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A COMPUTATIONALLY EFFICIENT METHOD FOR 
DETERMINING SIGNIFICANCE IN INTERVAL MAPPING 

OF QUANTITATIVE TRAIT LOCI 

Dan Nettleton 
917 Oldfather Hall 

Department of Mathematics and Statistics 
University of Nebraska-Lincoln 68588-0323 

ABSTRACT 

This paper provides a brief introduction to the mapping of quantitative trait loci (QTL). An exam­
ple on mapping QTL for root thickness in rice is presented to illustrate popular statistical methods 
used in QTL mapping. Interval mapping is used in conjunction with permutation testing techniques 
to detect significant associations between genetic positions and quantitative traits while controlling 
overall type I error rate. A review of a recent technique that can greatly reduce the computational 
expense of permutation testing in QTL mapping is discussed. Theory is provided for an extension 
of recent results that may lead to more powerful methods of QTL mapping through permutation 
testing. 

1. Introduction 
Quantitative trait loci (QTL) are regions of the genome that affect quantitative characteristics of 
plants and animals. Researchers have attempted to locate QTL for a variety of traits in many or­
ganisms in recent years. A few examples, arbitrarily selected from many, include efforts to map 
the genetic regions affecting fruit weight in tomatoes (Paterson et a!., 1988, 1991), body fat in pigs 
(Andersson et a!., 1994), sugar-cane-borer resistance in maize (Bohn et aI., 1996), stinging behav­
ior and body size in honey bees (Hunt, 1998), milk production in dairy cattle (Arranz, Coppieters, 
and Georges, 1998), and IQ in humans (P10min, McClearn, and Smith, 1994). This paper will 
use the work of Champoux et a!. (1995) on mapping QTL for root thickness in rice as a context 
for discussing some important computational and statistical issues in QTL mapping. The focus 
will be on permutation testing - developed by Fisher (1935) and first applied to QTL mapping by 
Churchill and Doerge (1994). 

Permutation testing is a computationally intensive method that provides a means of determining 
the significance of test statistics used in various QTL mapping procedures. This intuitive method 
is popular in QTL mapping for many reasons. It is, for example, robust against departures from 
standard QTL modelling assumptions that are often in doubt but difficult to check. It provides nat­
ural controls on overall type I error rate when multiple dependent hypothesis tests are considered 
simultaneously. Permutation testing "automatically reflects the characteristics of the particular ex­
periment to which it is applied" (Churchill and Doerge, 1994). Unfortunately, permutation testing 
can be very computationally expensive. Nettleton and Doerge (2000) presented a method for min­
imizing the computational cost of permutation testing in QTL mapping studies. This method is 
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reviewed in Section 5. 
Section 4 describes the use of permutation testing in interval mapping of QTL. Interval map­

ping, a statistical method for locating QTL developed by Lander and Botstein (1989), is widely 
used for initial genome scans. This method allows all positions throughout the genome to be tested 
for association with the quantitative trait of interest. It is an extension of single-marker-analysis 
techniques (Sax, 1923; Soller, Brody, and Genizi, 1976) that test for association at only the limited 
number of genetic positions for which explicit genotype information is available. In interval map­
ping, test statistics known as LOD scores are computed for closely spaced positions throughout 
the genome. Large LOD scores are evidence of association between the corresponding genetic 
positions and the trait of interest. The LOD scores are typically plotted against genetic position to 
provide a visual assessment of the nature of association between the genome and the trait. Permu­
tation testing can be used to determine the statistical significance of each LOD score. More detail 
on interval mapping is presented in Section 3. 

Figure 1 shows plots of LOD score versus genetic position for 4 simulated chromosomes. Fig­
ure 2 shows plots of LOD score versus genetic position for the 12 chromosomes of rice using data 
on root thickness from Champoux et al. (1995). This paper will illustrate how to make efficient use 
of permutation testing to determine the significance of each LOD score in Figures 1 and 2 using 
the method developed by Nettleton and Doerge (2000). The simulated data is analyzed in Section 
6. Analysis of the rice data is presented in Section 7. An extension to the work of Nettleton and 
Doerge (2000) will be discussed in Section 8. The next Section provides background information 
concerning the study of Champoux et al. (1995) and contains a minimal discussion of genetic is­
sues necessary for understanding the remainder of the paper. 

