
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 1999 - 11th Annual Conference Proceedings 

AN IMPROVED ESTIMATOR FOR ASSESSING THE MEASURE OF AN IMPROVED ESTIMATOR FOR ASSESSING THE MEASURE OF 

AGREEMENT WITH A GOLD STANDARD AGREEMENT WITH A GOLD STANDARD 

Brent D. Burch 

Ian R. Harris 

Roy T. St. Laurent 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Burch, Brent D.; Harris, Ian R.; and Laurent, Roy T. St. (1999). "AN IMPROVED ESTIMATOR FOR ASSESSING 
THE MEASURE OF AGREEMENT WITH A GOLD STANDARD," Conference on Applied Statistics in 
Agriculture. https://doi.org/10.4148/2475-7772.1264 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/1999
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F1999%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F1999%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F1999%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1264
mailto:cads@k-state.edu


120 Kansas State University 

AN IMPROVED ESTIMATOR FOR ASSESSING THE 
MEASURE OF AGREEMENT WITH A GOLD STANDARD 

Brent D. Burch, Ian R. Harris, and Roy T. St. Laurent 

Department of Mathematics and Statistics, Northern Arizona University, 
Flagstaff, Arizona 86011, U.S.A. 

ABSTRACT 

St. Laurent (1998, Biometrics 54, 537-545) developed a measure of agreement for method com­
parison studies in which an approximate method of measurement is compared to a gold standard 
method of measurement. The measure of agreement proposed was shown to be related to a 
population intraclass correlation coefficient. This paper develops a family of estimators for the 
measure of agreement based on pivotal quantities. A blend of two particular members of the 
family is suggested as an estimator itself. In general, this estimator outperforms the maximum 
likelihood estimator in terms of bias and mean-squared error. 

1 Introduction 

St. Laurent (1998) proposed an estimator that can be used in method comparison studies 
where the aim is to assess the degree of agreement between a precise standard of measure­
ment (the gold standard) and an approximate measurement. The gold standard method 
is often expensive and time consuming to apply, and may be invasive or destructive of 
the object being measured. The approximate method, on the other hand, is often inex­
pensive, quicker, and noninvasive. It is assumed that the gold standard and approximate 
measurements are on the same scale and no calibration is desired. 

For example, Prigent et al. (1991) investigate induced myocardial infarcts in twelve 
dogs. For each dog they examined the percentage of heart muscle affected by the infarc­
tions. An approximate measure is an image analysis from single photon emission computed 
tomography (SPECT). The gold standard of measurement is the percentage determined by 
pathologic examination. In another application, the loin eye area of beef cattle determined 
by an imaging procedure prior to slaughter may be compared to the loin eye area obtained 
by examining the carcass. In competitions involving judging, it may be of interest to com­
pare the opinion of a novice judge (the approximate method) to that of an expert judge 
(the gold standard method). Additional examples of method comparison studies can be 
found in St. Laurent (1998). 

St. Laurent (1998) suggests the use of a modified random effects model, given by 

(1) 
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to assess the agreement between an approximate method of measurement with a gold 
standard. Xi is the approximate measurement on the ith unit; Gi , the gold standard 
measurement on the ith unit is a random variable with mean f.L and variance 0"&; and ti 

is a measurement error associated with the approximate measurement, independent of Gi , 

with mean 0 and variance 0"2. The model given in (1) assumes that the approximate and 
gold standard methods have the same mean and that the approximate measurements have 
larger variation (0"& + 0"2) than the gold standard measurements (0"&). 

U sing this model, the correlation between Xi and G i is p = O"G j (0"& + 0"2) 1/2 so p may 
be used to measure the agreement between the approximate and gold standard. p2 is the 
proportion of variability in X due to G and is identical in form to an intraclass correlation 
coefficient. Note that 0 S PSI and large values of p are of primary interest as they 
indicate the approximate and gold standard measurements are in relative agreement. In 
these situations, the approximate method may be deemed adequate and the often invasive 
or expensive gold standard method avoided. 

