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ABSTRACT 

31 

Studies on the fate of toxic chemicals in soils are often reported with a minimum of 
descriptive statistics. Use of modeling techniques to describe the kinetics of chemical 
degradation provides a better understanding of the fate of chemicals in soil systems. When 
modeling nonlinear systems, assumptions made about the error term greatly influence the 
parameter estimation. Inappropriate use of linearization and failure to account for autocorrelated 
errors may result in inaccurate models. Information is also needed about the effects of the 
magnitude of autocorrelation on parameter estimation. The exponential decay function was 
chosen to fit the data obtained from a TNT (2, 4, 6-trinitrotoluene) degradation experiment in 
soil using four different error assumptions. Estimates of the rate constant (k) and other 
parameter estimates changed appreciably as assumptions about the error term changed. 
Simulation studies indicated that modeling data from chemical decomposition studies with an 
independent error assumption resulted in unreliable k estimates when the autocorrelation was 
large. A two-step procedure was used to fit an exponential autocorrelated (AR(1)) model. 
Overall, the exponential function with the additive-correlated error assumption provided the best 
fit for TNT degradation data. In essence, the kinetic rate constant obtained through model fitting 
in chemical decomposition studies provides a great deal of useful information to scientists. 
However, the researcher must be aware of the fact that making correct assumptions about the 
error term is extremely critical for obtaining accurate and precise estimates of k. 

1. INTRODUCTION 

Improper use of chemicals in agricultural and industrial sectors often leads to the 
contamination of soil and water with toxic chemicals that are harmful to human and animal 
health (Alexander, 1999). Therefore, a thorough understanding of their behavior in soil is 
essential to develop techniques for remediating contaminated sites. To achieve this, soil 
chemists and environmental toxicologists routinely conduct laboratory and field experiments 
researching the fate of toxic chemicals in soils. In such studies, a known concentration of a 
chemical is added to the soil and effects of selected treatments on degradation kinetics are 
determined with time. Rate constants are then used to predict cleanup times for remediation 
techniques. 
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2. STATISTICAL ANALYSIS AND MODEL FITTING 

Data obtained from such studies are often analyzed with graphical and descriptive 
statistics. But determining an apparent kinetic rate constant through model fitting gives an 
estimate of the rate of decomposition of the chemical, besides providing a better understanding 
of its behavior in soil (Alexander, 1999). In addition, apparent rate constants and information 
obtained from other experiments involving physical, chemical and biological interactions of the 
chemical in soil may be integrated to develop large-scale process models or decision support 
systems. Such tools can be used to tailor site-specific and efficient management practices for 
remediating contaminated soils. 

The rate constant is estimated through model fitting. Making appropriate assumptions 
about the error term of the selected model is one of the key steps necessary for obtaining reliable 
parameter estimates. Usually the error term in the model selected is assumed additive, 
independent, identical and normal. But these assumptions may not hold for all situations, as 
error could be multiplicative, correlated, heterogeneous and non-normal depending upon the 
nature of the study and response variable measured. Failing to make appropriate assumptions 
would result in biased estimates of the parameters and standard errors. As a result, management 
decisions made based on such estimates will be poor and unreliable. The objective of this paper 
is to demonstrate the impact of ignoring and / or violating appropriate assumptions about the 
error term on the estimate of the rate constant using a two-parameter exponential model to fit 
data obtained from a TNT (2, 3, 6 trinitro toulene) degradation experiment and a simulation 
study. 

3. METHODOLOGY 

TNT Experiment 
TNT, an explosive chemical, was used to make bombs during World War II and the 

Korean War. Improper disposal of the TNT waste during the manufacturing of munitions led to 
the contamination of soil and ground water in several locations in the United States. An attempt 
to remediate these contaminated sites found Feo (zero-valent iron) was capable of abiotic ally 
degrading TNT in contaminated water and soil (Hundal et aI., 1997). A laboratory study was 
conducted by Hundal et al. (1997) with different concentrations of Feo, (0.1,0.2, 1,2 and 10 % 
w/v), to determine the best Feo concentration to effectively degrade TNT in solution. The 
solution was treated with a known concentration of 14C labeled TNT and the decline in 14C 

concentration was monitored at 0,0.5, 1,2,4,8,24,48, 72 and 96 hours following the addition 
of Feo. 
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Model Fitting and Design of the Study 
Graphical observation of the data revealed an exponential decay of 14C concentration 

with time; the trend becoming prominent with increasing concentrations of FeD (Fig. l). 
Therefore, an exponential decay model of the functional form given below was chosen to fit the 
data, where the parameter of interest is k as it describes the rate of decomposition of TNT. 

y=~exp( -kt) 
In the above equation, y is the relative concentration of TNT, ~ is the relative 

concentration of TNT at time 0, and k is the apparent rate of TNT degradation. The value of k 
can be estimated in two ways. The first approach is linearizing the model by taking the natural 
logarithm and estimating k through simple linear regression. Alternatively, k can be estimated 
through non-linear regression techniques without linearizing the model. Although both these 
approaches are mathematically equivalent, statistically they are not comparable. They differ 
markedly by their error assumptions. Linearization implies that the error is multiplicative, while 
estimating k using the nonlinear model assumes the error is additive. Statistically these models 
result in different estimates of k and its standard error. 

