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ABSTRACT 

The coefficient of variation (CV) has long been used as a measure of the relative 
consistency of sample data. However, little attention has been paid to using the CV to make 
conclusions about the relative consistency of the population(s) from which the data are drawn, 
particularly when the data are observed in the context of a designed factorial experiment. This 
research focused on using three approximations to the exact distribution of the sample CV of 
normally distributed data (McKay's, David's, and Iglewicz and Myers') in the context of the 
generalized linear model to develop a method for detecting main effects and interactions among 
factors when the population characteristic of interest is the CV. 

1. INTRODUCTION 

As the ratio of the sample standard deviation to the sample mean, the sample coefficient 
of variation (CV) provides a useful and unitless measure of relative variability. As Ahmed 
(1994) notes, the CV can sometimes be more relevant than the standard deviation alone, such as 
when the precision of measuring instruments or the volatility of stocks is considered. Hurlimann 
(1995) points out that the CV is useful in insurance risk assessment as a measure of the 
heterogeneity of insurance portfolios. Williams (1991) cites the importance of the CV in the 
determination of detection limits in instrumental analysis. Feltz and Miller (1996) notes that in 
medical studies, the CV often determines the feasibility of combining results from separate 
clinical trials. 

Payton (1997) suggests that the CV has relevance only for ratio-level populations. In 
such populations, an observation equal to zero represents the absence of the measured 
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characteristic, such as with populations of volumes, yields, or weights, since only in this context 
does the CV ratio itself have meaning. Negative observations are not possible. 

Although theoretically not ratio level, normal populations have long been considered in 
connection with the behavior of sample CVs. In such cases, negative sample means are assumed 
to be highly improbable. However, in contrast with the mean of the normal distribution, 
comparatively little work has been done in connection with hypothesis tests and confidence 
intervals for unknown population CV s based on observed data. Papers that have addressed these 
subjects for a single population CV include Koopmans, et al. (1964), Vangel (1996), and Payton 
(1997), which utilize exact and approximate distributions of the sample CV from a normal 
population. Tests for the equality ofk normal population CVs that employ approximate 
distributions and the normal density include Bennett (1976), Doornbos and Dijkstra (1983), and 
Shafer and Sullivan (1986). Gupta and Ma (1996) extends a Wald test developed by Rao and 
Vidya (1992) for two populations based on the normal density to k populations and introduces a 
score test which also utilizes the actual density of the observations. Feltz and Miller (1996) 
provides a test based on the asymptotic moments of the CV. 

Less work has addressed the analysis of population CV s in the context of designed 
factorial experiments. Taguchi (1992) discusses a well-known approach to the analysis of 
product quality using fractional factorial designs that often models a log-transformed CV. 
However, his approach has yielded recent criticisms (see, for example, Box, 1988) and 
corrections because of biased tests of factor effects. Absent from the literature is a technique for 
constructing factorial models of the CV s of normal populations that makes use of known 
approximate distributions and asymptotic moments of the sample CV. 

2. TERMINOLOGY AND DEFINITIONS 

Let Xl, X2, ... , Xn be a random sample from a normal population with E(XD = ~ > 0 and 
n 

Var(XD = ri, i = 1,2, ... , n, and let R = (j / ~ be the population CV. Define X = LXi / n to be 
i=l 

n 

the sample mean and assume that P( X < 0) is negligible. Let S2 = L (Xi - X r / (n -1) and S ~ 
i=l 

n 

= L (Xi - x)2 / n be the unbiased and maximum-likelihood estimates of 0 2, respectively, and 
i=l 

let r = S / X and rn = Sn / X be the corresponding point estimates of R. Note that rn is the 

maximum-likelihood estimate of R and that rn = ((n -1)/ n) 1/2 r. Although neither r nor rn is an 

unbiased estimate of R, both are strongly consistent (Serfling, 1980, pp. 24-26, 136-137). Hence, 
both are reasonable estimators of R, particularly when computed from large samples. 

