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Abstract 

The detection and location of quantitative trait loci (QTL) t.hat control quanti­

tative characters is a problem of great interest to the genetic mapping community. 

Interval mapping has proved to be a useful tool in locating QTL, but has recently been 

challenged by faster, more sophisticated regression methods (e.!] .. composite interv:tl 

mapping). Regardless of the method used to locate QTL. the distribution of the test 

statistic (LOD score or likelihood ratio test) is unknown. Due to the quantitative trait 

values following a mixture distribution rather than a single distribution, the asymptotic 

distribution of the test statistic is not from a standard family, such as chi-square. The 

purpose of this work is to introduce interval mapping, discuss the distribution of the 

resulting test statistic, and then present empirical threshold values for the declaration 

of major QTL. as well as minor QTL. Empirical threshold values are obtained by per­

muting the actual experimental trait data, under a fixed and known genetic map. for 

the purpose of representing the distribution of the test statistic under the null hypoth­

esis of no QTL effect. Not only is a permutation test statistically justified in this case, 

the test reflects the specifics of the experimental situation under investigation (i. e., 

sample size, marker density, skewing, etc.), and may be used in a conditional sense to 

derive thresholds for minor QTL once a major effect has been determined. 
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1 Introduction 

Quantitative trait mapping employs statistical genetics in conjunction with recent advances 

in biotechnology toward the goal of identifying statistically significant regions of various 

genomes associated with known diseases, resistances, and a variety of other quantitative 

traits. The specific genomic regions are referred to as quantitative trait loci (QTL), and the 

procedure by which the regions are identified known as QTL mapping (Lander and Botstein 

1989). In human genetics the identification of QTL leads potentially to our understanding 

of the underlying genetic architecture of a disease, while in agricultural crops, the identified 

regions may lead to the introgression of certain regions (QTL) responsible for disease resis­

tance into the same or closely related species. Regardless of the genome under investigation, 

most of the associations made between genomes and measurable traits are performed using 

statistical testing, and herein are the problems that will be discussed. 

Standard interval mapping (Lander and Botstein 1989) techniques rely on a previously 

estimated genetic map from the same experimental data. Intervals of adjacent genetic mark­

ers are considered in turn, as follows: at prespecified increments (usually 2 cM), the process 

travels along the known distance between two genetic markers testing whether or not there 

is a QTL linked (associated) to the current position. In this paper, we will concentrate on 

one rather large issue, namely the criterion by which a statistical test is declared significant 

within a QTL mapping framework. QTL mapping, like many multiple testing situations, 

depends on a large number of tests, most of which are not independent. Making the situa­

tion even more difficult is our inability to assess the dependence structure of the problem, 

other than at the the extremes of the spectrum (i. e., sparse and dense genetic maps). It 

is standard practice in QTL experiments to have upwards of 300 markers. If we assume 10 

linkage groups (e.g., which may be thought of as chromosomes) of approximate length 200 

cM, having on average 30 evenly spaced genetic markers per group, each interval will be 

approximately 7 cM. If we test for a QTL every 2 eM within each interval, 5 tests (including 

at the markers) will be performed for each interval. In total, 123 dependent tests per linkage 
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86 Kansas State University 

group will be made, making an overall total of 1230 tests across the genome. Clearly, there 

are problems with multiple testing. In addition to the issues involved in multiple testing, 

there are issues pertaining to the distribution of the test statistic under an appropriate null 

hypothesis. Quite often the regularity conditions that ensure an asymptotic chi-square dis­

tribution for the likelihood ratio test statistic (or in the case of Lander and Botstein interval 

mapping, a LOD score) are not satisfied (Ghosh and Sen 1985; Hartigan 1985; Feng 1990). 