2. Mapping QTL for Root Thickness in Rice 
Champoux et al. (1995) discuss evidence suggesting that rice plants with thick roots generally have 
better drought tolerance than plants with thin root systems. Thus, the development of varieties of 
rice with thick roots is desired for regions where rice is grown without the guarantee of sufficient 
soil moisture. Mapping QTL for root thickness is a first step toward understanding the genetic 
architecture of root thickness and eventually developing lines of rice with better drought tolerance 
characteristics. 

Champoux et al. (1995) studied 203 recombinant inbred rice lines derived from a cross be­
tween two rice lines, indica cultivar C039 andjaponica cultivar Moroberekan. The C039 cultivar 
has a thin root system and is susceptible to drought while Moroberekan has a thick root system 
and is drought resistant. The genetic make up of any given recombinant inbred line is a unique 
mixture of genetic material from C039 and Moroberekan, i.e., genetic material from the C039 
parent is interspersed with genetic material from the Moroberekan parent throughout the genome. 
At any given locus (genetic position), some of the 203 recombinant inbred lines will have genetic 
material from the C039 parent and all other lines will have genetic material from the Moroberekan 
parent. A locus exhibits an association with root thickness if the recombinant inbred lines with 
C039 genetic material at the locus have significantly different root thickness than the lines with 
Moroberekan genetic material at the locus. Because of the wide difference in root thickness be­
tween the parental lines, at least one and probably several genetic positions are expected to exhibit 
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an association with root thickness in the sample of 203 recombinant inbred lines. 
Identifying the loci that are significantly associated with the trait is complicated by the fact 

that the type of genetic material (genotype) is observed only at certain loci known as markers. 
Fortunately, the genotypes of markers, together with a genetic map, provide enough information 
about genotypes at non-marker loci to allow tests of association at all loci. The details of genetic 
maps will not be discussed in this paper. To understand subsequent sections of this paper, it is 
necessary to know that: 

1. Only the genotypes of marker loci are observed. 

2. There is a spatial dependence in genotype across any chromosome. 

3. This dependence can be exploited to determine the conditional probability of each parental 
genotype at any particular position, given the genotypes of the markers flanking that position. 

4. Genetic distances are often reported in centiMorgans (cM). The dependence of genotypes at 
genetic positions increases as the distance in cM between the positions decreases. 

The genotypes of the 203 recombinant inbred lines were recorded at 123 markers spread over 
all 12 chromosomes. This information, along with a measurement of root thickness (in microme­
ters) for each line, constitute the data available for QTL mapping. The next section describes how 
interval mapping can be used to identify associations between loci and trait with such data. 

3. Interval Mapping 
For any particular locus X suppose that 

(1) 

where /1?;-, pt, and (J"2 are unknown parameters, li denotes the quantitative trait measurement 
associated with the ith line, and Xi denotes the genotype of the ith line at locus X (i = 1, ... , n). 
For the rice data discussed in the previous section, n = 203, Yi is the root thickness measurement 
for the ith line, and we could choose a to represent the C039 genotype and b to represent the 
Moroberekan genotype. The parameter p?;- (pt) would represent the mean root thickness for lines 
with C039 (Moroberekan) genotype at locus X. The parameter (J"2 represents the common root 
thickness variance within each of the two groups of lines. 

A test of Hl1 : p,?;- = pt against HI : /1; #- ~lr- can be used to test locus X for association with 
the trait of interest. The null hypothesis indicates that locus X is unassociated with the trait since 
the trait distributions are the same for lines with either genotype under the null hypothesis. Locus 
X is associated with the trait under the alternative hypothesis because the distribution of the trait 
depends on genotype at locus X according to the alternative hypothesis. Interval mapping consists 
of conducting multiple tests of this form at loci closely spaced throughout the entire genome. 