For later convenience, define the h-function hex) = x2 / (1 + x2) for x> O. Then h has an 

inverse, and h-l(x) = (x / (1- x)) 1/2 for 0 < x < 1. Additionally, define a random variable Y to 

have the gamma distribution with parameters A and v if and only if its density is given by 
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= 0, y< 0, 

where 'A. > 0, v > 0, and r(.) is the gamma function. It follows that E(Y) = 'A. and Var(Y) = 'A.2 / v. 

The parameter v is sometimes called the index. 

3. APPROXIMATE DISTRIBUTIONS OF THE SAMPLE CV 

Under normal theory, the exact distribution of r is a multiple ( Fn ) of the inverse 'of a 

non-central t distribution having (n -1) degrees of freedom and non-centrality parameter ~ / R. 

The density of the non-central t for degrees of freedom p and non-centrality parameter q is given 
by Lehmann (1959, p. 200) as 

f (t) = (2 (P.llI2 r(p/2 X 1tp)'i' r ! y(e-1)j2 exp[- ; - ~ (tH -q r }y , 

for -00 < t < 00. Given the density of r, the density of rn can be obtained, in tum, by transforming 

r according to rn = (( n -1) / n) 1/2 r. Difficulties associated with direct application of the non­

central t distribution itself have prompted the study of several approximations to the exact 
distributions of rand rn. 

3.1 McKay's and David's Approximations 

McKay (1932) gives the earliest approximation to the distribution of rn when samples are 
drawn from a normal population. By utilizing a contour-integral expression of the density of rn, 
he is able to show that nh(rn) / heR) has an approximate '1: distribution with (n - 1) degrees of 
freedom, provided that R E (0, 1/3). This requirement on R is consistent with the added 
assumption that negative observations also are highly improbable, in addition to a negative 
sample mean. Equivalently, (n / (n - 1))h(rn) has an approximate gamma distribution with 
expectation heR) and index (n - 1) /2. 

David (1949) obtains an approximation to the distribution of r by reexpressing McKay's 
approximation in terms of r and deleting a negligible term. Beginning with 
nh(rn) / heR), she writes 
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nh(rn ) 

heR) 

n 
= -----

= 

heR) 1+ r; 

n-l r2 

heR) l+r2-.c 
n 

n-l r2 
:;::; -----

heR) l+r2 
= 

(n -1)h(r) 

heR) 
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since r2 / n is typically close to zero for large n. She thus obtains that (n - l)h(r) / heR) also has 
an approximate 'l distribution with (n - 1) degrees of freedom, or, equivalently, that her) is 
distributed approximately gamma with expectation heR) and index (n - 1) / 2. 

3.2 Iglewicz and Myers' Approximation 

A third approximation for consideration is discussed by Iglewicz and Myers (1970). 
They derive asymptotic expansions for the moments of the exact distribution of r under normal 
theory and conclude that an adequate approximation for even relatively small n can be obtained 

by assuming that r itself is normally distributed with mean R and variance (~2 X R 2 + ~). This 

variance was apparently given originally by Pearson (David, 1949). Both Serfling (1980, pp. 
136-137) and Feltz and Miller (1996) note that r is, in fact, asymptotically normal with these 
same moments. Hence, an application of Slutsky's Theorem gives that rn likewise possesses 
these asymptotic properties (Serfling, p. 19). Simulation results reported by Iglewicz and Myers 
suggest that this approximation is superior to other normal approximations with higher-order 
expansions for the mean and variance. 

4. THE MODELLING APPROACH 

Take a collection of CV s RI, R2, ... , Rk of normal popUlations, where, for convenience, a 
single subscript is used, but where any number of associated fixed factors may be supposed. 