The difficulties in determining an appropriate asymptotic distribution are not surprising 

considering that the most popular hypothesis test compares a mixture distribution under 

the alternative hypothesis to a non-mixture distribution under the null hypothesis. Such 

situations are well cited in the literature (e.g., Hartigan 1985: Ghosh and Sen 1985) and it 

is well known that the usual asymptotic arguments do not apply in this setting as the hy­

potheses are not appropriately nested. Amplifying these problems even further are issues of 

finite sample sizes, and distributional properties of the quantitative trait that may cause one 

to question the reliability of any asymptotic approximation. Certainly, asymptotic theories 

(Lander and Botstein 1989; Feingold et al, 1993; Dupuis 1994; Rebal et al. 1994: Kruglyak 

and Lander 1995) have been presented for the determination of critical (threshold) values 

used to declare significant QTL. However these theories do little to incorporate the realities 

of the experimental situations. 

The problem of determining appropriate threshold values is complicated by many ex­

perimental factors that vary, and that can, in effect, influence the distribution of the test 

statistic. Sample size, genome size, marker density, patterns of genetic marker data, missing 

data (both phenotypic and genotypic) are among the factors that often control the distri­

bution of the test statistic. The purpose of this paper is to review a permutation theory 

method for estimating threshold values that is currently being used by the QTL community. 

Permutation theory is used to incorporate both the statistical issues, as well as the experi­

mental issues for the purpose of developing an empirically based threshold that can be used 

in a variety of applications across all QTL experiments. 
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2 Threshold Values 

2.1 Bonferroni Critical Values 

Many researchers rely on a Bonferroni correction for multiple comparisons when testing for 

QTL. As such, if m independent tests with significance level a are conducted, the probability 

that at least one test shows a false positive is 

1 - (1 - a)m 

In the previously described situation of 300 markers on 10 linkage groups, setting a = 0.05 

for each test involved in say, interval mapping, would provide a probability of 1.0 for at least 

one false positive. QTL mapping at the markers (known as single marker QTL analysis) or 

using interval mapping under a Bonferroni correction for multiple testing guarantees false 

positives. Making matters worse, the Bonferroni correction is only appropriate for unlinked 

(independent) markers. Typically, the whole reason for interval mapping is to exploit the 

known (dependent) relationships between the genetic markers. 

2.2 Monte Carlo Critical Values 

Resampling techniques have been employed as a more robust means for obtaining overall 

significance levels in QTL mapping. Resampling phenotypes (the measurable characteristic 

per individual) and/or genotypes (the observable state of a genetic marker) across individuals 

provides a means of assessing statistical significance for any QTL mapping procedure by 

developing the distribution of the test statistic from each continual resampling. The key 

issue in resampling is whether to perform the resampling with or without replacement. 

When resampling is performed with replacement, this technique is known as bootstrapping 

(Efron 1979). When resampling is without replacement, the method is known as permuting 

(Fisher 1935: Good 1994). We discuss the implications of the bootstrap on QTL mapping 

here, while deferring the discussion of permutations until the next section. 

87 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/8
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Since a bootstrap sample is derived based upon a resampling procedure that allows indi­

viduals to be selected numerous times, when applied to QTL mapping the underlying genetic 

structure is destroyed. The estimated genetic map that acts as the foundation for interval 

mapping analyses relies on the dependence structure between genetic markers. When resam­

pIing is performed with replacement, the dependence structure changes with each resampling, 

thus changing the distribution of the test statistic for each bootstrap sample. Essentially, 

a bootstrap sample destroys all underlying statistical and genetic specificities of the experi­

ment (e.g., sample size, marker density, genetic map, environmental effects). Bootstrap tests 

in the QTL mapping situation are asymptotically equivalent to permutation tests. However 

in finite samples, the bootstrap cannot be guaranteed to provide a conservative type I error 

rate, nor can the bootstrap be guaranteed to be most powerful. 

2.3 Permutation Critical Values 

Permutation theory is a Monte Carlo resampling procedure that involves sampling without 

replacement. Originating from Fisher (1935) permutation involves the repeated shuffling of 

the dependent variable and the generation of a random sample of the test statistic from an 

appropriate null distribution. The procedure is statistically valid when used in conjunction 

with likelihood or regression based test statistics and for any distribution of the dependent 

variable. As stated by R.A. Fisher, permutations are time consuming, yet extremely useful. 

