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Applied Statistics in Agriculture 

USING RANKS TO PERFORM EXACT AND ESTIMATED 

EXACT TESTS IN DESIGNED EXPERIMENTS 

Scott J. Richter, Department of Mathematics, Western Kentucky University 
Mark E. Payton, Department of Statistics, Oklahoma State University 

ABSTRACT 

A procedure is studied that uses rank transformed data to perform exact and estimated exact 
tests which is an alternative to the commonly used F-ratio test procedure. First, a common 
parametric test statistic is computed using rank transformed data, where two methods of ranking 
- ranks taken of the original observations, and ranks taken after aligning the observations - are 
studied. Significance is then determined using either the exact permutation distribution of the 
statistic or an estimate of this distribution based on a random sample of all possible permutations. 
Simulation studies compare the performance of this method to both the normal theory parametric 
F-test and the traditional rank transform procedure. Power and nominal type-I error rates are 
compared under conditions when normal theory assumptions are satisfied as well as when these 
assumptions are violated. The method is studied for a two factor factorial arrangement of 
treatments in a completely randomized design and also for a split-unit experiment. 

1. INTRODUCTION 

In experiments to determine if one or more factors have an effect on a response, the 
researcher typically can choose between one of two classes of analyses: parametric and 
nonparametric. Parametric procedures exist for both simple and complex experiments, but the 
validity of inferences made using these procedures depends on a set of unknown assumptions. 
The most common of these in the analysis of designed experiments is the assumption of normally 
distributed populations with equal variances. However, it is generally unknown to what extent 
the validity of the inferences suffers when the assumptions are not satisfied. Many 
nonparametric procedures, on the other hand, require less stringent assumptions, such as 
independent samples and observations, which can often be controlled by the experimenter. 
Furthermore, most of these methods depend on the exact permutation distribution of the test 
statistic for making inferences. However, due to the complexity of deriving the exact sampling 
distributions when sample sizes are large, most nonparametric methods rely on the asymptotic 
distribution of the test statistic. In addition, there exist few nonparametric procedures for 
analyzing complex experimental designs, and most of those that do exist are very limited in 
application. 

Conover & Iman (1976) addressed this situation by proposing the procedure of performing 
parametric procedures on the ranks of the data when the parametric assumptions were suspected 
to be violated. Many studies of the "rank transform" procedure, however, have shown it to be 
non-robust and lacking in power in some situations, most notably in experiments where 
interaction is present (see Blair, et al. (1987), Sawilowsky, et al. (1989), Akritas (1990) and 
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Thompson & Ammann (1990)). 
An adjustment to the usual rank transform, known as "ranking after alignment", was first 

proposed by Hodges & Lehmann (1962). This adjustment has been found to make the rank 
transform procedure more robust and more powerful in some situations, especially in designs 
with interaction. However, asymptotic sampling distributions are still used for tests of 
significance, and very few studies of the small sample properties are available. Fawcett & Salter 
(1984) and Groggel (1987) investigated the aligned rank procedure for testing main effects in a 
randomized block design. Conover & Iman (1976) examined the aligned rank procedure for 
testing for interaction in a two factor factorial experiment, using small effect magnitudes. 
Higgins et al. (1990) and Higgins & Tashtoush (1994) considered the aligned rank procedure for 
testing main effects and interaction in a two factor factorial experiment and also for testing main 
and sub-unit effects and interaction in a split-unit experiment. 

In this paper, the performance of both the usual rank transform and the aligned rank 
transform is investigated when the exact permutation distribution of the sampling distribution of 
the test statistic is used. Simulation studies compare the performance of these methods to the 
parametric F -ratio test procedure when testing main effects and interaction in factorial and split­
unit experiments. 

2. ESTIMATING EXACT DISTRIBUTIONS 

For complex designs with large sample sizes, the exact distribution of the test statistic will be 
estimated based on a random sample of all possible permutations of the data. This method was 
first proposed by Dwass (1957) as "the most logical" way to obtain an approximation to Fisher's 
method of randomization, and tests based on this method of determining significance have 
become known as "Randomization Tests" (Manly, 1991 ; Edgington, 1995). This technique, 
when used on the actual observations, has the somewhat undesirable property that a possibly 
unique sampling distribution must be constructed for each set of data. In addition, two 
researchers performing a randomization test independently on the same set of data would likely 
obtain slightly different p-values. For a large (say 20,000) random sample of permutations, 
however, it is unlikely that two independent tests would arrive at different conclusions regarding 
significance. For example, for estimating the cumulative probability associated with the 95th 

percentile of a sampling distribution based on a random sample of 20,000 permutations, the 
expected error of estimation, with 99% confidence, would be about .004, or .4%. Thus, very 
precise estimates of the exact critical values of the samplihg distribution can be attained. 
Applied to rank transformed data, however, a unique sampling distribution would need to be 
derived only for each possible sample size. Thus, it is possible to create tables of critical values, 
given a particular sample size. 