Assume that the ith population has mean J.li > 0 and variance cr; , so that Ri = cri / J.li , i = 1,2, ... , 

k. One possible model structure for the J.li is then 

J.l i = exp(x;a), i=I,2, ... ,k, 

, 
where ex = (ex 1 ' ex 2 ' ... ,a p) is a parameter vector of fixed factor effects (p S k) and Xi = 

, 
(x il' X i2 ' ... , X iP) is the ith set of covariate values. For a factorial model, these covariates are 
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properly assigned values of zero or positive or negative one under some identifiability constraint; 
for example, that the associated parameters summed across any single subscript must equal zero. 
Similarly, a model for the (Jj may be written as 

(Ji = exp(x~y), i = 1,2, ... , k, 

, 
where y = (Y I ' Y 2 ' ••• , Y p) is the corresponding parameter vector. Combining these models 

gives a multiplicative model for the Rj : 

(Ji exp(x~y) 
Jli exp(x~a) 

= exp(x~ (y - a)) 

exp(x;<5), i = 1,2, ... , k, (4.1) 

where <5 = Y- cx. 

4.1 The Generalized Linear Model 

Model (4.1) can be estimated using anyone of the approximate distributions outlined 
above. In the context of a generalized linear model, maximum- and/or quasi-likelihood estimates 
are available using iteratively reweighted least squares (Wedderburn, 1974). The algorithm is 
summarized in the following theorem: 

, 
Theorem Let Y = (YI ,Y2 , ••• , YN ) be a vector of independent observations with 

, 
expectation 'I' = ('I'I ' 'I' 2 , ••. , 'I' N) and covariance matrix <I> V ('I') = <l>diag {V 1 ('1'1)' V 2('1'2)' ... , 

V N('I'N)}. Suppose that there exists a monotone, differentiable function g(.) such that 

g('I'J= x~P , where Xi = (XiI' Xi2 ' ••• ' x iP ) is the ith set of covariates, i = 1,2, "', N, and ~ = 
, 

(~I '~2"'" ~p) is a vector of parameters, Then a quasi-likelihood estimate of ~ may be 

obtained by repeatedly calculating a weighted linear regression of 

on Xi using weight 

where the current estimates of the 'l'i are computed from the current estimates of ~l' "', ~p, 
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It follows in general for large samples that the quasi-likelihood estimate ~ .!. Np(~, 

<1>(X'wxt), where X is an N x p matrix of full rank having elements Xjj and where W = 

diag{ WI, ... , WN}. If the Yj belong to a distribution in the exponential family, then ~ is also a 

maximum-likelihood estimate. In any event, the maximum-/quasi-Iikelihood-ratio test is 
available to test hypotheses involving the ~j (McCullagh, 1983). 

4.2 McKay's and David's Approximations 

207 

Assume that independent random samples of size nj are drawn from each of the k normal 
- -

populations, and that the sample CVs rj = Sj I Xi and rn,j = Sn,j I Xi are computed. According to 
David's approximation, h(rj) is distributed approximately gamma with expectation h(RD and 

2[h(RJ ]2 
index (nj - 1) I 2, so that Var(h(rD) = = ViCh(Rj» (taking <1> = 1), Supposing the model 

n i -1 

(4.1) for the Rj gives, as a model for the h(Rj), 

h(Ri) = h( exp(x;8)), i = 1,2, .. " k, 

for which a linearizing transformation is 

(4.2) 

Model (4.2) is a generalized linear model of the h(RD with link function log h -I (. ), but in the 

parameters of the original model of the Rj, so that estimating (4.2) simultaneously estimates 
(4.1). Iteratively reweighted least squares may be employed to fit (4.2). Letting R~ = h(Ri ) and 

ri* = h(ri ) , it follows that 

= logh-I(Rl~) + 
2R~(1-R~) 

(4.3) 

and 
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(4.4) 

Appropriate starting values for Zi and Wi may be obtained by substituting rio for R; in (4.3) and 

(4.4). Given that the tth iteration has been made and that the tth estimate oCt) has been obtained, 

the (t + l)th estimate of 0 can be computed after the substitution of (R; t) = h( exp(x~o (I))) into 
~ 

(4.3) and (4.4). When changes become acceptably small, the resulting estimate 0 maximizes the 

approximate likelihood of the rio . 