The test statistic typically used in interval mapping is the negative base-ten log of the likelihood 
ratio. This quantity is called a LOD score and is related to the usual likelihood ratio test statistic 
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(-21nA) as follows. 

where L(/-L~'(, /-L~, (]"2) denotes the likelihood function. The LOD score is equivalent to a two­
sample t statistic when X is a marker locus. The likelihood becomes a special normal mixture 
likelihood when X is not a marker. Maximization of this mixture likelihood under the alternative 
hypothesis requires the EM algorithm or a similar iterative procedure. Details of the computation 
of LOD scores via the EM algorithm are provided by Carbonell, et al. (1992) and Nettleton and 
Praestgaard (1998). 

Nettleton (1999) studied the likelihood ratio test of He- versus Ht for an arbitrary number 
of genotype-class means. The asymptotic null distribution of the likelihood ratio test was shown 
to be chi-square with degrees of freedom equal to one less than the number of genotype-class 
means. Thus, the asymptotic distribution of the LOD score for the case considered here is that of 
a single-degree-of-freedom chi-square random variable divided by In 100 (or, equivalently, multi­
plied by 1 /2log 10 e) as claimed by Lander and Botstein (1989). This asymptotic result is useful 
for evaluating the significance of a single locus. In interval mapping, however, we are interested in 
determining the significance of hundreds of loci using hundreds of correlated LOD scores which 
means that issues of multiple testing must be addressed. Using the chi-square critical value for 
each of hundreds of tests will almost certainly lead to an unacceptable number of type I errors 
(false declarations of association between locus and trait). 

Let Xl, ... , Xp denote the loci at which LOD scores are computed in an interval mapping pro­
cedure. Let LOD j denote the LOD score computed at locus Xj (j = 1, ... ,p). To control the rate 
at which the interval mapping procedure will yield one or more false positive QTL declarations, 
we seek constants q1, ... , qp such that 

PH~ [LOD 1 > q1 or LOD 2 > q2 or ... or LODp > qp] :S: 0', 

where H~ : /-L;J = /-L;-J for all j = 1, ... , p. The overall type I error rate will be no larger than 
0' if a locus Xj is declared associated with the trait only when LO D j > qj. It seems reasonable 
to require q1 = ... = qp because the asymptotic null distribution of each LOD score is the same 
(chi-square with one degree of freedom for the recombinant inbred lines studied here). Hence, we 
seek a constant q such that 

Pw [max LOD j > q] ::; 0'. 
o l::;)::;p 

It is difficult to determine the asymptotic distribution of max1::;j::;p LOD j under H~ because of 
the complex dependence structure among the LOD scores. Lander and Botstein (1989) offered 
an approximate value of q for the dense-map case in which the spacing of consecutive markers 
approaches zero. Rebai", Goffinet, and Mangin (1994) and Dupuis (1994) provided other analytical 
methods for estimating q. Churchill and Doerge (1994) offered permutation testing as an alterna­
tive means of estimating the critical value q that is free of many assumptions required by asymptotic 
approaches. Doerge (1998) discussed some benefits of the permutation technique relative to ap­
proaches based on asymptotic approximations. The next section provides a brief explanation of 
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permutation testing in the context of interval mapping. 

4. Permutation Testing in Interval Mapping 
The distribution of maxI:::;j:::;p LOD j under H~ can be approximated by the permutation distribution 
ofmaxl:::;j:::;p LODj . The permutation distribution ofmaxl:::;j:::;p LODj can be determined, in theory, 
by computing the value of maxI:::;j:::;p LODj for n! permuted data sets. A permuted data set is 
obtained by randomly assigning the observed trait values YI, ... , Yn to the n lines while holding 
the genotype information for each line fixed at the observed values. There are n! permuted data 
sets since there are n! ways to assign the observed trait values to the lines. One of the n! permuted 
data sets is the original data set where each trait value is assigned to its own line. We may choose 
q to be the 1 - a quantile of the n! values of maxI:::;j:::;p LOD j that arise from the analysis of the n! 
permuted data sets. Specifically, let q = M In!c; J+I where l:1' J denotes the greatest integer less than 
or equal to :r and Ail ~ iVI2 ~ ... ~ lVIn! denote the values of maxl:::;j:::;p LOD j computed from 
the n! permuted data sets and ordered from largest to smallest. 

