample designs 

Development of the analysis technique used to compare performance of competing sanlpling 
designs is based on an algorithm written in the C programming language (Kernighan and Ritchie, 
1988) that accomplished the task of exhaustive enumeration (Manly, 1997). There are 'canned 
routines' (e.g., Press et aI., 1989) available that can perform most of the necessary tasks. However, 
it was necessary to generate combinations from several matrices of different ranks derived from 
original MLIS variates. Therefore, several customized C subroutines were programmed to create 
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an enumerative algorithm that varied the extent of stratification, sample unit size, and sample size 
to simulate the performance of different sample designs (Table 1). 

The original MLIS sample data can be arranged in a table (e.g., see Tables lA and IB in 
Willers et aI., 1999) and considered to be a matrix of r rows and c columns. The algorithm operated 
on these matrices. Each row in a matrix corresponded to a MLIS transect and each column 
corresponded to a crop row along the length of the belt transect. Thus, for the r-th, 8-row long 
transect line sample (l r), it is possible to create seven unique sets of adjacent crop row pairs as 
follows (each number in a pair corresponds to a crop row along the transect line): {(1 ,2) or (2,1)}, 
{(2,3) or (3,2)}, {(3,4) or (4,3)}, {(4,5) or (5,4)}, {(5,6) or (6,5)}, {(6,7) or (7,6)}, and the seventh 
set of {(7,8) or (8,7)}. These seven arrangements constitute the fundamental building blocks that 
enabled the generation of different sample unit sizes. Any pair in a row was the smallest sample unit 
size used in this study. The sample number was fixed at four (n = 4) in all instances, because by 
tradition only four samples for plant bugs are collected by field scouts in any given cotton field. 

The results from the enumerative method can be considered exact in that every possible 
allocation or number of combinations of r distinct items taken c ::; 7 at a time (Beyer, 1968; Manly, 
1997) as described by: 

( r) r' = C(r c) = . 
c ' c!(r-c)! 

(3) 

Combinations (rather than permutations) are of interest in this research, because once a particular 
arrangement (or set) of 'r choose c' has occurred, other possible orderings of the items in that 
particular set are of no interest. Therefore, the task of listing all sets from a matrix of MLIS sample 
data for different values of r ::; 4 (where ri "" ri ) and c can be time consuming due to the fact that 
sets of combinations are never to be duplicated (i.e., permutations), yet all possible combinations 
(N) must be found. The C subroutines found all unique sample combinations from a data matrix in 
which the number ofrows (r) exceeded the sample size (n), and met the restriction that once a row 
in the matrix was 'sampled' it was not permissible to enter that row again for the i-th simulated 
sample or until (i = n) < r. An equation describing how these various constraints modify eqn. 3 is: 

n - 1 

II (r - j)(c) 
j ~ 0 (4) 

N 
n! 

The denominator of eqn. 4 removes permutations that are from repetitive combinations generated 
by the subroutine that implements the logic of the numerator. This equation serves as check to 
compare if the total frequency counts shown in the bottom of Table 2 are correct results for the 
particular matrix used to simulate a sample plan (Table 1, the last column). 

Articles similar to Hayes (1996) or Copeland and Haemer (1999), texts by Manly (1997) or 
Sloane and Plouffe (1995) and websites (e.g., Sloane, 1999) were resources that provided many 
concepts employed in building the subroutines. 
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3. Results 

Since the original MUS data was based on transects placed in different strata determined by 
imagery, we easily created unstratified or stratified samples to show the benefit of imagery. The 
impact of stratified samples for different sample unit sizes could also be readily studied by 
'resampling through enumeration' the original data found in Willers et ai. (1999). Comparisons 
among the performance of competing sampling designs using exhaustive enumeration are presented 
in Table 2 and illustrated in Figs. 1 - 2. One key feature of these results is that the total number of 
combinations varies according to the size of the data matrix used for the resampling (i.e., exhaustive 
enumeration). The number of draws ranges from a maximum of25,513,026 for a 24 x 7 array (Table 
1, Unstratified) down to 36,015 (Table 1, Stratified) for a 6 x 7 array. If the sample unit size 
increases, the array size can be as small as a 6 x 1 (the four strata with the full 8-row sample line), 
or only 15 combinations. 

