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ABSTRACT 

An efficient score statistic for testing the equality of the means of several groups of count 
data in the presence of a common dispersion parameter is introduced and a new approximation to 
its distribution is given. The performance of the efficient score statistic using this approximation, 
the original efficient score statistic approximated by X 2 (t -1), the likelihood ratio statistic and 
four more AN OVA methods based on raw data or transformed data are compared in terms of 
size and power by using Monte Carlo simulations. The efficient score statistic with its new 
approximation is recommended. An application is given. 

1. Introduction 

The two distributions commonly used to model count data, the Poisson and the negative 
binomial (with known dispersion parameter), are members of the exponential family. The 
generalized linear model (GLIM) presents an exciting alternative to the general linear model 
(GLM) in that the form of the distribution can be incorporated in the model. However, unless the 
population distribution is normal, the tests associated with the GLIM are asymptotic. One 
concern is whether we have sufficient data support for the asymptotic theory when dealing with 
standard experiments involving relatively small sample sizes. 

Another concern with the generalized linear model is the role of the dispersion parameter. 
Two possibilities have been suggested in the literature for accounting for over-dispersion in the 
model. Cox (1983), in the context of maximum likelihood estimation, calls for the use of the 
negative binomial distribution as a detailed representation of over-dispersion in the Poisson case. 
In this case, Yj can be considered a Poisson random variable with mean A j , where 

AI' A2 , ••• ,An are iid gamma with mean Jl and dispersion parameter 1" • Then YI, Y2 , ••• , Yn 
are iid negative binomial with parameters Jl and 1" • The use of the negative binomial distribution 
instead of the Poisson to model over-dispersed count data in the generalized linear model 
analysis follows naturally from this idea. 

McCullagh and NeIder (1989) suggest a different approach for over-dispersed data. The data 
are modeled based on the anticipated distribution, such as the Poisson, and a over-dispersion 
parameter<1> (<1> > 1) is added to account for over-dispersion. Then the dispersion parameter <1> is 
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estimated from the data by one of two methods. The first approach is to set <I> equal to the 
deviance function divided by the degrees of freedom. The deviance function has the form 

D(y, Il) = 2<1>(l(y; y) -1(Jl; y)), 

157 

where ley; y) and 1(P,; y) are the likelihoods as a function of the data and estimated parameters, 

respectively. The second method equates <I> and Pearson's X2 statistic divided by the degrees of 

freedom. Pearson's X 2 statistic is 

X2 = I (y - Jl)2 / V(Jl), 

where V(Jl) is the estimated variance function. Both procedures are too liberal when we use 

them to model over-dispersed count data and to test the null hypothesis Ho : III = 112 = ... = Ilt 

(see Young, et aI., (1999)). Therefore, we do not consider the approach of estimating <I> here. 
The classical statistical setting for hypothesis testing involves a sequence of independent 

random variables whose distribution depends on a t-dimensional parameter e = (e l ,e2, ... , at)' 

belonging to a sample space e, an open subset of t-dimensional Euclidean space 9{t. A null 
hypothesis Ho usually involves restrictions of the parameter, e = (e l , e2, ... , e t)' , Rie) = 0 

for j = 1,2, "', r, (r:::; t). Now consider tests of the (composite) hypotheses 

Ro : R(e) = 0 vs. HI: R(e):;t: 0 (1.1) 
, 

where R(e) = [R I (e), ... , Rr(e)] is a vector-valued function R: 9{t ~ 9{r such that the (txr) 

matrix W(a) ~ (aR/aa • ) exists and is continuous in a and rank(W(a)) ~ r. More specifically, 
_ A 

suppose e is the MLE of e under the restrictions imposed by the null hypothesis, e is the 

(unrestricted) MLE of a and n is the sample size. Further, I(a) ~ ( - E[ a' IO:~~~~' a)}] J is 
Fisher's Information Matrix. 

Tests of Ho against HI have typically involved one of the three test statistics: 

1. Neyman-Pearson's likelihood ratio statistic given by 

A= 2 (L(fh - L(e)) 
where L is the log likelihood; 

2. Rao' s efficient score statistic 

~= S'(e)[ I(e) rl See) 

where See) is the likelihood score function defined by d L(e) / de; and 
3. W aId's test statistic 

ro=nR'(8)( W'(8)(1(8) tW(8) JI
R(8). 