St. Laurent (1998) investigates several estimators of p, and suggests the use of 

(~)1/2 
Y + 1 ' 

(2) 

where Y = SGGjSDD, SDD = L(Xi - Gi )2 = Lt;, and SGG = L(Gi - G)2. An interesting 
feature of this problem is that the ti are observed and hence SDD is calculable. If the ti 

and G i are normally distributed, then rg is the maximum likelihood estimator (MLE) of p. 

In this paper the authors develop a family of estimators for p, which includes rg . It will 
be shown that for various values of p certain members of this family are preferable to rg 

in terms of bias and mean-squared error. Furthermore, a particular blend of two of these 
estimators has very little bias, with mean-squared error similar to that of r g • When p is 
large, the blended estimator is superior to rg in terms of bias and mean-squared error. 

2 A Family of Estimators 

Burch and Harris (1998) suggest a method of deriving estimators that is equivalent to 
shrinking confidence intervals to a point by reducing the confidence coverage to zero. A 
particular case of this method is to equate a pivotal quantity for the parameter of interest 
to a value of the pivoting distribution. It is this method that is used in the present paper. 
For general discussion of the procedure see Burch and Harris (1998). 

Assuming that the ti are from a scale family of distributions with scale parameter 0", 
and that the G i are from a location-scale family with parameters f.L and O"G, then nY(p-2 -
l)j(n - 1) is a pivotal quantity. That is, the distribution of nY(p-2 - l)j(n - 1) does not 
depend on the value of the parameter p. The method of estimation requires that one solve 
the pivoting equation 

nY(h-2 - l)j(n -1) = F, (3) 
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where F is a value from the support of the distribution of the pivotal quantity. Solving (3) 
for PF leads to the family of estimators indexed by F 

( 
Y ) 1/2 

PF = nY + ~n - 1)F (4) 

This family contains rg by selecting F = nj(n - 1). Another estimator of p, the ANOVA 
estimator proposed by St. Laurent (1998), corresponds to F = 1. 

3 Some Properties of the Estimators 

Properties of members of this family of estimators are presented in the following discussion. 
The values of PF are confined to the interval [0,1]. Note that the estimator PF is not 
truncated as is often the case when estimating functions of variance components. As F 
increases, PF decreases and as F decreases, PF increases. For each value of F, as p goes 
to zero, PF goes to zero, and as p approaches 1, (iF approaches 1. Thus for any value of 
F, the bias and mean-squared error of PF go to zero as p approaches the endpoints of the 
parameter space. 

One immediate question is whether there is a member of the family that is better than 
any other member of the family in minimizing mean-squared error. Harris and Burch (1999) 
investigate a similar problem involving estimators of the intraclass correlation coefficient 
in a balanced one-way random effects model. The following result for the gold standard 
problem parallels results of Harris and Burch (1999). 

Result: Consider the family of estimators of p of the form PF. For each F in the interval 
[F_, F+L the estimator PF cannot be beaten everywhere in minimizing mean-squared error 
by any other estimator within the family of estimators of the form PF. 

Note that PF = (1+FU(p-2 -1)t1/2, where U = (n-1)j(nY(p-2-1)). Let c = 1-p, 
then near p = 1 one can write PF = 1 - cFU + o( c). It follows that Bias(PF) = c(1 -
F E(U)) + o( c) and MSE(PF) = c2 [1 - 2F E(U) + F2 E(U2)] + o( c2 ). Note that MSE(PF) is 
an increasing function of F when p is close to 1 as long as F > F_ = E(U)j E(U2). 

For p near 0, PF = p(FUt1/2+0(p2), and hence Bias(pF) = p(F-1/2 E(U-1/2)-1)+0(p2) 
and MSE(PF) = p2(F-1 E(U-1) - 2F-1/2 E(U-1/2) + 1) + 0(p3). In this case, the MSE(PF) 
decreases for F-values less than F+ = (E(U- 1)jE(U-1/2))2, whereupon the mean-squared 
error starts to increase. Combining the results for p near the ends of the parameter space, 
one may conclude that PF is admissible within the family in terms of mean-squared error 
if F is contained in [F-, F+]. 