Choosing q in this manner yields a testing procedure which maintains appropriate type I error 
rate for arbitrary sample size and marker spacings. The normality assumption in (1) can be relaxed 
to 

P[Yi :::; y] = F(y) when Xi = a and P[Y; :::; y] = F(y - ox) when Xi = b, 

where F is any distribution function and OX is an unknown parameter that equals 0 under the 
null hypothesis. The parameter OX represents the shift in distribution between the two genotype 
classes at locus X. For the special case of normal distributions with common scale assumed in (1), 
OX = 111:- - 11:;-' Churchill and Doerge (1994) discussed other desirable theoretical properties of 
the permutation testing procedure. 

To see that the permutation test will indeed maintain the proper type I error rate, first note that 
any permutation of the trait values is equally likely under the null hypothesis. Thus, given the ob­
served trait values and genotype information associated with the lines, the conditional probability 
that the observed value of maxI:::;j:::;p LODj will exceed q is given by the proportion of permuted 
data sets for which maxI:::;j:::;p LODj > q. This proportion is less than or equal to a by the definition 
of q. Multiplying the conditional probability by the joint density of the trait values and genotype 
information under H~ and integrating over all possible trait values and genotype information yields 
PH; [maXI:::;j:::;p LODj > q] :::; a. 

Unfortunately, it is typically infeasible to determine q in the manner described above. Recall 
that LOD scores for non-marker loci must be computed using numerical methods. Thus, it can 
be quite time consuming to compute LOD scores at loci Xl, ... ,Xp for a single data set, and it 
is almost always impossible to compute these LOD scores for all n! permuted data sets. Instead, 
maxI:::;j:::;p LODj is computed for a simple random sample of N permuted data sets. The 1 - a 
quantile of the N sampled values of maxI:::;j:S;p LOD j, q, serves as an estimate of q. 

5. Determining Permutation Sample Size 
Nettleton and Doerge (2000) developed methods of accounting for the variability associated with 
sampling from all possible permutations when using interval mapping and permutation testing 
to detect QTL. They describe confidence intervals for permutation p-values and critical values 
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and explain how to use such confidence intervals to dynamically determine an appropriate value 
of N. This section presents some of the main results in Nettleton and Doerge (2000) that will 
be demonstrated in Sections 6 and 7 for the simulated data set and the rice data set discussed 
previously. See Nettleton and Doerge (2000) for detail on the derivation of each result. 

A permutation p-value is defined, for any locus X, as the proportion of permuted data sets 
for which maxl::;j::;p LODj matches or exceeds the observed LOD score at locus X. This p-value 
provides a measure of significance that accounts for testing multiple loci over the entire genome. 
Nettleton and Doerge call such a p-value an experimentwise permutation p-value to distinguish it 
from a p-value that is not adjusted for multiple testing. Let pX denote the permutation p-value 
at locus X, and let pX denote the proportion of the N sampled permuted data sets for which 
maxl<j<p LODj matches or exceeds the observed LOD score at locus X. The proportion pX is an 
unbia~ed estimate of pX, and a 100(1 -,)% confidence interval for pX is 

where <J)-l denote the inverse of the standard normal cumulative distribution function. The interval 
is based on the normal approximation to the binomial distribution and will have coverage close 
to nominal when N pX ~ 5. Such a confidence interval is useful for reporting a measure of 
significance that accounts for multiple testing and the effect of sampling from n! data permutations. 

A confidence interval for the permutation critical value q is also needed to reflect variation in 
the estimated critical value q discussed in Section 4. Let Ml ~ M2 ~ ... ~ A1N denote the values 
of maxl::;j::;p LODj computed from the N sampled permuted data sets and ordered from largest 
to smallest. An approximate 100(1 - ,)% confidence interval for the level-a critical value q is 
[A1£, A1ul where 

L = lNa + <J)-1(1 - ~)JN(1 - a)aJ and U = lNn - <J)-l(l- ~)JN(1 - a)aJ. 

