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ANALYSIS OF NUCLEI FLUORESCENCE HISTOGRAMS 

USING NON-LINEAR FUNCTIONS OR WAVELETS 

Susanne Aref, Maria Kocherginsky, 

Dept. of Statistics 

Carrie A. Northcott, and Lane A. Rayburn 

Dept. of Crop Sciences 

Abstract 

Histograms based on 5,000 nuclei from cells (Chinese hamster ovary cells, bone marrow 
cells) are used to determine the coefficient of variation (CV) of observations surrounding the 
highest peak. The cells are subjected to various treatments, for example exposure to herbicides. 
By eyeballing the histogram, an interval under the highest peak is determined. The CV 
calculated from the histogram on the eyeballed interval is the response variable in an ANOVA. 
To avoid the subjectivity of eyeballing the histogram, non-linear functions such as the Gaussian 
density function can be used to model the histogram. The CV may then be determined from the 
parameter estimates. In many experiments nonlinear functions modeling the histograms smooth 
away differences in CV s obtained this way, though visually the histograms appear to be 
different. Then nonlinear functions or wavelets can be used to obtain intervals for calculating 
CV s of the histograms restricted to these intervals. The nonlinear models require close initial 
values for each histogram, while the wavelets just require choice of wavelet and level of 
decomposition. 

1. Introduction 

In flow cytometry histograms of the spectra of DNA nuclei subjected to various 
treatments are used to obtain summary variables. These variables are then analyzed to determine 
differences or similarities of the treatments through an ANOVA. The summary variables are 
calculated from the histogram restricted to an interval around the highest peak. The 
determination of the interval is usually from eyeballing the part of the histogram associated with 
the highest peak. The mean and standard deviation based on the histogram on that interval are 
used to calculate the coefficient of variation, the CV (ratio between standard deviation and mean 
times 100). Usually one person determines all intervals. In histograms of certain types of nuclei 
there is one very well defined peak (Fig 1). In other types of nuclei there is a fairly pronounced 
secondary peak in the histogram. Here the largest peak appears to be less symmetric at the base, 
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the curve of the peak has slight bumps on the sides, consistently in replications of a treatment. 
The interval between peaks has higher counts than the intervals outside the peaks (Fig 2.). The 
eyeballing of the histogram to determine the interval becomes difficult and subjective. In some 
experiments the researcher determining intervals can identify histograms from different 
treatments (Fig. 3). Attempts to determine intervals blindly are therefore flawed. 

The subjectivity of determining the interval by eyeballing the histograms is dissatisfying 
scientifically. Previous attempts to analyze this type of data include non-linear modeling, which 
sometimes smooth away differences, that visually appears to be present as in Fig. 4, where the 
control treatment looks different from the other treatments (shape-wise not location-wise). 
Another way to analyze such data is to use the Kolmogorov-Smirnov test (Young, 1977) on just 
two histograms. This does not take differences between histograms for the same treatment into 
account, which should be the measurement error for the determination of differences between 
treatments. A third way is to use a procedure of smoothing, translocating, and normalizing 
histograms from two different treatments. The resulting histograms are then subjected to t-tests 
in every channel with p-values showing where the differences occur followed by a classification 
argument (Bagwell et aI., 1979). To generalize the method to several treatments is not easy. 

The current method of using CVs is appealing in that once the measure is obtained the 
experiment can be analyzed using an ANOVA. The problem is that determining the defining 
interval is subjective. One way to amend that is to obtain parameter estimates from nonlinear 
function models of the histograms. Variables such as mean and CV are obtained from the 
parameter estimates. The usual ANOVA can then be carried out on these variable constructs. 
However, the smoothing from the models may smooth away more subtle differences. In such 
cases the histogram may still be modeled using nonlinear functions or be approximated by 
wavelets. If nonlinear functions are used, intervals are determined based on parameter estimates. 
If wavelets are fitted, the size of the wavelet fit at channels surrounding the highest peak are used 
to determine cut-off points and thus the end points of the interval. CV s are calculated from the 
raw data on this defining interval. Either way the interval is objectively determined, any 
particularities in the shape of the histograms are preserved, and a straightforward ANOVA can 
be carried out on the resulting CV s. 

2. Experimental Methods 

The data used in this paper are from two different experiments. Each experiment was set 
up using tanks in a randomized complete block design. On each day of laboratory analysis, 
nuclei from each treatment in a block was analyzed in random order. The different days are 
important since each day the flow cytometer-cell sorter must be realigned. In one of the 
experiments bone marrow cells were subjected to two different treatments, a control (non­
exposure) treatment and a treatment of exposure to a known mutagen ara-C (cytosine ~-D­
arabinofuranoside). The other experiment was conducted on Chinese hamster ovary cells 
subjected to four different treatments, the herbicide atrazine at two levels, the known mutagen 
ara-C as a positive control, and non-exposure as a negative control. 