Under R o ' each of the three statistics has an asymptotic x2(r) distribution. Rao's efficient score 

statistic depends only on the MLE for the restricted class of parameters under H o ' while Wald's 
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statistic depends on the MLE over the whole parameter space. Because Wald's test is 
complicated and does not have an explicit form, it is not considered here. 

2. Testing equality of count means with a known common dispersion parameter 1: 

Consider the density function form for the negative binomial distribution that was proposed 
by Bliss & Owen (1958) in which the random variable Y follows a negative binomial 
distribution with mean Il and dispersion parameter 1:, NB(Il, 1:), if 

Pr (Y = y) = r(y + 1:- ) ~ _1_ , I ( JY( JIlt 
y!r(1:-I) 1+1:1l 1+1:1l 

(2.1) 

for y = 0, 1, 2, ... ; 1: ~ 0; and Il > ° . For this parameterization E(Y) = Il and Var(Y) = Il + Il 1:2 • 

Now suppose 
Yij - ind NB (Ili ,1:) for j = 1, 2, ... , n i and i = 1, 2, ... , t . (2.2) 

Consider testing Ho : III = 112 = ... = III versus HI : not all lli'S are equal. 

It follows from (2.1) and (2.2) that the log-likelihood function of the lli'S is 

L(IlI'···,IlI)= t[tIOg[r(~ij +~~I) J+(t Yij JIOg( 1:lli J-~IOg(1+1:IlJ]. 
1=1 J=I Yij T(1:) J=I 1 +1:lli 1: 

(2.3) 

2.1. Likelihood ratio test 

Bamwal and Paul (1988) obtained Neyman-Pearson's likelihood ratio statistic under the 
assumption of a common dispersion parameter 1: as 

A =2(L(~)-L(jI)) 

= 2 t[niYi log (1:YJ] - 2 t [ni(Yi + 1:-1) log (l + 1:YJ] -
i=1 i=1 

2( t.n; )YIOg(~y) + 2( t.n; }l( Y H-')log(l HY) 1 (2.4) 

where Yi is the (unrestricted) maximum likelihood estimator of Ili under the full model 
ni 

~i = Yi = Yio fni = LYij fni (i = 1, ... , t). 
j=1 

(2.5) 

Let Il represent the common value of each Ili under Ho. Then Y is the maximum likelihood 

estimator of each Il under Ho. That is, we have 

_ - ~ Yie ~ 
Il = Y = L.J-' where n = L.Jn i . 

i=l n i=l 

(2.6) 

The likelihood ratio statistic A has an asymptotic distribution that is chi-square with (t -1) 
degrees of freedom. 
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2.2. Efficient score statistic 

In this section, we develop Rao's efficient score statistic for testing the hypotheses 
Ho : ~I = ~2 = ... = ~t vs. HI: not all ~i 's are equal. 

Differentiating the log-likelihood function of the ~i 's with respect to ~i yields 

aL(~\,~2""'~t)_ (niYiJ ni (2.7) 

a ~i ~Jl + 't~J (1 + 't~J 

Next replace ~i in (2.7) by jI = Y . It follows from the definition of S (jI) that 

S'(!I)=( Y(~~~Y) - (1+n~y) •...• y(~~~y) - (1+n~y)} (2.8) 

The (r, s)th element of Fisher's Information Matrix is given by 

irs =_E(a2L(~\' ~2' ... '~t)J. (2.9) 
, a~r a~s 

With the help of the equation 

a2L(~\,~2'''''~t) (Yi.)·(-1-2't~J 'tn i 
----''-'---=----=:-----'---'-- = + 

a~i2 ~;(1+'t~J2 (1+'t~J2' 
(2.9) becomes 

o if r -:f. s 

(2.10) 

if r = s 
~i (1 + 't~J 

Then, replacing each ~i in (2.10) by Y we obtain 

( ~ ) = lagona , ... , . I -d' I ( n I n t J 
Y(1+'tY) Y(1+'tY) 

Thus, the efficient score statistic is 
S = S' (jI)[ I(jI) ] -I S(jI) 

t (n.? n· J2( n· J-I t nJY; - y)2 
= i=1 Y (1 ~ ~ Y) - 1 + ~ Y Y (l ~ 't Y = i=1 Y (l + 't Y ) (2.11) 

Equation (2.11) is identical to Neyman's C( a) statistic when 't is known, as indicated by 
Bamwal and Paul (1988). 