This interval is based on the normal approximation to the binomial distribution and will provide 
appropriate coverage when N a ~ .5. 

Nettleton and Doerge (2000) recommended using this interval as a guide in determining an 
appropriate permutation sample size. Initially, a 100(1 - ,)% confidence interval for the a-level 
critical value is computed using at least 15/ a l permutations so that N a will be greater than or 
equal to 5. The LOD scores associated with peaks in the plot of LOD score versus genetic position 
are compared to this interval. The a-level significance status of each peak can be determined 
if each corresponding LOD score falls outside the confidence interval. Those LOD scores that 
fall above the upper endpoint of the interval can be judged significant at the a level while those 
falling below the lower endpoint of the confidence interval should not be considered statistically 
significant. These significance decisions will be the same as the decisions that would be made 
if all n! data permutations could be considered - provided the 100(1 - ,)% confidence interval 
contains the exact permutation critical value q. Additional permutations should be considered 
when one or more of the LOD scores associated with peaks in the plot of LOD score versus 
genetic position fall inside the confidence interval for the critical value. Nettleton and Doerge 
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recommended considering additional permutations until all the LOD scores associated with peaks 
fall outside the confidence interval for the critical value or until time and/or computational limits 
are reached. 

Without considering a confidence interval for the permutation critical value, prespecified val­
ues of N may be too small to determine the significance of peaks at the desired level or, on the 
other hand, may be much larger than necessary - resulting in inefficient use of computing re­
sources. The examples in Sections 6 and 7 will show that the significance of most peaks can be 
resolved using relatively few permutations when the procedure of Nettleton and Doerge (2000) is 
implemented. There can be considerable time savings over permutation procedures using earlier 
recommendations in the literature which called for the analysis of at least 1000 data permutations. 
The significance of some loci, however, may be in question even after considering as many as 2000 
permuted data sets. The work of Nettleton and Doerge (2000) provides a means of estimating sig­
nificance when the computational demands are too great to determine significance at a specified 
level. 

6. Analysis of a Simulated Data Set 
A sample of 100 lines with four chromosomes and four QTL were simulated. The trait value of 
the ith line was determined using Yi = 2.50Qi1 + 0.75Qi2 + 1.00Qi3 + 1.00Qi4 + Ei where Ei is a 
standard normal environmental error term, with additive effects defined as Q ij = 1 if the ith line has 
genotype a at the ph QTL and 0 otherwise. Chromosomes 1, 2, 3 and 4 are 102, 130, 169, and 70 
cM in length, respectively. A total of 46 markers are arbitrarily positioned throughout the genome 
- lIon chromosome 1, 13 on chromosome 2, 15 on chromosome 3, and 7 on chromosome 4. QTL 
1 is 62 cM from the left end of chromosome 1. QTL 2 is 44 cM from the left end of chromosome 
2. Chromosome 3 has QTL 3 and QTL 4 at 17 and 147 cM, respectively from the left. No QTL 
are present on chromosome 4. 

LOD scores were computed every 1 cM on each chromosome as described in Section 3. The 
resulting plot of LOD score versus genetic position for each chromosome is depicted in Figure 
1. Major peaks occur at 66 cM on chromosome 1 (LOD = 12.808), 24 cM on chromosome 2 
(LOD=2.894), and at 22 and 152 cM on chromosome 3 (LOD=1.640 and LOD=1.013). Exami­
nation of the plots in Figure 1 reveals that the only other loci with large LOD scores are clearly 
linked to one of the four loci above. Consequently, the subsequent permutation analyses will focus 
on these four loci only. 