The frequencies for the different estimates of population means (Table 2) provide a clear 
summarization of an enumerative analysis that both generates and compares probable results from 
the different sampling plans. For example, a field scout using the unstratified plan (with a sample 
unit size of 6linearft and a sample size of 4) would be expected to conclude (5,275,184/25,513,023) 
x 100 = 20.7 % of the time that there were no TPB in the field. This is the conclusion that could be 
expected if this traditional sampling plan had been employed in this field with its population density 
and dispersion pattern as found by MUS during July, 1999 (Willers et ai., 1999). This a 
considerable error, especially when the stratified plan of the same configuration (Table 2) shows that 
two of the four habitat classes are probably infested with TPB at a high rate (i.e., the Best and Good 
habitats). If we examine the estimated distribution for the Best habitat using the traditional sample 
unit size (i.e., 6linearft; Table 2) it is seen that one would conclude 0.82 % of the time that the TPB 
density was zero ((295/36,015) x 100). By comparison, the MUS sample design with a larger 
sample unit size (i.e., 24linearft) but the same sample size, would be expected to conclude (Fig. 2) 
that the population density for the Best habitat during July, 1999 was> 1,290 TPB per acre one­
hundred percent of the time (i.e., (9 or more TPB -7- (24linearft per sample x 4 samples)) x 13, 756 
linear ft per acre x 15115). Clear elimination of the zero alternative, when combined with 
entomological expertise, affords tremendous clarity when also associated with spatial information. 
Clearly, parts of the field have a TPB problem while other portions do not. Other questions of 
interest can be easily addressed in a similar fashion. For example, should one continue to use a 
sample size of four in the Fair or Poor habitat groups? Or, should one pool the two favorable 
habitats (Best and Good) into a single group and sample those regions of the field only twice instead 
of four (or eight) times. Therefore, the enumerative results can be combined with the expertise of 
a field consultant to alter traditional entomological sampling practices. 

The enumerative results also show the lack of a symmetrical distribution (Table 2) for some 
sample plans (e.g., Unstratified) or as a result of the naturally occurring population abundance within 
a particular habitat (e.g., the Fair or Poor habitats). The density class having the highest frequency 
of occurrence is the mode. It should be noted that the mode of each stratified distribution (using the 
Best habitat as a point of comparison) across the various sample unit sizes scales to equivalent 
density estimates (i.e., 1,720 insects per acre (Table 2); 1,433 insects per acre (Fig. 1); and 1,862 
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insect per acre (Fig. 2). The slight differences are of no consequence in the making of pest 
management decisions. 

The enumeration analysis indicates that MUS with a large sample unit size created by use 
of drop cloth improves sample precision. Use of imagery to define distinct strata corresponding to 
different states of crop growth also improves sampling precision. Comparisons of results involving 
three sample unit sizes (i.e., paired rows, four adjacent rows, and eight adjacent rows) while holding 
fixed the sample number size (n = 4) readily shows how low population densities can be separated 
from high population densities (Table 2 and Figs. 1 and 2). This small sample size used in this study 
corresponds to a common rule of thumb employed by consultants in order to save time. If field 
scouts want to continue to use small sample sizes to save time, then these results indicate that they 
should use larger sized sample units. If the sample size and sample unit size are both too small then 
large errors in correctly estimating the population density will frequently occur. 

4. Discussion 

Ecologists, including those who study insect populations, have known for some time that 
both the identification of spatial pattern and density are heavily influenced by the size of the sample 
unit. Detecting whether a population is clumped or randomly dispersed is strongly determined by 
the sample unit size (Ludwig and Reynolds, 1988; Wilson and Room, 1983). In this light, it is of 
interest that MUS uses quadrats strongly tied to units of area (i.e., cells along the belt transect) rather 
than the plant itself or small collections of plants along a row. Traditionally, many entomological 
sampling designs (Pedigo and Buntin, 1993) emphasize the use of plants as the entities that define 
the sampling unit size. For MUS, plants are merely the substrate within each quadrat (or cell) along 
a transect line on which TPB reside. This is an important but subtle distinction that should be kept 
in mind. 

Often, with low populations, a transect line that is too short will bias upwards the estimate 
of numbers per acre. By making a simultaneous appeal with the results described here with earlier 
results reported for the simulation study by Willers et. aI. (1990a), the bias that occurs with shorter 
transects at low population densities (McDonald, 1991) can be explained. For example, as the 
sample unit size becomes smaller and approaches the size of a single plant, the chance that any 
randomly drawn sample unit will be found with an insect (of a particular kind or life stage) decreases 
as the abundance of that insect decreases, but the efficiency (i.e., success of discovery) of examining 
a sample unit increases as its size becomes smaller. Conversely, as the sample unit increases in size, 
the chance that an insect occurs somewhere inside the sample unit increases (Willers et aI., 1990a), 
but at the penalty of spending more time and effort examining the sample unit. Thus, an important 
consideration of any sampling scheme is the relationship of the size of the sample unit to the ease 
with which insects are detected. The drop cloth used with MUS allows the sampling of large sized 
sample units in a short time. 

When the sampling distribution describing the variability in population abundance is 
asymmetrical (i.e, non-normal) the mode is not equivalent to the mean. Results obtained here 
document one finding that field entomologists need to consider, which is that sometimes their 
estimate of population density may be the mode and not the mean. If the distribution of insect 
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abundance about the mode is skewed left or right, the management decision they make should also 
be based upon evidence about skewness. Currently, most entomological decisions do not use 
information on skewness in the decision making process. 