2.3. F -tests 

One common way to analyze count data in a one-way layout data is to use analysis of 
variance and rely on the Central Limit Theorem and the robustness properties of the F test. If 
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variances are unequal, the impact on the F test can be significant for the one-way classification. 
Several variance stabilizing transformations have been suggested to address this concern. 

(1) Anscombe (1949) suggested the transformation, fey) = log(y + 1), for the negative 
binomial distribution. 

(2) The square root transformation, fey) =.JY, is commonly used when the populations are 

Poisson distributed. 
(3) Beall (1942) suggested the following variance-stabilizing transformation for the negative 

binomial distribution provided that 't is known: 

fey) =~ sinh-I ~(y+O.5)'t. 
Therefore, an analysis of variance could be performed on the raw data or (1) fl (y) = log(y + 1), 

(2) f2 (y) =.JY, or (3) f3(Y) =~ sinh-I ~(y+O.5)'t. 
If the resulting F statistic is significant then Ho is rejected. 

3. An approximation to the distribution of the efficient score statistic 

Bamwal and Paul (1988) approximated the distribution of the efficient score statistic using 
X2 (t -1). This section provides an alternative approach. 

Let XI = :t (Yi~ J- Y.~ and X 2 = Y(1 + 'tY) = Y •• (1 + ~ y •• ). Then the efficient score 
i=1 ni n n n 

statistic can be written as 

y __ XI . 
~ (3.1) 

X2 

In this section, we find v such that ~ is approximately X2 with v degree of freedom. 
E(S) 

To accomplish this, we will need to find the mean and variance of Sunder Ho. 

Theorem 3.1 Under Ho' the expected value of the efficient score statistic is 

E(S) = (t -1)· (_n_). (3.2) 
n+'t 

Proof For details see Wang (1999). 

3.1 An approximation to the variance of S 

In this section the variance of S is estimated by using a first-order Taylor approximation 
(Section 5.2.3, Mood, Graybill and Boes, 1974). We have 
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If n l = n2 = ... = n t = m , then (3.4) can be simplified. 

Proof For details see Wang (1999). 

Corollary 3.1 Under the assumption of n l = n2 = ... = TIt = m, (3.4) becomes 

var(S) "" 2(t-1)n2(n+'tt). 
(n + 't)3 

Proof Under the assumption of n l = n2 = ... = n t = m, we have 

1 t 2 

n=mt and L-=-' 
ni n 

Therefore, the right side of (3.4) can be simplified as 

n 2 
{ } 3 2 2 2(t-1)(n+'tt)~2 +4't(t-1)(n+'tt)~3 +2't2(t-1)(n+'tt)~4 

(n+'t) (~+'t~ ) 

2 n2 (t -1)(n + 'tt) 
= 

(n + 't)3 

3.2 A second approximation to the variance of S 
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(3.3) 

(3.4) 

In this section a better approximation to var(S) is obtained. This approximation is obtained 
by using the fact that 

var(S) = E(var( S I Yoo )) + var(E( sl Yoo )) (3.5) 

(Mood, Graybill and Boes, 1974). 
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Under H o ' var(E( ~I Y •• )) = 0, so 

var(~) = E(var( ~I Y •• )) 

Now expression (3.6) is used to find the value of var(~). 

Theorem 3.3 For n i = E.. for i = 1, 2, ... , t, the following is true. 
t 

var(~) = E(var( ~I Y •• )) 

Kansas State University 

(3.6) 

2n\t -1)(n + t't) 
=--~--------

(n + 't)2 (n + 2't)(n + 3't) 
1 E( 1 J 

(n + 't)2 (n + 2't)(n + 3't) Y •• (n + 'ty • .)2 

't 'E( 1 J (n + 't)(n + 2't)(n + 3't) (n + 'ty • .)2 . 
(3.7) 

Proof For details see Wang (1999). 

Note that the second and third terms on the right side of (3.7) are very small, so we have the 
following approximate expression 

var(~)"" 2n\t-1)(n+t't) . (3.8) 
(n + 't)2 (n + 2't)(n + 3't) 

Our simulation results showed that the approximations (3.8) and (3.2) are very accurate. 