Only 53 data permutations were required to determine the experimentwise significance of the 
four loci at the 0.10 level. An approximate 95% confidence interval for the 0.1 O-level permutation 
critical value was determined to be [1. 715,2.:346] using the methods outlined previously. The 
peaks on chromosomes 1 and 2 are judged significant at the 0.10 level because 2.346 is less than 
the LOD scores 12.808 and 2.894. The peaks on chromosome 3, on the other hand, fall short of 
experimentwise significance at level 0.10 since 1.640 and 1.012 are less than 1.715. If the goal 
is to determine significance at level 0.05, 110 data permutations are sufficient in this case. An 
approximate 95% confidence interval for the 0.05-level permutation critical value was determined 
to be [1.940, 2.659J. The peaks on chromosomes 1 and 2 are thus significant at the 0.05 level. 

Even 1000 data permutations are insufficient to determine the significance status of all four po-
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peaks on chromosomes 1 and 2 are judged significant at the 0.10 level because 2.346 is less than 
the LOD scores 12.808 and 2.894. The peaks on chromosome 3, on the other hand, fall short of 
experimentwise significance at level 0.10 since 1.640 and 1.012 are less than 1.715. If the goal 
is to determine significance at level 0.05, 110 data permutations are sufficient in this case. An 
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to be [1.940, 2.659J. The peaks on chromosomes 1 and 2 are thus significant at the 0.05 level. 

Even 1000 data permutations are insufficient to determine the significance status of all four po-

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/11



Applied Statistics in Agriculture 137 

sitions when considering 0.0 I-level experimentwise significance. An approximate 95% confidence 
interval for the O.OI-level critical value was determined to be [2.801,3.530] using 1,000 randomly 
selected data permutations. The locus on chromosome 1 is clearly significant while the loci on 
chromosome 3 are clearly not significant. The status of the point on chromosome 2, however, is 
uncertain. Considering 94 additional randomly chosen data permutations yielded [2.897,3.530] as 
an approximate 95% confidence interval for the O.Ol-level critical value. Hence, the second locus 
is judged insignificant at the 0.01 significance level. 

Confidence intervals for permutation p-values can be computed for the loci of interest on chro­
mosomes 2 and 3 using equation (2). Point estimates and approximate 95% confidence intervals 
are displayed in Table 1. The p-value estimates are based on the 1094 data permutations used to 
estimate the 0.0 I-level experimentwise threshold. No interval is provided for the first locus since 
its test statistic was exceeded by none of the 1094 values of max LO D. If the true permutation p­
value is actually 0.01 or bigger, the chance of estimating the p-value to be zero based on 1094 data 
permutations is extremely small (no larger than 0.99 1094 = 0.0000168). We can be quite confident 
that this locus is significantly linked to the trait. 

Note that the confidence interval for the second locus includes 0.01, suggesting that this po­
sition may be significant at the 0.01 level. Examination of the critical-value confidence interval 
suggested insignificance at the 0.01 level using the same 1094 data permutations. Such minor dis­
crepancies are possible when LOD scores are near the borderline. If we consider 334 additional 
data permutations, the confidence interval for the p-value becomes [0.0101,0.0235]' bringing it 
into agreement with the critical-value-based analysis. 

7. Analysis of the Rice Data 
Nettleton and Doerge (2000) conducted interval mapping for the rice data of Champoux et al. 
(1995). LOD scores were computed at 2 cM increments across each of the 12 chromosomes. 
The plots of LOD score versus genetic position are provided in Figure 2. Nettleton and Doerge 
showed that only 142 permutations were needed to establish the 0.05-level significance status for 
all peaks. The 0.05-level critical value estimate and the corresponding confidence interval are 
2.934 and [2.517, :3.569], respectively. The middle peak on chromosome 7 (LOD = 2.420) is the 
only peak that falls short of significance at the 0.05 level. The other peaks have LOD scores that 
exceed 3.569. Note that there is very little overlap between the confidence intervals for the 0.05-
level critical value in the rice data and the simulated data discussed in Section 6. The critical 
value appears less stringent for the simulated data. There are fewer opportunities for type I error 
in the simulated data because of the small genome size relative to rice. Thus, a smaller critical 
value for the simulated data seems appropriate. Such issues are automatically accounted for by the 
permutation testing procedure. 