If the alternative approximation of McKay is used, then (ni / (ni - 1) )h(rn,D is supposed to 

be distributed approximately gamma with expectation h(RD and index (ni - 1) / 2. Hence, r:,i = 

(ni / (ni - l»h(rn,D may be substituted in Zi and Wi in place of rio . 

4.3 Iglewicz and Myers' Approximation 

According to Iglewicz and Myers' approximation, ri is distributed approximately normal 

with mean Ri and variance (:: )( R; + ~)= Vi(Ri) (taking <I> = I). This distribution is not in the 

exponential family. However, quasi-likelihood estimates of the parameters of (4.1) are available 
from the iterative algorithm outlined above using these moments and the generalized linear 
model 10gRi = x;o, with the ri as the responses. 

4.4 Likelihood-Ratio Tests 

, 
Let 0 = (0; ,0;) be a p x 1 parameter vector associated with model (4.1), where 01 and 02 

are of dimension q x 1 and (p - q) x 1, respectively. Using either McKay's or David's 

approximation, let 3 be the unrestricted maximum-likelihood estimate of 0 and ~ the restricted 

maximum-likelihood estimate of 0 under the null hypothesis Ho: 02 = O. If R; = h{exp{x;3)) and 

R; = h(exp(x;~)) are the corresponding estimates oftheR;, i = 1,2, ... , k, then an asymptotic 

level-a test of Ho versus HI: 0,,, 0 is to reject Ho if and only if - t (n; - I )IOg( ~ i J> X;.,.. , 

where X!,p-q is the (1 - a) quantile of a chi-square distribution with (p - q) degrees of freedom. 

Alternatively, if Ri = exp{x;3) and Ri = exp(x;~) are the corresponding quasi-likelihood 

estimates of the Ri using Iglewicz and Myers' approximation, then an asymptotic level-a test of 
Ho versus HI is to reject Ho if and only if 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/18



Applied Statistics in Agriculture 209 

2 
> Xex,p-q • 

Details of these tests are provided in Wilson (1998). 

4.5 Confidence Intervals for Fitted Models 

Once the significant interactions and main effects in a fitted factorial model have been 
determined, confidence intervals for estimated contrasts may be desired. For the multiplicative 
model (4.1), such contrasts estimate ratios of unknown population CV s rather than differences, as 
in normal-theory analysis of variance. 

For simplicity, suppose that two population CVs, RI and R2, are to be contrasted, and 
assume that the multiplicative model (4.1) has been fitted. Note that although a single subscript 
is used, these CV s may be associated with either main or simple effects of factors. In this 
context, the unknown ratio ofR1 and R2 may be expressed as 

IOg(=:J = logR, -logR, = x;o-x;o = (x; -x;)o = x;,o. 

Once the maximum- and/or quasi-likelihood estimate of 0 is obtained via one of the three 
approximations under consideration, an asymptotic 100(1 - a)% confidence interval for the log­
ratio is then 

where za/2 is the (1- aJ2) quantile ofthe standard normal distribution, and where (x'wxft is 
A 

the appropriate estimated asymptotic covariance matrix of o. Denoting the lower and upper 

endpoints of this interval by t and U, respectively, a corresponding 100(1 - a)% confidence 

interval for RI / R2 is then given by (exp(t), exp(U)). 

5. EXAMPLE 

Ott (1993, pp. 916, 919) lists the observed pH levels of 2-mL vials of a drug product 
stored at each of two temperatures (30°C and 40°C) in two labs (#1 and #2). Twelve vials were 
examined from each temperature-lab combination. The data, along with the sample means, 
standard deviations, CV s, and Shapiro-Wilk statistics for testing normality are given in Table 1. 
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The objective in this example is to estimate a factorial model that describes how each factor 
influences the relative variability of the pH. Model estimation was performed using code written 
in PROC IML with PC SAS version 6.11. 

