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ABSTRACT 

55 

Culling decisions for dairy cattle are an important component of dairy herd management. 

To investigate risk factors for culling, farms (clusters) constitute the sampling units. Therefore, 

we believe that ages-at-culling may be correlated within farms. The score test on the null 

hypothesis of no extra-variation in survival data was not supported by age-at-culling data collected 

from 72 dairy farms from the province of Ontario, Canada. To correct for the intraherd 

correlation, three modelling approaches were used to fit the data: Population-Averaged (PA) , 

cluster-specific (CS), and Random Effects Models (RAEM). The modelling approaches are 

described and compared using the dairy cow culling data. 

1. INTRODUCTION 

"Culling" is defined as the removal of animals from a herd. For dairy production 

enterprises, the decision to cull provides the manager with the opportunity to achieve progress in 

genetic selection and to select animals for culling which are diseased or reproducing 

sub optimally . However, culled cows can represent a sizable loss to the dairy herd. The cost 

associated with replacement heifers averages 20% of the overall operating expenses of a dairy 

herd (Fetrow, 1988). The decision to cull is controlled by many factors, such as the long term 

economic strategy of the dairy enterprise, udder health and disease control strategies, reproductive 
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management, and planning for genetic improvement. 

Culling may be described as a binary outcome (culled / not culled) or by using age-at­

culling as a response variable. The advantage of age-at-culling as a response variable is that it 

incorporates more information. Therefore, instead of modelling a binary outcome where logistic 

regression is traditionally used, we deal with models for the analysis of failure time data. By 

failure, we mean the occurrence of a pre-specified event. By failure time, we mean the period 

of time taken for the event to occur. In this study, the event is the removal of a cow from the 

dairy herd, and the failure time is the age-at -culling. 

An important feature of failure time data is the possibility that the data may be censored. 

This refers to the circumstance where some animals are event free (have not been culled at the 

termination of the study) or were removed for reasons other than culling. 

Most of the statistical models and methods for failure time data were developed under the 

assumption that the observations from subjects are statistically independent of each other. While 

the assumption of independence may be valid in many applications, it has become evident that this 

assumption is violated in other fields of applications. In our study, and since our sampling unit 

is a farm (herd), there is every reason to expect strong within herd correlation among culling ages. 

There is little experience with the practical problems which arise in the use of correlated 

event time models and their inferential procedures in the field of agriculture. Therefore, the 

objective of this paper was to describe and compare several available modelling techniques. 

2. THE DATA 

The data were from 72 Ontario farms involved in a 2-year observational study (Sargeant, 
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1996). The data used in this analysis were collected between April 1993 and October, 1994. 

Production and culling data were obtained from the Ontario Dairy Herd Improvement corporation. 

Disease data were recorded by the producers throughout the study. Culling age was calculated 

as the date of birth to the date the cow was culled. The defInition of culling was restricted to the 

removal of cows by slaughter. During the study, cows that were in the herd and removed for 

other reasons (e.g. sold to other dairy farms) were considered to be lost-to-follow up and their 

failure time was treated as a censored observation. The analyses used three explanatory variables 

which were believed to be prognostic indicators for culling: parity, cumulative milk production 

in the previous lactation, and the presence or absence of mastitis in the lactation period prior to 

the lactation in which the cow was culled. 

Research has shown that low-producing cows are more likely to be culled, and that dairy 

cows have an additional 2.3 months of total life herd and 1.5 additional lactations in the herd for 

each 1000 I (450 kg) of fIrst lactation milk production above the herd average (Greer, et a!. 1980). 

Parity, which represents the number of times a cow has calved, was perceived to be an important 

covariate. Dairy cattle are bred to calf for the first time at approximately two years of age. 

Following the initial calving, the time period between each subsequent calving consists of a 

calving-to-conception period (which varies between farms and cows within farms), and a 283 day 

gestation period which is fairly constant among cows. Therefore, as the number of parity periods 

increases, the chronological age of the cow will also increase. The third covariate, considered 

as a potential risk factor was the presence or absence of mastitis (inflammation of the udder). 

At the end of the study period there were 1193 failures and 130 censored observations (a 
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58 Kansas State University 

random sub-sample of all censored observations chosen to approximately equal 10% of the 

number of failures). Failure from causes other than culling was treated as right censoring and 

therefore assumed to be noninformative. This assumption allowed us to focus upon the 

methodological issues involved in modelling correlated failure time data. 