To approximate a critical point for the efficient score statistic we follow Satterthwaite (1946). 
We find v such that 

~ ..:. X2(v) when Ho is true. 
E(~) 

This implies that v must satisfy 

Var (v%(~))= 2v. 
Hence, it follows from (3.2) and (3.8) that 

v = 2[E(~)]2 = ...;..(t_-_1.:.....:)(...;..n_+_2...;..'t)...;..(n_+_3't....:....) when nj = E.. for i = 1, 2, ... , t (3.9) 
var (~) n(n + t't) t 

4. Simulations 

A Monte Carlo study was performed to compare the efficient score test and its sampling 
distribution approximated by a chi-square distribution with degrees of freedom equal to V in (3.9) 
to several other previously introduced methods of testing for equal means for negative binomial 
distributions. The methods used were: 

1. Efficient score test using the new Satterthwaite approximation to the critical point (RSCR). 

2. Efficient score test using X 2 (t -1) to approximate the critical point (SCOR). 
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3. Likelihood ratio test (LR). 
4. F-test (F) on raw data. 
5. F-test with square root transformation (FSQ). 
6. F-test with logarithm (of counts + I) transformation (FLG). 
7. F-test with inverse hyperbolic transformation (FSH). 

Two major criteria in evaluating these test methods are the robustness of 

1. The observed significance level ( &. ) which is the estimated probability of rejecting 
the null hypothesis when the population means are equal. 

2. The observed power ( 1-~ ) which is the estimated probability of rejecting the null 

hypothesis when the population means are not equal. 

163 

Empirical significance levels and powers of the seven tests described above are derived for 
t = 4 means based on 3000 samples from the negative binomial distribution for different values 
of J.LI' J.L2' J.L3 and J.L4 ' and 't. Data were simulated from negative binomial distributions with 

means of 0.25,0.5,0.75, 1,2,5, 10, 15, or 20, and values of't of 4,2,4/3, 1 and 0.2. Only 
balanced designs were considered, with n l = n 2 = n3 = n 4 = 5, 10,25 and 50 replications per 

treatment. Small means, small sample sizes, and large values of't are emphasized because they 
are more representative of the situations most frequently encountered in biological studies. The 
estimated and nominal Type I error rates were compared at the 0.01, 0.05, and 0.1 levels for all 
tests. Some of the simulation results are presented in Tables 1-3. 

Consider the case a = 0.05. Simulation results show that for large sample sizes 
( n I = n 2 = n 3 = n 4 = 50), all of the test statistics hold their significance levels well even for 

small means. For moderately large sample sizes n l = n 2 = n3 = n 4 = 25, the estimated Type I 

error rates are generally close to the nominal rates for all the test statistics, but LR tends to be 
liberal and SCaR and F conservative. 

In general, the RSCR, FSQ, and FLG hold their significance levels well. The RSCR performs 
consistently well across all sample sizes, for different 't's and different J.L's. Also, it gives the best 
performance when sample sizes are small 't is large and J.L is small. 

The simulation results show that for small sample sizes (n I = n 2 = n 3 = n 4 = 5, 10 ) the 

likelihood ratio chi-squared (LR) test is too liberal and gets worse as J.L decreases and 't increases 
- that is, when the negative binomial distribution departs from the Poisson distribution. When 't 
is large (e.g. 't =4,2,4/3, 1) and sample sizes are small (nl = n 2 = n3 = n4 = 5), the estimated 

Type I error rate is smaller than the nominal rate for LR. 

In general, the estimated Type I error rate is smaller than the nominal rate for F and SCaR. It 
only gets better when the sample size is large, 't is small (the negative binomial is close to the 
Poisson distribution), and J.L is large. 

When a = 0.01 and a = 0.1 , we obtained results similar to those for a = 0.05 . 
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Using the formula a ± zOOO5~a(1- a)/3000, we were able to identify Type I error rates that 

are significantly different from a at the 0.01 significance level. 
We constructed power curves for all seven statistics (RSCR, SCOR, LR, F, FSQ, FLG, and 

FSH) with 't = 4, 2, 1,0.2, n1 = n 2 = n3 = n 4 = 5, 10, 25, and some values of~, with a levels 

fixed at 0.05. These power curves are plotted as functions of d. Larger values of d correspond to 
greater differences in the ~i 's. See Figures 1 - 4 for details. 

In general, LR and RSCR are more powerful than the ANOV A methods. Among the 
ANOV A methods, F does not possess the robust properties with respect to the negative binomial 
distribution for small sample sizes, when 't is large, or when ~ is small. The other three ANOV A 
methods that are based on the transformed data (FSQ, FLG and FSH) hold their significance 
levels well and their power curves are better than those of F (but not as good as for LR or 
RSCR). See Figures 1 - 4. 