Further, data in this study were collected from the same experimental unit over time and 
therefore it is likely that the errors are correlated. Ignoring this assumption can affect parameter 
estimation. Some of the consequences of assuming independent error when it is correlated are 
severe underestimation of standard error of k and the estimated confidence interval, and lack of 
precision in hypothesis testing. Therefore, four different exponential models, each with 
different error assumptions were fit to the TNT data to evaluate the impact of various error 
assumptions on estimates of k and its standard error. Also, a simulation study was conducted to 
determine the effects of k-values and the size of autocorrelation on estimates of k, as influenced 
by different error assumptions. 

Modell. 
Model 1 was an additive and independent error model (Eq. 1). Rate constant, k was 

estimated using Proc NLIN with Marquardt's method (SAS Institute, 1996). Initial values for ~ 
and k were obtained through linear regression techniques. 

Yt =~exp(-kt)+Et Eq. 1 

Et- iidN(O, ()2) 

Model 2 
Model 2 was a multiplicative and independent error model that is given below. 

Yt =~exp( -kt)Et . 

Rate constant, k, was estimated by fitting the linearized exponential function shown 
below (Eq. 2) using Proc REG of SAS (SAS Institute, 1996). 

In(Yt )=In(~)-kt+lnEt Eq.2 
InEt- iidN(O, ()2) 
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Model 3 
Model 3 was an additive and correlated error model. First order autocorrelation (AR (1» 

error structure was assumed to model the data. Although time was unequally spaced no 
heterogeneous first-order autoregressive covariance (ARR(1» was assumed, as more degrees of 
freedom will be lost in estimating unknown variance components when compared to AR (1) 
covariance structure. This could lead to inefficient estimation of standard errors and hypothesis 
testing, as the data set contained only 10 observations. In order to eliminate any such problems, 
AR (1) covariance was used to model the data. A general model structure is shown as follows: 

Yt=~exp( -kt)+~ 

at (autocorrelated error)=p~_l+ tt 
p=size of autocorrelation 
tt=error at time t 

The final exponential model with additive and correlated error was obtained as suggested 
by Bates and Watts (1988). 

Yt=~*exp(-kt)+P(Yt_l-~exp( -ktt_1»+tt 

tt- iidN(O, ()2) 

Eq.3 

For this model, parameter estimates were obtained by using a two-step procedure 
following a procedure demonstrated in Gallant (1987). First, initial values for k and ~ were 
obtained by fitting an additive and independent error model (Eq. 1) to the data using Proc NLIN 
of SAS. Initial estimate for p was obtained by fitting AR(1) model using Proc ARIMA of SAS 
to the residuals obtained from the non-linear regression analysis. The second step involved 
obtaining final estimates for all three parameters (k, ~, and p) by fitting the additive and 
correlated model (Eq. 3) using Proc NLIN. 

Model 4 
Model 4 was an exponential function with multiplicative and AR(1) correlated error (Eq. 

4). Parameter estimates were obtained by using Proc Autoreg of SAS. 
In(y t)=ln(~)-kt+ln(~) Eq. 4 

at (autocorrelated error)=pat_1+ tt. 
p=size of autocorrelation 
tt=error at time t 

Simulation study 
Data sets with different values of k = {0.6, 0.4, 0.2, 0.1} and an autocorrelation of p = 

0.9 were simulated as the exponential decay function with additive correlated error using SAS 
IML procedures. Each data set contained 1000 realizations of 10 observations per realization for 
each p and k combination. The error, assumed to be normal and additive, was generated using 
RANNOR and the random seed option in SAS. All four models described above were fit to the 
data and the rate constant k was estimated. 
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Sampling properties of the estimate of k were evaluated using the average value of k, 
standard error, bias of k (%), MSE, percent coverage by 95% asymptotic confidence intervals 
and the coefficient of skewness. 

4. RESULTS AND DISCUSSION 

Impact of modeling assumptions on k:TNT data 

35 

The kinetic rate constant, k, is a measure of apparent rate of TNT degradation in solution 
as influenced by FeD concentration. The apparent rate constant obtained through model fitting 
does not only provide quantifiable and more useful information on TNT degradation when 
compared to other analytical approaches such as graphical and descriptive statistics, but also 
facilitates treatment comparisons. When the error was assumed independent, estimates of k 
obtained by fitting the additive error model (model 1) ranged from 0.008 to 0.303, while the 
multiplicative error model (model 2) yielded k ranging from 0.008 to 0.041 (Table 1). When 
correlated error was assumed, the additive error model (model 3) gave k values comparable to 
model 1 and the multiplicative model (model 4) gave k values comparable to model 2 (Table 
1). 