3. TESTING FOR HETEROGENEITY 

Let Tij denote the failure time of the jth cow within the ith herd (cluster) (j = 1,2, ... n i ; 

i = 1,2, ... k) where ni is the herd size, and k is the number of herds in the sample. Moreover, let 

0ij be a censoring indicator taking the value 1 if Tij is not censored and 0 otherwise. Thus for each 

individual in each cluster we observe the triple {(Tij , 0ij' Xi): 1:s; j:s; ni ; i= 1,2, ... k} with Xij being 

the covariate vector. A common approach for modelling correlated survival data is to assume that 

the within cluster association is induced by a shared frailty, a term that represents a set of 

unobserved or latent variables that cause extra variation in the response variable. A multivariate 

model for the observed data is then obtained by averaging over an assumed distribution for the 

latent variable. Let ~i denote the unobserved frailty for the ith cluster. We assume a Cox-

proportional hazard regression (PH). Following Clayton and Cuzick (1985), we assume that ~i 

act multiplicatively on the Cox PH. Since Tij are conditionally independent (conditional on the 

frailty), the contribution of the ith cluster to the likelihood function is given by 

n 

LlPI~) = ri (A(tijl~)6ij S(tijl~) 
i;j 

3.1 

where 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/6



Applied Statistics in Agriculture 59 

Ao(t) is the base-line cumulative hazard and t denotes the transpose of the covariate matrix. 

The conditional likelihood of the ith cluster can be written as 

3.2 

where 

ij 

and 

n; 

0 = L 0 .. 
I. I) 

j=1 

Specification of the multivariate distribution of the failure times is completed by 

assuming that the ~i are independent variables drawn from a family of distributions, g(~,8) indexed 

by an unknown parameter 8. Hence the overall likelihood function is 
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k k 

L IT [J LiPI~) g(~i,8) d q = IT [E (Li(PI~))] 
1=1 1=1 

3.3 

(it is assumed that E(~) = 1 and Var(O = 8 < 00). 

The proposed test for heterogeneity is a score test for the hypothesis 8 =0, and IS 

calculated as 

s z = ---;;:;::::::;;: 
/Var(S) 

3.4 

where 

s = ! [~ [~(O .. -A (t . .) eX;~)r-o·l 
2 L...J L...J l] a l] I. 

i=1 }=I 

and 

3.5 

The elements on the right handside of equation 3.5 are the negatives of the second partial 

derivatives of the log-likelihood with respect to the indicated parameters, evaluated at their 

maximum likelihood estimates. 

When we reject the null hypothesis Ho:8=O, the standard errors of the estimated 

regression parameters obtained from the conventional cox model are likely to be under estimated, 
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resulting in inflated type I error rates. 

4. POPULATION AVERAGE APPROACH 

Two marginal approaches for the analysis of correlated failure time observations will be 

discussed. The first, the Group Jackknife Estimator (GJE), was developed by Lee et al. (1992) 

and the second is the generalized estimating equation (GEE) of Liang and Zeger (1986). 

Group Jackknife Estimator (GJE) 

In this approach, a proportional hazards model is used, with a variance adjustment to 

account for the lack of independence within herd. The GJE of the variance was derived by Lin 

and Wei (1989) based on Huber's (1967) sandwich estimator V(~ ) of ~ : 

4.l 

where H = B A-I is applicable to the estimates obtained from the partial likelihood and 

r=1,2, ... p 4.2 

where 

L exp (x/P) 
QER, 

and p is the number of covariates. 
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a2 log PL(P) 

aPr aps 

N 

= L Ilj 

j=l 

The Generalized Estimating Equation (GEE): 

Kansas State University 

4.3 

r,s=1,2, ... p 

The GEE likelihood indicates that, conditional on (tij, P), the censoring indicator Ojj follows 

a Poisson distribution with mean (~j !J-ij), 

4.4 

This Poisson likelihood fonnulation for censored survival data has been exploited by Segal 

and Neuhaus (1993) and was linked to the "Generalized Estimating" (GEE) approach of Liang 

and Zeger (1986) for clustered data. Briefly, the data comprise independent vector observations 

Oi,(i=1,2, ... k) where Oi, is (nj x 1) with mean vector!J-i, = E (oJ and ni x ni covariance matrix ~j 