"Actually, the statistician does not carry out this very tedious process but his 

conclusions have no justification beyond the fact they could have been arrived at 

by this very elementary method." 

R.A. Fisher, 1936 on permutation tests. 

With the state of modern computing as it is, permutation theory is now a viable means of 

assessing irregularities of any test statistic distribution that otherwise would be intractable. 

Permutation testing lends itself well to parallel processing, meaning that with mUltiple pro­

cessors many permutations and analyses can be performed simultaneously. In the most 
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futuristic case, 1000 permutations can be accomplished in the same (wall clock) time as one 

permutation. 

As mentioned previously, data for quantitative trait mapping consists of a set of genetic 

marker genotypes measured on each individual together with trait measurements on each 

individual. To detect QTL effects in the genome, statistical tests may be carried out at 

each marker, or for intervals between ordered markers. If there is a QTL effect at a specific 

location in the genome there will be an association between the trait values and the analysis 

point linked to that location. This association is typically detected by a range of statistical 

tests (t-test, regression, likelihood ratio, LOD score). If, in fact, there is no QTL effect linked 

to a test location in the genome, any apparent association between the trait values and the 

position is likely to be attributable to random chance. 

In the QTL application, permutation of the trait values involves simply the reassignment 

of trait measurements to individuals while retaining the underlying genetic structure (i. e., 

the genetic map). If the original data indicate that there are QTL effects, shuffling the trait 

measurements across individuals would effectively destroy any association between the trait 

measurements and the testing position linked to the QTL. If in fact, there are no QTL effects 

linked to the testing position in the genome, random reassignment of the trait values changes 

nothing. When we compute the value of the appropriate test statistic at each testing position 

in the shuffled data sets, we are basically sampling from the null distribution corresponding 

to the hypothesis of no associations between the trait values and the genetic map. Because 

the genetic map, as well as the trait values, is not altered during the permutation process 

this estimated distribution of the test statistic will take into account the particulars of the 

experiment at hand. 

The details of permutation as applied directly to the QTL problem are as follows. Indi­

viduals in an experiment are indexed from 1, ... , n. The data are shuffled by computing a 

random permutation of the indices and assigning the ith trait value to the individual whose 

index is given by the ith element of the permutation. The new (shuffled) data set is then 
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analyzed for QTL effects. The resulting test statistics are stored and the entire process (shuf­

fling and analysis) repeated N times. At the end of this procedure, test statistics for N QTL 

analyses will have been stored. Essentially, the stored analyses represent a random sample 

of test statistics from the null distribution. When the N test statistics are ordered (from 

smallest to largest), in a particular fashion, various threshold values can be determined that 

correspond to the desired type I error rate. Churchill and Doerge (1994) suggested three 

types of critical (threshold) values to be estimated from the stored results. The first thresh­

old is comparisonwise, and can be estimated separately for each analysis point in the genome. 

The comparisonwise thresholds provide 100(1- 0:) critical values for the test at each analysis 

point. The second type of threshold is the chromosomewise threshold value, one for each 

chromosome or linkage group being analyzed. Based upon the N permuted data analyses, 

the maximum test statistic from each analysis (for each chromosome) is saved and ordered 

for the purpose of obtaining 100(1 - 0:) critical values for each chromosome. Finally, the 

third type of critical value suggested by Churchill and Doerge (1994) is an experimentwise 

threshold that provides an overall 100(1- 0:) critical value which is valid simultaneously for 

all analysis points. To obtain an experimentwise threshold the maximum test statistic from 

each of the N permuted data sets are ordered, and then the threshold determined. Results 

from the original QTL analysis can be compared to any of these critical values to determine 

the statistical significance and thus to detect QTL effects for single traits. 