Another ecological property relevant to MUS is the fact that as the mean number of insects 
per sample unit (of any size) increases, the proportion of sample units occupied increases until all 
units are infested (Wilson and Room, 1983; Wilson et aI., 1989; Wilson, 1993; Willers et aI., 1990a). 
In practice, this property implies that the distance between infested plants decreases as the number 
of plants infested with at least one insect increases (Willers et aI., 1999). A biological reality of the 
association between distance and density is that the percentage of plants infested more than once 
increases as insect density increases. At some point, the population is so far above an economic 
threshold that the issue of obtaining an estimate, based on the assumption of only one individual per 
plant, becomes moot. The MUS design readily shows high population densities (Fig. 2) when 
insects frequently occur among adjacent rows along the transect line. In fact, we are learning that 
if the first two (or three) rows along the transect are occupied, and sampling occurs in favorable 
habitats delineated by imagery, then it is not necessary to continue the sampling of additional rows 
along that transect line. The scout should instead move to another region having spectral signatures 
that also denote states of crop development attractive to TPB, reducing further the time spent 
sampling at any particular location. 

Benefits of the MUS design are demonstrated for the larger sized sample units, primarily due 
to the influence of a dynamically increasing sample unit size. The use of the drop cloth to create 
these large sized sample units provides economy of sample effort (i.e., it is quick). With the better 
information that results from MUS, it should be possible to develop spatially variable spray 
programs and/or devise improvements to management tactics employed against this cotton pest. 

5. Summary 

A more thorough temporal analysis of data of the kind used here are planned with field 
results from the 1998-2000 season. The enumerative algorithm represents a tool of tremendous 
potential in working with insect sampling data. Additional points of inquiry are raised by a 
suggestion to use the multinomial distribution and create sampling strata proportional to the actual 
areas of the crop having different spectral categories in a cotton field (R. Machavelli, pers com.). 
Using software for remotely sensed images (Schrader and Pouncy, 1997), the total area in a field in 
a particular category of spectral characteristics can be easily determined. Therefore, we could then 
easily investigate by enumeration a 'proportional to area' stratified sampling plan that 
simultaneously varies both sample size and sample unit size. An additional point of comparison 
would be the results of Christman (2000), who also compared various quadrat-based sampling 
schemes and population dispersion patterns. 
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Table 1. Description of the various sampling designs compared, where one is the original field 
observations (Willers et aI., 1999) and the other four have been derived from the field design by 
exhaustive enumeration. The row (r) and column (c) size of the data matrix used to simulate each 
sample plan is listed in the last column (see eqn. 4). 
Sample Design Imagery No. Strata Sample Size Sample Unit Size Matrix 

Simple Random None None 4 6rowft 24 x 7 
(Traditional) 

Stratified, Simple Yes 4 4/stratum 6rowft 6x7 
Random 

HalfMLIS, Yes 4 4/stratum 12 row ft 6x2 
Stratified 

MLIS, Yes 4 4/stratum 24 rowft 6 xl 
Stratified 

Original MLIS, Yes 4 6/stratum 24 row ft in 8 6x8 
Stratified 3 rowft sub-units 
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Table 2. Frequency table of results after the exhaustive re-sampling of the MLIS transect data found in Willers et al. ((1999) see Table 
IB therein). Each simulated plan (5 cases) assumes a simple random sampling design either unstratified (i.e., one case without imagery) 
or stratified (i.e., four cases where multiband, remotely sensed imagery spatially stratified the cotton crop into four habitat classes). The 
cotton insect pest is the Tarnished Plant Bug (Lygus lineolaris). 

-----------------------------Stratified Plans ------------------------
Unstratified Best Habitat Good Habitat Fair Habitat Poor Habitat 

EXQected Total Average l Mean No. Absolute Absolute Absolute Absolute Absolute 
Qer Acre2 Frequency1 Frequency1 Frequency) Frequencv3 Frequency) 

0 0 0 5,275,184 295 1884 21133 36015 

0.25 573 8,411,376 2293 7618 12698 0 

2 0.5 1,146 6,645,409 6568 11743 2100 0 

,., 
0.75 1,720 3,462,160 9936 9306 84 0 -' 

4 1.0 2,293 1,288,485 9198 4199 0 0 

5 1.25 2,866 351,508 5370 1098 0 0 

6 1.5 3,439 68,864 1924 157 0 0 

7 1.75 4,012 9,243 392 10 0 0 

8 2.0 4,585 767 38 0 0 0 

9 2.25 5,159 30 1 0 0 0 

Total 25,513,026 36,015 36,015 36,015 36,015 
1 The average is the expected total (E(T)) divided by the sample size. 

2 The mean number per acre = (E(T)/Total no. row ft)* 13,756 linear ft per acre (see Williams et aI., 1995). 

3 The sample unit size per sample for these five cases is 6 linear row ft with a sample size of n = 4. 
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Figure 1. Histogram of the expected total of tarnished plant bugs collected from the Best habitat 
strata delineated by remote sensing. The sample unit simulated is twice (i.e., 12 row ft) the size of 
that used for the same habitat presented in Table 2. The sample size is fixed at n = 4. The total 
number of unique outcomes were enumerated from the original field data (Willers et aI., 1999; Table 
IB) and numbers 5,760. 
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Figure. 2. Histogram of enumeration results for the Best habitat showing the expected sampling 
distribution for a sample of size n = 4 using a sample unit size (i.e., 24 row ft) identical to the 
original sample unit size. Only a total of 15 unique draws are possible from the original data set 
(Willers et aI., 1999; Table IB) where the sample size (i.e., n = 6) was slightly larger than the 
simulated plan. 
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