= Cov(oJ. There are two main components required to model data within the GLM framework: 

(a) specifying a link function hj (!J-ij) = xi/P and~i =a2V(!J-i) where xij are covariate vectors, P is 

the regression coefficient, V (.) is a matrix of covariance functions and a2 is a scalar factor 

(b) estimating P by equating to zero the quasi-score function 

4.5 
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where D j = aJLij/a~r r= 1,2, ... ,q. The solution of Q=O is generally consistent and asymptotically 

In situations where V (p.;) is non-diagonal there are parameters additional to (~, 0 2) that need 

to be estimated. Liang and Zeger (1986) proposed the use of a "working" correlation matrix 

parameterized in terms of a vector a with an additional estimating equation for a if necessary. 

They suggested writing ~j as 0 2 Aj Rj Aj where Ri is the correlation matrix of OJ and Ai is a 

diagonal matrix with jjth entry oJV{Oj) . 

Segal and Neuhaus (1993) proposed using the GEE Poisson regression with the censoring 

indicator as the dependent variable, instead of the survival time (which is incorporated as an offset 

variable). This allows a robust variance estimate of the ~ and a moment estimate of ex. to be 

readily obtained, an approach which seems quite suitable to analyse clustered survival data with 

covariates. 

The robust standard errors are the square roots of the diagonal elements of the "sandwich 

estimator" of the covariance matrix of ~ which was given by Liang and Zeger (1986) as, 

4.6 

where 

k 

U = " D TV-I D. ~ I I I 
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5. CLUSTER-SPECIFIC APPROACH 

I-Hierarchical maximum likelihood: 

In the conditional proportional hazard model, the interpretation of P is specific to the 

individual farm. Therefore, P has a conditional interpretation (conditional on the cluster). The 

same relative hazard for cows from two different farms is exp(Pk+Uj-U), (ui=log 0, i;tj. The 

quantity (uj-u) represents the bias in estimating Pk that is ignored if ~k was interpreted as a P A 

parameter. Therefore, we need to estimate ~j in addition to the Ws. To do this we assume that 

~j are independent variables drawn from a gamma family of distributions g(~;) with E (0 = 1 and 

Var (~;) = 8 (see Vaupel et. al., 1979; and Clayton, 1978). 

__ 1_ 8- 118 

r(1/8) 
e -C;;8 

For convenience, we consider the distribution ofuj=Qn ~j, given by 

g(u) 
1 --:---:- 8-118 exp(ul8 -e U18) 

1 !J 

5.1 

5.2 

The maximum hierarchical likelihood estimates (MHLEs) are obtained by maximizing the 

sum of two components log-likelihood: 

(a) Qj the log-likelihood of the data given U 

(b) Q2 the log-likelihood for u, and 

(c) h = Qj + Q2 

Thus h represents the logarithm of the of the hierarchical likelihood based on the joint distribution 
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of the data and u. 

5.3 

or 

k n i 

QJ = "" {o Qn A(t.)+O.u+o. x/tP-A (t.) exp(xtli.+U )} ~~ lj lj lj / lj lj 0 lj ljl'-' / 
i=J j=J 

5.4 

and 

5.5 

The MHLE of u j is obtained by solving 

The MHLE of P is obtained by solving 

o 

The Newton-Raphson iterative procedure for estimating P and u is 
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5.6 

where I is the Hessian matrix. 

II - Random effects model (RAEM) 

The marginal likelihood function is obtained by substituting 5.1 into 3.3 and performing 

the integration. The log-likelihood function is written as 

k k 

Q(P,8) = L ll i + L 5.7 
i=l i=l 

where 

k n i 

Q; L L oij (xJP + Qn Ao(tij)) 
i=l j=l 

and 

Parameter estimates are obtained by maximizing the log-likelihood function l(P, 8), using the 

Newton-Raphson's iteration. 
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6. DATA ANALYSIS 

Before fitting the models, we evaluated the test statistic to detect intraherd clustering using 

equations 3.4 and 3.5. We found Z=32.94 (P< .0001) and the hypothesis Ho:8=0 was not 

supported by the data. Therefore, any model fitting must account for the frailty effect. 