The saturated model has the form 

Rij = Rexp(ai + ~j + (a~)ij), i = 1,2, j = 1,2, 

where R is the overall population CV, exp( ai) is the effect of the ith temperature, exp(~j) is the 
effect of the jth lab, and the terms exp((a~)ij) describe the interaction between temperature and 

2 2 2 2 

lab. The identifiability constraint I a i = I ~ j = I (a~ )ij = I (a~ )ij = 0 was used. 
i=1 j=1 i=1 j=l 

McKay's approximation was applied to fit the model. The corresponding test for interaction, 
based on one degree of freedom, is summarized in Table 2. Note that there is clearly no evidence 
of interaction, so that a reduced model with only main effects was considered. 

Conditional likelihood-ratio X2 statistics for assessing the significance of temperature and 
lab, each based on one degree of freedom, also are given in Table 2. Apparently, temperature can 
be removed from the model. The estimated parameters of the resulting "lab" model are 
appended to the table. Based on this model, the estimated log-ratio and ratio oflab CVs (#1 to 
#2), irrespective of storage temperature, are 0.6350 and 1.8871, respectively, while the 
asymptotic 95% confidence intervals are (0.2168, 1.0532) and (1.2421, 2.8668). It appears that 
vials stored in lab #1 have a significantly higher relative variability than those stored in lab #2. 

6. CONCLUSION 

The modelling approach developed in this paper is significant because it expands the 
settings in which the normal population CV may be analyzed to include designed factorial 
experiments. In particular, the use of approximations of the distribution of the sample CV 
provides a context well suited to the application of the generalized linear model and its iterative 
algorithms for model estimation. When the CV is the population characteristic of interest, the 
approach is apparently superior to the modelling efforts associated with Taguchi because it 
incorporates estimable model and covariance structures for the observed sample CV s rather than 
use transformed CV s that are assumed to have constant variance. As a result, estimated model 
parameters are easily interpreted, tests of all effects in a fitted factorial model are available, and 
asymptotic confidence intervals for ratios of contrasted population CV s are readily obtained. 
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Table 1 

Observed means, standard deviations, and 
CV s of pH levels by temperature and lab 

Temperature Lab pH data x sn rn 

30°C #1 3.45, 3.48, 3.50, 3.55 3.5883 0.0975 0.0272 
(W = 0.905, P = 0.173) 3.56,3.57,3.59,3.60 

3.60,3.61,3.74,3.81 

30°C #2 3.70,3.74,3.75,3.76 3.8108 0.0669 0.0176 
(W = 0.921, P = 0.277) 3.77,3.80,3.80,3.84 

3.87,3.90,3.90,3.90 

40°C #1 3.29, 3.32, 3.38, 3.39 3.5108 0.1348 0.0384 
(W = 0.931, P = 0.367) 3.45,3.51,3.59,3.60 

3.61,3.63,3.65,3.71 

40°C #2 3.60, 3.64, 3.68, 3.70 3.7233 0.0659 0.0177 
(W = 0.906, P = 0.179) 3.70, 3.70, 3.70, 3.75 

3.80,3.80,3.80,3.81 

Note: Values given in parentheses are the Shapiro-Wilk statistics and p-values for testing the 
null hypotheses that the samples were drawn from normal distributions. 

Table 2 

Likelihood-ratio test results 

Effect X2 df P-value 

Temperature x Lab 0.621 1 0.431 
Temperature I Lab 0.661 1 0.416 
Lab I Temperature 7.437 1 0.006 
Lab 8.323 1 0.004 

Note: Fitted CV model gave parameter estimates of log R = -3.678 (± 0.107) and PI = 0.318 

(± 0.107). 
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