Doerge and Churchill (1996) gave two extensions of the permutation based method for 

estimating empirical threshold values. Conditional empirical thresholds and residual em­

pirical thresholds were introduced for the purpose of yielding critical values to be used to 

construct tests for the presence of minor QTL effects while accounting for effects of known 

major QTL (Churchill and Doerge 1994). 
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2.4 Confidence Intervals for Permutation P-Values 

The most recent work on threshold values as applied to QTL mapping has been by Net­
tleton and Doerge (1998) and includes confidence intervals for the thresholds and p-values 
estimated in the permutation testing procedures described previously. The confidence inter­
vals that Nettleton and Doerge propose account for the Monte Carlo error associated with 
the permutation testing, as well as providing tighter control on type I and type II errors in 
QTL analyses. An added benefit of the work on confidence intervals is to provide for an 
effective means for determining an efficient permutation sample size (N). 

3 Data Analysis and Results 

Permutation threshold values have become the standard in the QTL literature. Many publi­
cally available software packages have incorporated the ideas presented here, making it easy 
for researchers to apply these techniques to their experimental data. Comparisons have been 
made between theoretical (asymptotic based) thresholds and empirical (permutation) thresh­
olds. Generally, these comparisons have been made on both simulated and real experimental 
data. Since simulated data are generally perfect, with no 'missing data, understood quan­
titative trait distributions, and large sample sizes, evidence for a large difference between 
theoretical and empirical thresholds is not strong. However, when real data are analyzed, the 
difference between empirical and theoretical thresholds widens as the effects of experimental 
specifics become more obvious. 

Doerge and Rebal (1996) presented a companson between empirical and theoretical 
(Dupuis 1994; Rebal et al. 1994) thresholds using an actual QTL mapping data set from an 
F 2 maize population consisting of 106 individuals. The QTL analysis was specific to chro­
mosome 2 (estimated length 132.8 cM), with 12 RFLP markers. The distribution (cM) of 
these 12 markers was: {7.8 7.99.77.13.1 9.0 42.6 5.3 6.5 18.2 15.5}, where each value in this 
array represents the interval between adjacent markers. On average 20% of the marker data 
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were missing (i. e., individuals with at least one missing marker), while less than 7% of the 

trait data were missing (i. e., individuals with a missing trait measurement, irrespective of 

marker status). The distribution of the trait values appeared to follow a normal distribution. 

Thresholds for a chromosomewise (i. e., specific to only one chromosome) significance level of 

5% were calculated using methods of Churchill and Doerge (1994), Reba! et ai. (1994) and 

Dupuis (1994). Empirical threshold values were based on 1,000 permutations of the actual 

phenotypic measurements. In this specific example, where there was a group of individuals 

with missing trait measurements, the missing trait measurements were permuted along with 

the other trait measurements for the purpose of retaining the specifics of the experiment. 

Since the empirical threshold values reflect the specifics of the data set it is not surprising 

that the magnitude of the threshold was somewhat smaller than both approximations. Using 

a LOD score as the test statistic, for a significance level of 5% the permutation threshold 

was 1.90, as compared to 2.30 when calculated using Reba!, and 2.27 using Dupuis. When 

compared to threshold values based on a similar simulated F2 population, the empirical 

threshold values for a real data set were smaller, while the magnitude of the analytical 

threshold values remained unchanged (i. e., the analytic threshold values were the same for 

both real and simulated data). The differences between the threshold values as seen in this 

example using real data are most likely due to the proportion of missing marker data, as 

well as the environmental specifics of the experiment. For significance levels of 5% and 1%, 

the empirical permutation method performed at the specified significance levels, while the 

analytical methods of both Reba! et al. and Dupuis provided conservative lower bounds 

( i. e., less than a). 

4 Summary 

There are many benefits to each of the previously mentioned approaches to threshold values, 

and certainly there are other theoretical methods by which thresholds can be approximated. 

While no one threshold value can be exact and true, each threshold, if used in an informed 
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manner may provide an appropriate value against which to compare test statistics for sig­

nificant QTL. The main differences between threshold values that are not empirically based 

are that simulation based thresholds and analytic thresholds are model based, and do little 

to account for effects of missing data patterns and multiple QTL interactions. Permutation 

testing, on the other hand, provides an easy to use method for estimating threshold values 

that are statistically sound, are robust to departures from standard assumptions and are 

tailored specifically for the experiment at hand. 
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