5. Example 

The data in Table 4 (McCaughran & Arnold, 1976) refer to counts of embryonic deaths in a 
control group and two treatment groups (n1 = n 2 = n3 = 10). 

Number 
of deaths 

o 
1 
2 
3 
4 

Table 4: Counts of embryonic deaths 

Control 
group 

7 
2 
1 
o 
o 

Frequency 

Dose 
Levell 

5 
4 
o 
1 
o 

Dose 
Level 2 

4 
2 
3 
o 
1 

Suppose it is known from experience that 't = 0.25 , so we might assume that 
Yjj - ind NB (~j ,0.25) for i = 1, 2, 3 and j = 1, 2, ... , 10. 

To determine if there are differences in the mean counts of deaths among the groups we test the 
hypothesis 

Ho : ~1 = ~2 = ~3 versus H1: at least two differ. 
Table 5 below shows the calculated p-values for the seven test statistics previously introduced. 

Test 

P-value 

Table 5: List of P - Values for Seven Methods (Example) 

RSCR SCOR LR F FSQ FLG 

0.345 0.194 0.192 0.227 0.279 0.257 

FSH 

0.254 

Based on the p-values, all the tests indicate that the group means do not differ significantly 
from one another. This is in agreement with our simulation results. 
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6. SUMMARY 

In general, RSCR and LR are more powerful tests than the other tests. However, while RSCR 
maintains the type I error rate, LR is too liberal for small values of Jl and for small sample sizes 
(i.e., LR rejects the hypothesis more than it should when the population means are equal.). Hence 
it certainly will have greater power. 

All tests have greater power for small 't than for large 't - that is, for small departures from 
the Poisson assumption, the tests are more powerful. Also all of the tests have greater power for 
large values of Jl than they do for small values of Jl. 

Because LR is sometimes too liberal and the RSCR test is much more powerful than all of 
the other tests, we recommend the use of the RSCR test. 
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Table 1: Observed Type I Error Rates based on 3000 replications 
Nominallevel: a = 0.05 

n]=n2 

n 3=n 4 
1: Jl RSCR SCOR LR F FSQ FLG FSH 

5 4 0.25 0.032* 0.006* 0.012* 0.021* 0.027* 0.026* 0.027* 
0.50 0.042 0.012* 0.035* 0.028* 0.042 0.040* 0.043 
0.75 0.050 0.017* 0.053 0.027* 0.045 0.043 0.045 

1 0.055 0.020* 0.060* 0.030* 0.047 0.047 0.048 
2 0.051 0.016* 0.082* 0.030* 0.043 0.046 0.049 
5 0.053 0.018* 0.090* 0.028* 0.039* 0.046 0.049 
10 0.060 0.019* 0.089* 0.032* 0.040* 0.049 0.050 
15 0.054 0.019* 0.086* 0.032* 0.047 0.054 0.054 
20 0.051 0.020* 0.078* 0.028* 0.036* 0.045 0.046 

2 0.25 0.045 0.021* 0.028* 0.025* 0.034* 0.032* 0.034* 
0.50 0.057 0.036* 0.063 0.039* 0.050 0.047 0.049 
0.75 0.050 0.027* 0.062 0.033* 0.051 0.049 0.050 

1 0.042 0.028* 0.073 0.031 * 0.043 0.040 0.043 
2 0.046 0.026* 0.078 0.037* 0.055 0.055 0.056 
5 0.049 0.031 * 0.060 0.039* 0.051 0.055 0.056 
10 0.056 0.035* 0.067 0.036* 0.050 0.055 0.053 
15 0.047 0.028* 0.060 0.031 * 0.047 0.053 0.052 
20 0.039* 0.023* 0.060 0.037* 0.048 0.050 0.050 

5 1 
0.25 0.033* 0.032* 0.034* 0.027* 0.038* 0.036* 0.036* 
0.50 0.041 0.034* 0.067* 0.041 0.052 0.049 0.050 
0.75 0.047 0.035* 0.079* 0.038* 0.049 0.046 0.047 

1 0.047 0.036* 0.072* 0.047 0.054 0.054 0.055 
2 0.046 0.037* 0.058 0.033* 0.045 0.046 0.046 
5 0.050 0.037* 0.060* 0.041 0.051 0.050 0.049 
10 0.045 0.033* 0.055 0.036* 0.039* 0.041 0.040* 
15 0.056 0.046 0.066* 0.048 0.056 0.056 0.055 
20 0.041 0.031 * 0.052 0.037* 0.043 0.045 0.045 