1) Population Averaged Models 

a) The GJE Approach 

With the GJE approach, the hazard decreases with parity and increases when mastitis is 

present (Table 1). The direction (sign) of the estimate is easily interpreted, however, the 

interpretation of the coefficients themselves is quite difficult. For example exp (.108) = l.1O, 

has the conventional interpretation of being the constant ratio of hazards for culling between a 

population whose farms have the disease and another population of disease free farms. The 

statistical complication of the "Population Averaged" models is that each farm in the sample was 

a member of both populations due to the observational nature of the study design. For a detailed 

discussion on the GJE approach, we refer the reader to the paper by Therneau (1993). 

b) The GEE Approach 

As was reported by Segal and Neuhaus (1997), the GEE did not converge. We therefore 

used an ad-hoc approach proposed by Scott and Holt (1982). We first fit a Weibull regression 

model under independence and then inflated the estimated variance to obtain correlation corrected 

variances as follows: 

6.1 
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where Px and Py are the intraclass correlations of the covariate x and the response variable 

y, and and n is the average cluster size. These corrleations are estimated from the one-way 

AN OVA set up, as described by Donner and Koval (1980). 

The results of this approach are shown in Table 2. The PA models are simple to apply 

because the within cluster correlation is treated as a nuisance parameter, and no correct 

specification is required. Moreover, they can be fitted by statistical software such as SAS, and 

S-Plus. However, valid interpretation of the parameter estimates requires specific features for the 

study design. 

2) Cluster Specific Approach 

The results of the cluster specific model for the culling data are shown in Table 3. The 

cluster specific model is characterized by specifying a constant risk ratio conditional on the 

cluster-specific frailty. But the model attempts to estimate many parameters. In addition to the 

regression parameters (P' s) and the variance component e, the unobservable random effects ~ l' .. ~k 

are predicted as well. This means that increasing the number of sampled clusters would increase 

the number of quantities to be estimated. Therefore, it is not uncommon for convergence 

problems to occur in some situations. 

It can be shown that the fitting algorithm described for this model is equivalent to the SAS 

IML macro provided by Schall (1991), in which the censoring indicator is treated as the dependent 

variable (similar to the GEE approach), while the cumulative baseline hazard is treated as an 

offset. 

3) Random Effects Approach 
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Table 4 shows the results of the random effect model for the culling data. The coefficients 

differ in sign from the GEE because the random effects and the Weibull model fit log survival 

times, while the GJE and CS models fit the Cox hazard function. 

7. DISCUSSION 

There are fundamental differences among the models, and we must be careful when we 

attempt to interpret and extend their use to the analysis of data arising from observational studies. 

First, we realize that the proportional hazard model has been designed mainly for independent 

observations. The P A models treated the within cluster dependence of failure times as a nuisance 

factor. While ignoring the dependence may have little effect on the magnitude of the true 

estimated coefficients, it is well-known that their standard errors will be under estimated. To 

correct for the within cluster dependence we used the robust "sandwich estimator" of Var (P ). 

In contrast to the PA models, the CS and the RAEM attempt to model the intra cluster 

correlation. However, the P coefficients need to be interpreted conditional on the unobserved 

frailty. This would be more naturally related to the underlying design that generated the data. 

The CS and the RAEM are expected to be more efficient, provided that the frailty distribution has 

been correctly specified. 

The program codes for the GEE, GJE, Schall's macro, and the Fortran program used for 

the random effects model are available from the first author (mshoukri@hotmail.com). 
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Table 1: The GJE approach to modelling age-at-culling. 

Parameter Estimate SE SE Correct 
(indep.) (GJE) P-value 

Parity -1.546 0.043 .173 0.000 
Milk -.0193 0.025 .071 0.810 
Disease .108 0.067 0.065 0.107 

Table 2: The Weibull model for modelling age-at-culling data. 

Parameter Estimate SE SE 
(indep.) (inflated) 

Intercept .518 .0049 .0068 

Parity .208 .0054 .0056 
Milk .003 .0095 .0108 
Disease -.01 .009 .0093 

Table 3: The cluster-specific approach to modelling age-at-culling modelling via hierarchical likelihood. 

Parameter Estimate SE 

Parity -1.015 .038 
Milk -.107 .028 
Disease .447 .054 e 0.909 

Table 4: The random effect approach to modelling age-at-culling data. 

Parameter Estimate SE 

Parity 0.383 .026 
Milk 0.092 .014 
Disease -0.009 .058 e .51 0.259 
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