Nuclei from 5,000 cells were stained with a fluorescent dye, fluorochrome (Propidium 
Iodide or PI). Based on the fluorescence of the stained nuclei excited by a laser, the amount of 
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fluorescence given off is recorded. These records fall into 256 channels that make up the 
histogram. A typical histogram will contain at least one distinct peak and some noise as in the 
bone marrow cells data (Fig 1). The histograms for certain types of cells are sometimes more 
complex with distinct second peaks and increased levels of noise as in the Chinese hamster ovary 
cells data (Fig 2). The first peak is the same as the G lIGO peak and the second peak is the G2 
peak. Commonly, the two extreme channels (1 and 256) have excess amounts of fluorescence. 
For the determination of intervals the two extreme channels are ignored by setting their channel 
counts to zero. Usually the variables of interest are the location of the highest peak or the CV of 
the highest peak. The histograms contain different total numbers of nuclei (.:: 5,000) after the 
end channels have been set to zero. This does not impact location or CV. The CV is used rather 
than the standard deviation since the channels are wider with larger channel numbers due to a log 
transform to obtain the channel variable. For a more technical description see Taets et aI, 1998. 

3. Non-Linear Function Computational Methods 

A non-linear function such as the Gaussian density can be used to model the censored 
histograms. In the case of a single peak histogram a simple approach using SAS PROC NUN 
with a set of reasonable initial parameter values is fairly problem free. When the single peak 
histogram looks very symmetric the Gaussian density function is a good model for the histogram 
(Fig. 5). In the case of two peaks the focus is on the highest peak, as the experimenting scientist 
usually ignores the secondary peak. In the modeling of the histograms, it is harder to capture the 
second peak using non-linear modeling, but parameters for the primary peak do not change 
noticeably whether or not the secondary peak is modeled. 

One problem with non-linear modeling is the over-smoothing of the histogram for certain 
types of experiments. Here differences that appear in the form of slight bumps on the sides of 
the peak and the elevated level of counts between peaks will not be picked up. In such cases the 
determination of a defining interval is the point of interest. One way is to look at a large enough 
interval around the highest peaks for all treatments and replications, that contains the highest 
peaks and near surroundings. A nonlinear model is then fitted to these censored histograms. The 
nonlinear model may be a Gaussian density type function (Fig 6) or closer-fitting model such as 
a combination of functions. One combination function that gives a closer fit consists of two 
exponential functions (one on each side of the peak) with a straight line connecting them (Fig 7). 
With SAS PROC NUN this may be done including the estimation of the location of the two 
knots one for each of the exponential functions connecting to the piece of straight line by the 
derivative-free option (DUD). The estimated parameters are averaged over replications for each 
treatment and used to create the defining intervals. The intervals are placed according to the 
estimated location parameter of each histogram. Thus the location in a histogram is determined 
by the estimated parameter from the specific histogram, while the length of the interval 
surrounding the location estimate is the same within each treatment. The intervals defined by the 
two different fittings of non-linear functions are slightly different in width for the same factor 
and slightly different in location. 

The exercise of fitting non-linear functions was only to determine an objective interval on 
which the usual response variable, the CV, can be calculated from the original data in the 
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histograms restricted to the these objective intervals. The CVs are then used as the response 
variable in an ANOVA. The experimental design contains days of performing the flow 
cytometry as blocks and the herbicides or other mutagens as treatments as mentioned in section 
2. 

4. Non-Linear Functional Forms 

The Gaussian density function used for modeling a single peak histogram has the 
following form: 

g(x) = B + C exp[(x-A)2/(2D2)] 

The parameter estimate of A is the mean or location of the largest peak. The CV is then 
determined from D/ A. B is a nuisance parameter picking up ground level noise. 

The results of fitting the Gaussian density function to six replicates each of a control and 
an ara-C treatment of bone marrow cells resulted in a significant difference between the CV 
calculated from the estimated parameters. The p-value was 0.0036 in a paired t-test and 0.0313 
in a Wilcoxon signed rank test. 