0.2 
0.25 0.038* 0.038* 0.053 0.024* 0.031* 0.030* 0.030* 
0.50 0.043 0.041 0.073* 0.040* 0.050 0.048 0.047 
0.75 0.051 0.047 0.080* 0.045 0.055 0.054 0.055 

1 0.048 0.044 0.070* 0.045 0.056 0.056 0.053 
2 0.045 0.041 0.053 0.040* 0.048 0.049 0.047 
5 0.056 0.053 0.061 * 0.053 0.050 0.049 0.050 
10 0.050 0.046 0.052 0.050 0.052 0.049 0.052 
15 0.046 0.044 0.049 0.040* 0.047 0.047 0.048 
20 0.047 0.045 0.051 0.047 0.050 0.050 0.050 

*Indicates empirically significantly different from the nominal level a = 0.05. The 99% confidence 
interval is (0.04, 0.06) 
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Table 2: Observed Type I Error Rates based on 3000 replications 
Nominallevel: ex = 0.05 

n 1=n 2 

n3=n 4 
't 11 RSCR SCOR LR F FSQ FLG FSH 

10 4 0.25 0.040* 0.020* 0.049 0.027* 0.036* 0.036* 0.035* 
0.50 0.050 0.032* 0.075* 0.038* 0.047 0.046 0.048 
0.75 0.045 0.024* 0.078* 0.033* 0.045 0.044 0.046 

1 0.040* 0.022* 0.066* 0.025* 0.040* 0.039* 0.042 
2 0.052 0.033* 0.070* 0.030* 0.046 0.047 0.045 
5 0.046 0.032* 0.068* 0.034* 0.047 0.053 0.055 
10 0.050 0.030* 0.062* 0.037* 0.048 0.053 0.053 
15 0.048 0.033* 0.062* 0.036* 0.047 0.047 0.048 
20 0.041 0.024* 0.058 0.030* 0.044 0.053 0.050 

2 0.25 0.045 0.038* 0.064* 0.033* 0.041 0.037* 0.038* 
0.50 0.042 0.034* 0.067* 0.038* 0.048 0.046 0.047 
0.75 0.043 0.034* 0.066* 0.038* 0.048 0.048 0.047 

1 0.045 0.034* 0.063* 0.037* 0.051 0.050 0.051 
2 0.051 0.041 0.056 0.033* 0.043 0.046 0.046 
5 0.049 0.038* 0.055 0.042 0.047 0.047 0.046 
10 0.045 0.035* 0.052 0.039* 0.046 0.049 0.050 
15 0.046 0.039* 0.060* 0.038* 0.051 0.050 0.052 
20 0.043 0.033* 0.057 0.029* 0.044 0.044 0.045 

10 1 0.25 0.045 0.034* 0.084* 0.036* 0.040* 0.039* 0.039* 
0.50 0.050 0.043 0.067* 0.039* 0.043 0.043 0.044 
0.75 0.041 0.036* 0.055 0.038* 0.043 0.043 0.042 

1 0.050 0.046 0.063* 0.042 0.052 0.052 0.052 
2 0.043 0.040* 0.049 0.040* 0.049 0.051 0.050 
5 0.049 0.044 0.056 0.044 0.052 0.050 0.050 
10 0.048 0.042 0.055 0.042 0.051 0.051 0.051 
15 0.050 0.047 0.057 0.045 0.049 0.049 0.049 
20 0.058 0.054 0.061* 0.050 0.055 0.054 0.055 

0.2 0.25 0.047 0.047 0.077* 0.042 0.045 0.044 0.044 
0.50 0.048 0.047 0.067* 0.044 0.048 0.045 0.045 
0.75 0.050 0.048 0.060* 0.047 0.056 0.053 0.053 

1 0.051 0.050 0.059 0.047 0.057 0.053 0.052 
2 0.058 0.057 0.057 0.055 0.046 0.048 0.051 
5 0.054 0.054 0.053 0.051 0.052 0.054 0.053 
10 0.050 0.049 0.052 0.049 0.053 0.057 0.057 
15 0.048 0.047 0.049 0.046 0.044 0.042 0.042 
20 0.048 0.048 0.048 0.053 0.053 0.050 0.049 