The result above indicates that within this family of estimators of p there exists a 
collection of admissible estimators of p. From the collection of admissible estimators one 
may identify estimators that have desirable attributes. For instance, there are two members 
of the family that perform well in terms of bias in either the lower or upper region of the 
parameter space: PFo , where Fo = E( U-1/2)2, has negligible bias when p is close to 0; and 
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PF1 , where F1 = 1/ E(U), has negligible bias when p is close to 1. Using Jensen's inequality 
it may be shown that F_ :::; F1 :::; Fo :::; F+ and hence both PFo and PF1 are admissible 
within the family. 

4 A Blended Estimator 

Srivastava (1993) suggests the use of a composite or blended estimator for the intraclass 
correlation coefficient in unbalanced designs. The procedure is to blend together two es­
timators, one of which performs well in one section of the parameter space, and one of 
which performs well in another section. This method can be adapted to the gold standard 
problem by creating an estimator which is a blend of PFo and PF1 • One can blend these 
estimators on the p scale or the p2 scale. As the derivation of PF relied on a pivotal quantity 
that involved p2, blending is performed on the p2 scale. 

The blended estimator of p, denoted by Pb, is obtained from 

(5) 

where w is a weight parameter (0 :::; w :::; 1). When p2 is small we would like the estimator 
to place more weight on ph which implies w should be small. Similarly, when p2 is large 
we would like the estimator to place more weight on P}l which implies w should be large. 
One can see that values of wand p2 are related as w tends to copy p2. Following Srivastava 
(1993), p~ is su bsti tu ted for w in (5) and solving for Pb yields 

PFo ( 
~2 ) 1/2 

(6) 

As outlined in the next section, the performance of this estimator is excellent, particularly 
in terms of bias. 

5 Performance of the Estimators 

If ti and Gi are normally distributed, U rv Fn ,n-1 in which case the F-values that result in 
admissible estimators range from F_ = n(n - 5)/((n -1)(n + 2)) to F+ = n(n -1)/(n - 2t 
In addition, Fo = n / (n - 1), F1 = (n - 3) / (n - 1), and the maximum likelihood estimator 
of p under the normal assumption, 7'g, is equal to PFo• If PbN is defined to be the blended 
estimator under the normality assumptions, then 

( ny2+(n-3)Y )1/2 
nY2 + 2(n - 3)Y + (n - 3) 

(7) 

As previously mentioned, estimating p when it is large is of primary importance, hence 
estimators of the form (4) corresponding to small values of F are preferable. In this 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/10



124 Kansas State University 

regard, PF_, PF1 , as well as the blended estimator PbN are considered. These estimators 
are compared to the MLE, namely r g = P Fo' in terms of relative mean-squared error and 
relative absolute bias. 

As p approaches 1 (or 0), it is possible to analytically find the relative mean-squared 
error and relative absolute bias by considering the expansion of these quantities in terms of 
p. The measures of performance of PF_, PF1 , and Pb N relative to rg are displayed in Table 1. 
When p = 1, Pb N and PF1 exhibit superior performance in terms of mean-squared error and 
bias. Furthermore, PbN has the best performance in terms of mean-squared error and bias 
when p = O. In other words, the blended estimator outperforms the competing estimators 
at both ends of the parameter space. 

To investigate the behavior of the estimators for intermediate values of p, one has to re­
sort to numerical calculations for specific cases. Figure 1 presents a comparison of Pb N and 
r g in terms of bias. Results for n = 10, 20, and 50 are displayed. Figure 2 presents a com­
parison PbN and rg in terms of relative mean-squared error, defined as MSE(Pb N )/MSE(rg). 
As in Figure 1, the results in Figure 2 are displayed for n = 10, 20, and 50. 

For a given sample size, the bias of PbN is close to zero whereas rg exhibits a conspic­
uously negative bias. In fact, Figure 1 indicates that for samples sizes greater than 50 
the bias of PbN is negligible across the entire parameter space. For large values of p, Pb N 

outperforms rg in terms of bias and mean-squared error. In other words, rg understates 
the degree of agreement when the agreement is very good, a problem corrected by the use 
of the blended estimator. Figures 1 and 2 suggest there is much to gain when using the 
estimator PbN if P is large and little to lose if p is small. 

Although comparisons between PbN and r g were made using normal distribution as­
sumptions, the properties of the estimators PbN and r g when in reality E; and G; are not 
normally distributed are also of interest. The authors have performed simulation studies 
with non-normally distributed random variables which result in conclusions similar to those 
reached above. 