Regardless of error assumptions, absolute values of k increased with increasing 
concentrations of FeD. However, magnitude ofk values estimated with model 1 (additive and 
independent) and 3 (additive and correlated) were as high as 13 times greater than that estimated 
with model 2 (multiplicative and independent) and model 4 (multiplicative and correlated). 
Further, model mean square errors (MSE), used as a tentative measure of "fit", were several 
folds smaller for additive than for multiplicative model, irrespective of independent and 
correlated error structures (Table 1). Examination ofresiduals, non-zero parameter estimates, 
and smaller MSE suggest that the exponential decay functions with additive error term provided 
better models for this data set. 

Because the models with additive error assumption appeared to better describe the data 
than the multiplicative models, parameter estimates of independent and correlated error model 
with additive error were compared. Slightly larger estimates of rate constant (k) and lower MSE 
were obtained with correlated error model (model 3) than with the independent error model 
(model 1) (Table 2). Further, no violation of assumptions was detected in the distribution of 
residuals from the correlated error model. Standard error of k estimated with the correlated error 
model ranged from 0.039 to 0.098 and it was twice as big as that of the independent error model. 
Smaller standard error values for k in the independent error model may be attributed to the 
underestimation of standard error possibly because of the failure to account for correlation 
among errors (Seber and Wild, 1989). The estimates of autocorrelation ranged from 0.82 to 
0.99. Further, the upper and lower limits of the 95% asymptotic confidence interval for k 
obtained with independent error model (model 1) did not encompass the values of k estimated 
with autocorrelated error model (Table 2). Thus, it is possible that estimates of k obtained using 
a false independent error assumption may deviate significantly from its true value resulting in 
misleading and unrealistic conclusions about the rate of TNT destruction by FeD. Serious 
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practical consequences may arise if such unreliable information was used to develop remediation 
practices. 

Results of the TNT data analysis clearly demonstrate that assumptions made about the 
error term playa significant role in model fitting. As shown here, estimates of model parameters 
could change appreciably depending upon the error assumptions. Therefore, it is important to 
make appropriate assumptions about the error term to get correct parameter estimates. Overall, 
results indicate that this data set could be modeled appropriately using exponential decay 
function with additive and correlated error structure (model 3). 

Impact of modeling assumptions on k:Simulation study 
The performance of the four models was compared using data simulated with an 

autocorrelation of 0.9 and k values of 0.6,0.4, 0.2, and 0.1 (Table 3). Regardless of k values, 
additive models performed better than the multiplicative models. In the case of correlated 
model, k was estimated with a bias ranging from 4 to -7% using additive error model compared 
to the bias of -60 to -93% with multiplicative model. Lack of skewness in the distribution of k, 
low MSE and no violation of assumptions in the distribution of residuals (not presented) also 
strongly supported the use of the exponential function with additive error model. 

As the data were generated with high autocorrelation (0.9), comparison between the 
independent and correlated model (Table 3) is of primary interest. Rate constants (k) were 
estimated more accurately and precisely using correlated error model than independent error, 
regardless of the size ofk. For instance, percent bias in k, MSE and skewness were -7%, 0.001, 
and 0.53, respectively, for correlated error model when compared to -35%,0.007, and 0.419, 
respectively, for independent error model when the size of k was 0.6. The percentage of 95% 
asymptotic confidence intervals that covered the true value of k is shown in Table 4. For the 
correlated model with k=0.6, 84% of the confidence intervals covered k while the coverage was 
only 25% in the case of independent error model. Failure to obtain close to 95% coverage for 
the correlated model may be attributed to the sample size of 10 observations, as the asymptotic 
confidence interval is computed based approximations to linear behavior. The impact of this 
limitation became severe when incorrect assumptions were made about the error term. 

As k values can change with treatments, the impact of various error asssumptions on k 
estimation was evaluated for different values of k. At high autocorrelation (0.9), regardless of 
size of k, bias in k remained low and stable when k was estimated with correlated-additive error 
model (Table 3 and Fig. 2). The increase in percent bias with increasing values of k in the case 
of independent-additive model could be attributed to severe violation of assumption of linearity 
in parameter space of k possibly made worse by correlated errors. Changes in size of k did not 
affect the percent coverage of k values in 95% asymptotic confidence interval when k was 
estimated using correlated-additive error model (Table 4). On the other hand, with independent
additive error model, percent coverage decreased dramatically as k increased. 