*Indicates empirically significantly different from the nominal level ex = 0.05. The 99% confidence 
interval is (0.04, 0.06) 
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Table 3: Observed Type I Error Rates based on 3000 replications 
Nominallevel: ex = 0.05 

n]=n2 

n3=n 4 
l' Il RSCR SCOR LR F FSQ FLG FSH 

25 4 0.25 0.051 0.042 0.067*0. 0.041 0.048 0.047 0.048 
0.50 0.045 0.035* 0.055 0.035* 0.043 0.043 0.044 
0.75 0.053 0.042 0.062* 0.044 0.048 0.049 0.046 

1 0.050 0.040* 0.058 0.039* 0.045 0.046 0.048 
2 0.050 0.041 0.062* 0.042 0.055 0.053 0.055 
5 0.050 0.042 0.057 0.036* 0.043 0.045 0.046 
10 0.047 0.040* 0.054 0.043 0.048 0.052 0.055 
15 0.044 0.035* 0.048 0.038* 0.048 0.055 0.054 
20 0.052 0.041 0.062* 0.046 0.052 0.052 0.052 

2 0.25 0.051 0.043 0.063* 0.045 0.047 0.047 0.047 
0.50 0.046 0.043 0.053 0.038* 0.044 0.041 0.042 
0.75 0.046 0.042 0.051 0.038* 0.045 0.043 0.044 

1 0.051 0.047 0.059 0.042 0.048 0.049 0.049 
2 0.046 0.041 0.050 0.043 0.049 0.051 0.050 
5 0.048 0.044 0.054 0.043 0.050 0.051 0.051 
10 0.049 0.047 0.056 0.045 0.048 0.050 0.051 
15 0.054 0.050 0.059 0.048 0.055 0.056 0.054 
20 0.055 0.049 0.061 * 0.047 0.048 0.053 0.052 

1 0.25 0.044 0.043 0.056 0.046 0.047 0.046 0.046 
0.50 0.047 0.047 0.055 0.048 0.051 0.052 0.053 
0.75 0.051 0.051 0.054 0.052 0.052 0.049 0.049 

1 0.052 0.051 0.055 0.053 0.055 0.055 0.055 
2 0.049 0.049 0.052 0.054 0.050 0.053 0.053 
5 0.052 0.051 0.052 0.049 0.055 0.052 0.052 
10 0.051 0.050 0.050 0.053 0.048 0.049 0.049 
15 0.049 0.049 0.049 0.043 0.048 0.048 0.050 
20 0.048 0.048 0.049 0.049 0.046 0.046 0.046 

50 4 0.25 0.046 0.041 0.055 0.041 0.044 0.045 0.044 
0.50 0.050 0.046 0.052 0.046 0.050 0.049 0.051 
0.75 0.043 0.040 0.049 0.043 0.050 0.049 0.049 

1 0.052 0.045 0.050 0.044 0.049 0.048 0.048 
2 0.051 0.047 0.057 0.045 0.049 0.048 0.049 
5 0.051 0.046 0.053 0.038 0.046 0.046 0.045 
10 0.044 0.039 0.044 0.043 0.054 0.054 0.053 
15 0.052 0.047 0.055 0.042 0.050 0.050 0.050 
20 0.047 0.043 0.055 0.044 0.051 0.048 0.046 

*Indicates empirically significantly different from the nominal level ex = 0.05. The 99% confidence 
interval is (0.04, 0.06) 
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Figure 1 3000 replications; sample sizes n1 =n2 =n3 = n4 =5; 

l' = 2; f.ll = f.l2 = f.l3 = 0.75; f.l4 = f.ll (1 + d), d > 0 
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Figure 2 3000 replications; sample sizes n 1 = n 2 = n 3 = n 4 = 10 ; 

l' = 2; f.ll = f.l2 = f.l3 = 5; f.l4 = f.ll (1 + d), d > 0 
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Empirical power curve corresponding to nominal level = 0.05 
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Figure 3 3000 replications; sample sizes n 1 = n 2 = n 3 = n 4 = 10; 

't = 1; Jll = 5, Jl2 = Jll (1 + d), Jl3 = Jll (1 + 2d), Jl4 = Jll (1 + 3d), d > 0 
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Figure 4 3000 replications; sample sizes n 1 = n 2 = n 3 = n 4 = 5 ; 

't = 2; Jll = Jl2 = 0.75; Jl3 = Jl4 = Jll (1 + d), d > 0 
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