It can be shown that the asymptotic standard error of Pb N is given by 

(8) 

which for large n is approximately p(l - p2)/n1/2. A 95% asymptotic confidence interval 
for p may be constructed as PbN ± 1.96A.s.e.(PbN ). However, the endpoints of this interval 
may lie outside the range [0, 1]. For this reason, we recommend that large sample confi­
dence intervals for p be constructed by inverting confidence intervals for In( 1 / p2 - 1) based 
on In(l/plN - 1), a monotonic transformation of PbN" The asymptotic standard error of 
In(l/plN - 1) is 

A.s.e. (In [pL - 1]) (
2(2n - 3)(n _ 3p4 )2) 1/2 

n(n - 5)(n - 3p2)2 
(9) 
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which for large n is approximately 2/n1/ 2 . Note that for large n, (9) is less dependent upon 
the value of p than (8). 

6 Example 

The results of this paper are applied to the myocardial infarction data from Prigent et al. 
(1991). Under consideration is the percentage of heart muscle affected by induced myocar­
dial infarctions for n = 12 dogs as measured by pathology (the gold standard method) and 
SPECT (the approximate method). Table 2 displays the data which were reconstructed 
from Figure 2 in Prigent et al. (1991). From the reconstructed data one can show that 
Y = 2.88 and it follows that PFo = T'g = 0.86. In addition, PF1 = 0.89, PF_ = 0.92, and 
PbN = 0.88. Although these estimates may not seem to be very different from one an­
other, most likely T'g understates the agreement of the SPECT measure of percentage heart 
muscle affected by myocardial infarction with the percentage as determined by pathologic 
examination, and PF_ overstates the agreement. A 95% asymptotic confidence interval for 
p using (9) is (0.67, 0.97). This interval is presented for illustrative purposes only as the 
actual coverage probability may not be close to 0.95 for n = 12. 

7 Discussion and Conclusions 

In method comparison studies, estimating the degree of agreement between different mea­
surement techniques is often of primary importance. In this paper the authors consider 
a scenario in which an approximate measurement is compared to a precise standard of 
measurement (the gold standard). A family of admissible estimators for the measure of 
agreement which includes the familiar normal distribution based MLE is considered. An 
estimator which is a particular blend of two members of the family has excellent bias 
properties across the entire parameter space. Furthermore, the mean-squared error of the 
blended estimator is substantially smaller than the mean-squared error of T'g for large values 
of p. The authors favor the blended estimator even in those cases where the underlying 
distributions are not normal. 
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Table 1: Relative MSE and Absolute Bias of Estimators as Compared to the MLE 

p=l p=l p=o p=o 

p MSE(p) IBias(p)1 MSE(p) IBias(p)1 
MSE(rg) IBias(rg)1 MSE(rg) IBias(rg)1 

PF_ 
2(n-5)(2n-3) 2(2n-3) (n-l}(n+2) _ 2(n+2)1/2(n-2) + _ 2 

00 (n+2)( 4n+15) 3(n+2) n-5 (n_5)1/2 n 

PF1 
2(n-3)(2n-3) 0 n(n-l) _ 2 n1 /2(n-2) + n _ 2 

00 n(4n+15) n-3 (n_3)1/2 

Pb N 
2( n-3){2n-3) 0 1 3 

n(4n+15) n-3 

Table 2: Percentage of Heart Muscle Affected by Induced Myocardial Infarct as Measured 
by Pathology (Gold Standard Method) and SPECT (Approximate Method) for 12 Dogs 

Gi x· , 
1 9.1 5.1 
2 7.7 7.1 
3 21.4 13.1 
4 18.5 16.9 
5 28.7 34.4 
6 12.9 13.0 
7 13.2 17.1 
8 20.3 19.4 
9 26.2 23.2 
10 30.0 24.2 
11 31.2 23.8 
12 24.0 28.3 
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Figure 1: Comparison of PbN and f"g in terms of Bias 
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Figure 2: Comparison of Pb N and Ig III terms of Relative Mean-Squared Error, 
MSE(PbN) /MSE( 1 g) 
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