The other data set was six replications each of four different treatments of Chinese ovary 
cells. In this case differences were smoothed away. Both the Gaussian density function and the 
more close fitting function consisting of exponential functions connected by a line were used. 
The exponential functions were: 

for x<AI 

for X>A2 

connected by the linear segment: 

Neither model was able to capture the difference between the control and the other treatments. 
Instead a defining interval was determined. From the estimated parameters the average for each 
treatment was used to create a defining interval around each location. For the Gaussian form the 
intervals were determined simply as A ~ constant*D. For the piecewise function the interval was 
determined by (A2+AI)/2 ~ (A2-AI +constant*(D I + D2))' The intervals obtained in this fashion 
gave different results for different constants (from 2.0-4.5) in ANOVAs. The estimates of the 
spread parameters were not precise enough. To get better estimates of the spread, the lengths of 
the defining intervals were averaged over replications with D and the A2-Al difference variables 
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averaged separately to ensure the proper placement around the highest peaks. Then CV s were 
calculated for the histograms restricted to the averaged defining intervals. 

5. Wavelet Fitting 

To obtain the nonlinear function fits, each histogram must be fitted separately using 
different initial parameter estimates. The method is rather elaborate. Another way of obtaining 
the intervals is to use wavelets ("small waves"), where initial settings are the same for all 
histograms. Wavelets are oscillatory over a very small temporal interval and decrease rapidly to 
zero outside that interval, contrasting with the behavior of Fourier basis functions that keep 
oscillating infinitely. Wavelets provide sets of basis functions and have zero net area, ~(t)dt = 

O. These characteristics result in wavelets being better in representing functions localized in both 
time and frequency. In particular, wavelets give better representations of functions with sharp 
spikes or edges using fewer terms than Fourier functions. Wavelets "turn the information of a 
signal into numbers - coefficients - that can be manipulated, stored, transmitted, analyzed, or 
used to reconstruct the original signal" (Hubbard, 1996). 

6. Wavelet Computational Methods 

The basic steps in wavelet constructions are: 
1) select "mother" wavelet \jf(t) from the different classes of known wavelets, 
2) dilate and translate the mother wavelet in time to get a wavelet basis \jf(at-b). 

For the analysis of the data sets in this study wavelets were used to fit the largest peaks. The first 
step in the process is to transform the data using the wavelet basis. The data is de-noised as 
much as possible by using low order filters, such as the spline filter of order 1. In order not to 
over-smooth the fitting function, the decomposition is done only to the second level (Fig. 8). 
The coefficients obtained from the decomposition (Fig. 9) correspond to the location of the peak 
in the original data. Only the largest coefficients are of interest, since the smaller coefficients are 
considered to be noise. 

Small coefficients are eliminated by compression. This can be done in two ways: either 
by keeping a fixed number of coefficients, or setting a threshold, below which the coefficients 
are discarded. Using the first approach the number of coefficients to keep was set to three. This 
choice was based on the coefficient plots in Fig. 9. In a) and b), of the largest coefficients two 
were very large, and the next largest one or two coefficients were distinctly larger than the 
remaining ones. In c) and d) there was one very large coefficient together with two somewhat 
smaller ones, and a gap between these and the rest of the coefficients. These patterns were 
similar for all replications. By keeping just the three largest coefficients, the compression ratio is 
3:128 (or 2.3% of the coefficients). The next step is to reconstruct the data from the compressed 
coefficients by using the inverse wavelet transform. This denoises the data (since the 
compression ratio is small), and provides a rather coarse fit of the peak in the original data (Fig. 
10). 
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Only the reconstructed data points with values above a small percentage of the largest 
reconstructed coefficient were kept. The points that are kept define the interval on which to 
compute CV s. This censoring was carried out using several different percentage cut-off values 
(between 0.6% to 0.9%) to check whether further analysis was robust to such changes. The cut­
off percentage used was the same for the four treatments. A more robust estimate of the length 
of the defining interval was necessary, similar to the method using non-linear functions. So, the 
lengths of the defining intervals were averaged over the replications, and then centered at the 
midpoints of the initial defining interval. 

7. Results 

Different constants were used to obtain defining intervals with non-linear functions. 
Both functional fits, Gaussian and composite exponential, resulted in similar mean separations 
for the different constants see Table 1, a) and b). It appears that either function can be used, 
though the model based on the composite exponential function is slightly more stable, possibly 
due to a closer fit. The patterns of mean separations were almost identical for constants between 
3.0 and 4.5 for the Gaussian function intervals and constants between 2.5 and 4.5 for the 
exponential composite function intervals. The results of the ANOV A were that the control was 
different from all other treatments, the two herbicide treatments were not different from each 
other, and the ara-C mostly was different from the two herbicide treatments. 