More simulations are necessary to evaluate the effects of the size of autocorrelation on 
parameter estimates. However, for a strong autocorrelation (p=0.9), results indicate that the 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/4



Applied Statistics in Agriculture 

two-step procedure described for fitting model 3 provides an adequate method for fitting an 
exponential autocorrelated (AR(1)) model. 

5. CONCLUSIONS 

37 

In chemical decomposition studies, estimating the kinetic rate constant using model
fitting techniques is very informative and beneficial. In doing so, it is imperative that scientists 
be aware of the importance of making appropriate assumptions regarding the error term in the 
model in order to accurately and precisely estimate k, as k values and other inferential properties 
change with error assumptions. Failure to use correct error assumptions could lead to 
misleading results as outlined in this study. It appears that the two-step procedure provides a 
means for fitting exponential autocorrelated (AR(1)) models to obtain reliable estimates of k 
irrespective of the size of k provided the autocorrelation is large. 
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Table 1. Estimated rate constant (k) and mean square error (MSE) for the TNT data modeled 
with exponential function assuming various error assumptions. 

Additive error Multiplicative error 
FeD conc., % k MSE k MSE 

Inde12endent error 

Model 1 Model 2 
0.1 0.008 0.001 0.008 0.002 

0.2 0.021 0.006 0.017 0.014 

1.0 0.115 0.005 0.034 0.139 

2.0 0.132 0.006 0.032 0.148 

10.0 0.303 0.004 0.041 0.564 

Correlated error 

Model 3 Model 4 

0.1 0.015 0.0003 0.007 0.008 

0.2 0.035 0.002 0.015 0.006 

1.0 0.170 0.003 0.029 0.069 

2.0 0.199 0.002 0.025 0.067 

10.0 0.413 0.002 0.030 0.563 
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Table 2. Parameter estimates obtained for TNT data by fitting the exponential function assuming 
independent and correlated additive error structure. 

FeD conc., % MSE k Standard error 95% asxmQtotic confidence interval 
Lower limit Upper limit 

Additive inde12endent error model (Model 1) 
0.1 0.001 0.008 0.0006 0.007 0.009 

0.2 0.006 0.021 0.003 0.014 0.027 

1.0 0.005 0.115 0.018 0.073 0.156 

2.0 0.006 0.132 0.024 0.077 0.186 

10.0 0.004 0.303 0.042 0.205 0.401 

Additive correlated error model (Model 3) 

0.1 0.0003 0.015 0.004 0.005 0.026 

0.2 0.002 0.035 0.012 0.006 0.064 

1.0 0.003 0.170 0.039 0.078 0.262 

2.0 0.002 0.199 0.043 0.098 0.299 

10.0 0.002 0.413 0.098 0.181 0.645 
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Table 3. Simulation results of all the four models for p=0.9 and k=0.6, 0.4, 0.2 and O.l. 

Parameters Correlated error Inde2endent error 
Additive Multiplicative Additive Multiplicative 

k=0.6 

Meank 0.56 0.042 0.39 0.051 

Standard error of k 0.082 0.012 0.061 0.010 

Bias, % -7 107 -35 92 

Mean square error 0.001 0.373 0.007 0.579 

Skewness 0.053 5.72 0.419 5.85 

k =0.4 

Meank 0.38 0.040 0.29 0.049 

Standard error of k 0.055 0.011 0.042 0.009 

Bias, % -5 -90 -28 -88 

Mean square error 0.001 0.352 0.006 0.522 

Skewness 0.323 5.61 0.465 5.60 

k =0.2 

Meank 0.202 0.041 0.165 0.048 

Standard error of k 0.028 0.008 0.023 0.006 

Bias, % 1 -80 -18 -77 

Mean square error 0.001 0.250 0.005 0.006 

Skewness 0.591 4.26 0.692 5.34 

k=O.l 

Meank 0.104 0.04 0.09 0.043 

Standard error of k 0.017 0.006 0.011 0.005 

Bias, % 4 -60 -10 -57 

Mean square error 0.001 0.188 0.004 0.226 

Skewness 0.403 2.61 0.525 2.72 
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Table 4. Percentage of 95 % asymptotic confidence intervals covering k for additive error 
model with correlated and independent error structure for p=O.9 

k-value 

0.1 
0.2 
0.4 
0.6 

1 

0.5 

0.25 

% coverage in 95% asy. CI 
Correlated Independent 

error 
84 
87 
85 
84 

error 
52 
57 
38 
25 

• 0.10% 

-0-0.20% 

• 1% 

---0--- 2% 

---4~10% 

o 8 16 24 32 40 48 56 64 72 80 88 96 

Time (hr) 
Figure 1. Loss of 14C TNT as influenced by Feo concentration (%w/v) at 25 DC 
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l~.---------------------------~ 

120 Additional error model Multiplicative error model 

--+- Independent error 

---lr- Correlated error 

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

K-value 

Figure2. Bias as a function of K values 
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