Determining significance of all peaks in Figure 2 at the 0.01 level is more computationally 
challenging. At least 500 permutations should be considered according to the method discussed 
in Section 5. The 95% confidence interval for the O.OI-level critical value based on 500 permu­
tations is [3.355,5.793]. Most of the peaks that were declared significant at the 0.05 level can be 
judged significant at the 0.01 level after considering only 500 permutations. The significance sta­
tus of some peaks on chromosomes 2, 8, and 12 are in doubt based on this interval because their 
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corresponding LOD scores fall between 3.355 and 5.793. 
An additional 1500 permutations were considered, bringing the total to N = 2000. The corre­

sponding 95% confidence interval for the O.OI-level critical value is [3.627,4.348]. All peaks fall 
below 3.627 or above 4.348 except the second peak on chromosome 2 (LOD = 3.875) and the 
peak 4 cM from the left end of chromosome 12 (LOD = 3.665). (It may be reasonable to consider 
this latter peak as part of the larger peak occurring at 12 cM from the left of chromosome 12, but 
it will be considered as a separate peak here for illustration purposes.) Because these LOD scores 
fall between 3.627 and 4.348, their significance at the 0.01 level is uncertain. A pair of Bonferroni­
adjusted confidence intervals that will jointly contain the exact permutation p-values for the two 
loci with 95% confidence are (0.0039,0.0131) for the peak on chromosome 2 and (0.0077,0.0193) 
for the peak on chromosome 12. Both loci appear significant at the 0.02 level. Resolving the sig­
nificance of these peaks at the 0.01 level would require more computing power or more patience. 

8. An Extension 
It may be possible to develop a procedure for controlling overall type I error rate that is less 
conservative than the methods presented in Sections 3 and 4. In Section 3 we sought constants 
ql, ... , qp such that 

PH~ [LODI > qi or LOD 2 > q2 or ... or LODp > qp] :::; a 

to control the rate at which the interval mapping procedure would yield one or more false positive 
QTL declarations. In practice, only loci whose LOD scores are associated with peaks in the plots 
of LOD score versus genetic position are considered as candidate QTL. Hence, the rate of false 
positive QTL declarations will be appropriately controlled if we can find ql, ... , qk such that 

(3) 

where LOD(I) ~ ... ~ LOD(k) denote the LOD scores associated with the peaks in the plots of 
LOD score versus genetic position. 

Let LOD(l)e ~ ... ~ LOD(k)e denote the LOD scores associated with the k largest peaks in 
the plots of LOD score versus genetic position for the fth permuted data set (f = 1, ... , n!). Let 
VI denote the n!-dimensional vector whose fth component is Vie = LOD(I)e. Let V 2 denote the 
n!-dimensional vector whose fth component is 

v - { LOD(2)l' if LOD(1) > Vie 
2C - Vie if LOD(l) :::; Vie . 

Similarly, for j = 3, ... ,k; let Vj denote the n!-dimensional vector whose fth component is 

Yje = {LOD(j)e ~f LODU-I) > Yj-I,e . 
Yj-I,l' If LOD U- I) :::; Yj-I,e 

THEOREM. For j = 1, ... k; let Yj(1) ~ Yj(2) ~ ... ~ Yj(n!) denote the components ofVj ordered 
from largest to smallest. Equation (3) will be satisfied with qj = YjUn!aj+1) for j = 1, ... , k. 
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PROOF. By the definition of VI, ... , V k ; LOD(j) ::; ~je implies that LOD(j/) ::; Vj'e for 1 ::; j ::; 
j' ::; k. Thus, the number of components of Vj that match or exceed LO D (j) is less than or equal 
to the number of components of Vjl match or exceed LOD(j/) for any 1 ::; j ::; j' ::; k. By the 
definition of qj, LOD(j) > qj if and only if l an!J or fewer components of Vj match or exceed 
LOD(j). It follows that LOD(j') > qjl implies LOD(j) > qj for all 1 ::; j ::; j' ::; k. Hence, 
LOD(l) > ql or LOD(2) > q2 or ... or LOD(k) > qk is equivalent to LOD(1) > ql. Note that 
LOD(l) = maxl::;j::;p LOD j and ql = q as defined in Section 4. Thus, 