U sing different percentage cut-off points for the wavelet fits similar mean separation 
results occurred between 0.7% to 0.8%. At the 10% level the mean separation results were 
identical to the non-linear function approach, while at the 5% level the atrazine treatment at 
20ppm was not different from the control (Table 1 c). 

8. Conclusion 

In flow cytometry CV s are used in an ANOV A to determine any differences in 
treatments. The CV s are calculated from histograms restricted to certain defining intervals. 
Eyeballing the histograms is commonly used to determine the defining intervals. An objective 
way to obtain the defining intervals is by the use of nonlinear modeling or wavelet fitting. Either 
way the length of the defining interval is the mean interval length for each treatment. The 
location of the interval is as determined by parameter estimates or wavelet coefficients. 

In the case of nonlinear models the parameter estimates multiplied by factors from 2.5 to 
4 provided similar ANOV A results at a 5% significance level, as did the wavelet models with 
cut-off points from 0.7% to 0.8% at a 10% significance level. There were differences between 
the control, the ara-C treatment, and the atrazine treatments, but not between the atrazine levels. 
These results were different from the results of an ANOVA performed on the CVs obtained by 
eyeballing the histograms. In the eyeballed CV s there was a difference between the control and 
the other treatments as in the analyses based on nonlinear modeling or wavelet fitting. There 
was no difference between ara-C and the two atrazine levels, while there was a difference in the 
two atrazine levels. 
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The methods used to obtain the CV s for further analyses are complicated, but at least are 
not subjective and do appear to give reasonable results. The non-linear estimation requires a 
close look at each of the histograms in order to get initial parameter estimates. The wavelet 
approach is more general and requires only decisions about the type of wavelet (here the spline 
filter of order 1), level of decomposition (here 2 levels), and how many coefficients to retain 
(here 3 coefficients). The defining intervals based on wavelets resulted in a mean separation that 
was more conservative than the mean separation obtained from using defining intervals based on 
non-linear functions. Further refinement of the wavelet method may give better results. The 
resulting analyses of the Chinese hamster ovary cells did not completely agree with the previous 
eyeballing technique. Thus the study also shows that sometimes this kind of data is very 
sensitive in determining the intervals on which the CV s are calculated. Especially for this type 
of data, results obtained using histogram eyeballing are suspect. 
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Table 1. Chinese hamster ovary cells. Mean separation of CV s calculated on intervals defined 
by a) a Gaussian model, b) a combination of exponential models, c) wavelets, and d) 
eyeballing the histograms. Different letters signify significant differences at the 5% level 
in parts a), b), and d). Two significance levels (5% and 10%) are used in part c). 

a) Intervals defined by Gaussian model 

constant 
treatment 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 
ara-C A A A A A A A A A A A 
atr 20ppm B B B A B B B B B BC B 
atr 3ppm AB BC B A BC B B B B B B 
control C C C B C C C C C C C 

b) Intervals defined by Exponential models 

constant 
treatment 2 2.25 2.5 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 
ara-C A A A A A A A A A A A 
atr 20ppm A AB B B B B B B B B B 
atr 3ppm AB B BC B B B B BC B BC BC 
control B C C C C C C C C C C 

c) Intervals defined by wavelets d) eye-ball 
results 

percentage 
0.65 % 0.70 % 0.75 % 0.80 % 0.90% 

treatment 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 
ara-C A A A A A A A A AB AB AB 
atr 20ppm A AB A B B B B B AB AB A 
atr 3ppm A AB A AB AB B AB B A A B 
control A B B C C C C C B B C 
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Figure 1. Bone marrow cells histogram. 
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Figure 2. Chinese hamster ovary cells histogram. 
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Figure 3. Bone marrow cells histograms for each replication. 
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Figure 4. One replication of Chinese hamster ovary cell histograms for each treatment. 
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Figure 5. Bone marrow cells histogram and fitted Gaussian function. 

t\,~ t\,0) 
00'"" Oot\, 

c::::=J raw data 

--+-- Gaussian 

I I 

Figure 6. Chinese hamster ovary cells histogram and fitted Gaussian function. 
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Figure 7. Chinese hamster ovary cells histogram and fitted composite exponential functions. 
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Figure 8. Wavelet decomposition to the second level. 
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Figure 9. Coefficients from decomposition of the data in the wavelet basis, 
a) atrazine 20ppm, b) atrazine 3ppm, c) ara-C, and d) control. 
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Figure 10. Reconstruction of the data from the compressed coefficients, 
a) atrazine 20ppm, b) atrazine 3ppm, c) ara-C, and d) control. 
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