as demonstrated in Section 4. 0 

The proposed procedure will give a generally less conservative assessment of the significance 
of secondary peaks because ql 2 q2 2 ... 2 q/,:. This is a simple consequence of the construction 
of the vectors VI, ... , V k which ensures that ~~ie 2 Vj'e for all e = 1, ... ,n! and 1 ::; j ::; j' ::; k. 
A simpler procedure would measure the significance of the locus associated with the jth largest 
peak by comparing LODen to the 1 - a quantile of the distribution of the permutation-replicated 
statistics LOD(j)l, ... ,LOD(j)n!. However, this procedure would not guarantee the specified over­
all type I error rate and could lead to an undesirable situation in which the largest peak is judged 
insignificant while lesser peaks are declared significant. 

There are a few obstacles to implementation of the proposed procedure. The same computa­
tional challenges discussed in Section 4 will not permit a direct determination of ql, ... , qk. Rather, 
ql, ... ,qk must be estimated as described in Sections 4 and 5. Simultaneous estimation issues arise 
because k quantiles are estimated instead of one. Some judgement is required in determining the 
k largest peaks in a given plot of LOD score versus genetic position. It is difficult to know, for ex­
ample, whether a lesser peak is simply an artifact of close proximity to a larger peak. A algorithm 
that appropriately selects the k largest peaks for each permuted data set is needed. A conservative 
procedure would define a peak as any locus with a LOD score greater than the LOD scores of the 
two flanking positions. 

9. Summary 
Scientists studying a wide variety of organisms have attempted to locate regions of the genome 
that affect quantitative characteristics. The goal of many such attempts is to understand the genetic 
mechanisms responsible for quantitative variation with the hope of using this understanding to 
develop genetically superior lines for improved agricultural production. The study of Champoux 
et al. (1995) on root morphology in rice is one such example. 

Interval mapping is a statistical technique that can be used to scan a genome in search of loci 
that are associated with a quantitative trait of interest. Permutation testing is a computationally 
intensive procedure that can be used in conjunction with interval mapping to evaluate the strength 
of evidence for association between locus and trait. Recent results of Nettleton and Doerge (2000) 
can significantly reduce the computational expense of permutation testing in QTL mapping prob­
lems and allow more researchers to take advantage of the benefits that permutation testing holds 
over competing methods for determining statistical significance. 
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It may be possible to develop less conservative means of determining significance in interval 
mapping via permutation testing. The previous section provides the theoretical background in 
support of a new permutation testing procedure that will maintain appropriate type I error rate 
despite potentially lower critical values for judging the significance of secondary peaks in plots of 
LOD score versus genetic position. Some obstacles must be overcome before such a procedure 
can be implemented, but if they can be overcome, there is promise for increased power with little 
added computational expense. 
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Table 1: Permutation p-value estimates and confidence intervals for a simulated 
sample of 100 lines. 

Chromosome Positiona LOD P-Valueb Confidence IntervaF 
1 66 12.808 0.0000 *** 
2 24 2.894 0.01645 [0.009,0.024] 
3 22 1.640 0.2112 [0.187, 0.235] 
3 152 1.013 0.6417 [0.613,0.670] 

aDistance in cM from the first marker on the chromosome 
bEstimated experimentwise permutation p-value based on 1094 data permutations 
c Approximate 95% confidence interval for the p-value based on 1094 data permutations 
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Figure 1: Plots of LOD scores at 1 cM intervals for each of four simulated chromo­
somes for 100 lines and a total of 46 markers arbitrarily positioned throughout the 
genome. The first QTL is 62 cM from the left end of chromosome 1. The second 
QTL is 44 cM from the left end of chromosome 2. The third and fourth QTL are 17 
cM and 147 cM, respectively, from the left end of chromosome 3. Chromosome 4 
contains no QTL. 
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Figure 2: Plots of LOD scores at 2 cM intervals for 12 rice chromosomes based on 
recombinant inbred line data from the study of Champoux et al. (1995). 
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