3.1. Procedure. 

3. SIMULATION STUDY FOR A COMPLETELY RANDOMIZED 

TWO-FACTOR FACTORIAL EXPERIMENT 

Simulated data sets were generated to examine the performance of the three methods: the 
parametric F-test procedure (FT), the exact rank transform test procedure (RT), and the exact 
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aligned rank transfonn test procedure (ART). The following model was used to generate the 
observations: 

where Ai is the effect of the ith level of treatment A, i= 1,2,3,4; Bj is the effect of the jlh level of 
treatment B, j=1,2,3; ABij is the effect of the interaction between the ith level of factor A and the 
jlh level of factor B, and eijk is the random error effect, k=1,2. For the ART, observations were 
aligned in the following manner: when testing interaction, an aligned observation was AYijk=Yijk­
(sample mean)i - (sample mean)j; when testing for main effects, an aligned observation for testing 
effect A was AYijk=Yijk - (sample mean)j, and for testing effect B the aligned observation was 
AYijk=Yijk - (sample mean)i' Standard nonnal and exponential (Jl=3) distributions were used to 
model the error distributions. Effect sizes (denoted by "c" in the tabled results) are in standard 
deviation units, and range in magnitude from 0.5 (very small) to 3.5 (very large). Critical values 
for both rank tests were estimated by calculating the value of the test statistic for a random 
sample of twenty thousand pennutations of the ranks of the data. Ten thousand samples were 
generated, and the proportion of test statistic values greater than or equal to the critical values for 
the respective sampling distributions was calculated. Thus, for estimating a nominal type I error 
rate of 0.05, the maximum error of estimation is 0.0056, with 99% confidence (values outside of 
this range are in bold in the tables that follow). 

3.2 Results. 
Nonnally distributed errors. equal variances (see Tables 1 & 2): The ART consistently 

showed power almost equal to that of the F -test. The ART often had slightly inflated nominal 
type I error rates, but the inflation was never severe, and did not appear to be affected by the 
magnitude of the modeled effects. The RT tended to compare favorably in most cases, but 
showed poor power when both main effects and interaction were present in the model, especially 
for testing interaction. In addition, for all models the RT had nominal type I error rates that 
inflated as the magnitude of the effects increased. For a more detailed study of the perfonnance 
of the RT when the parametric assumptions are satisfied, see Blair et al. (1987). 

Exponentially distributed errors (see Tables 3 & 4): Both rank tests had superior power to 
the F-test. A notable exception was the model which had both main effects and interaction 
present, where again the RT had less power for testing interaction than in other models. Even 
though for most models the power of the RT was about the same as the FT (except when effect 
magnitudes became very large, where the FT usually had more power), it was still outperfonned 
by the ART. Interestingly, for small sample sizes (n=2 observations per cell), when the error 
distributions were non-nonnal, the nominal type I error rates for the RT did not show a tendency 
to inflate as the magnitudes of the effects increased. 

Nonnally distributed errors. unequal variances (see tables 5 & 6): This was a much more 
serious problem than the lack of nonnality. The power for all methods was less than in the equal 
variance case, and this decrease in power became more severe as the degree of heterogeneity 
between variances increased. However, both rank tests consistently outperfonned the FT in the 
power category, except for the RT in the previously discussed model. The FT did, however, 
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often have slightly higher power for very small effect magnitudes. In addition, the ART usually 
had more power for testing interaction than the RT. Examination of nominal type I error rates 
for testing interaction when none was modeled revealed that these rates were inflated for all three 
methods, with more severe inflation occurring when the variances were more unequal. This 
indicated that variance heterogeneity actually tended to be falsely interpreted as interaction more 
often than would be expected. The ART seemed to be the most sensitive to this false interaction, 
which is not surprising since the alignment procedure isolates the effect of interaction, followed 
by the FT and then the RT. Thus, it is not surprising that the ART showed more power when 
interaction was actually modeled. The RT was the least sensitive to the presence of interaction. 

The problem of nominal type I error rate inflation was not limited only to the test for 
interaction, however. When only one main effect was modeled along with an interaction effect, 
the nominal type I error rates for testing the unmodeled main effect were also inflated for all 
methods. Thus, it is apparent that variance heterogeneity can produce very erratic behavior in the 
analysis. 

4. SIMULATION STUDY FOR A SPLIT-UNIT EXPERIMENT 

4.1. Procedure 
Simulated data sets were generated to examine the performance of the three methods: the 

parametric F-test procedure (FT), the exact rank transform test procedure (RT), and the exact 
aligned rank transform test procedure (ART). A split-unit experiment with main units in a 
randomized complete block design was considered. The following model was used to generate 
the observations: 

where Bi is the random effect of the ith block, i=1,2,3; Mj is the fixed effect of the jth level of the 
main unit treatment, j=1,2,3,4; BMij is the random effect of the interaction between the ith block 
and the jth level of the main unit treatment, Sk is the fixed effect of the kth level of the sub-unit 
treatment, k=1,2,3; SMjk is the fixed effect of the interaction between thejth level of the sub-unit 
treatment with the kth level of the main unit treatment, and Eijk is the random sub-unit error effect. 
The random effect BMij was used as error to test for the effect of the main unit treatment, while 
the random effect Eijk was used as error to test both the sub-unit treatment effect, Sb and the 
interaction effect, SMjk. Standard normal (both with homogeneous and heterogeneous 
variances), exponential ()l=3) and uniform [-3,3] distributions were used to model the error 
distributions. Ten thousand samples were generated, and the proportion of test statistic values 
greater than or equal to the critical values for the respective sampling distributions was 
calculated. 

For the aligned rank procedure, three different methods of aligning were used, depending 
upon the effect being tested. For testing main unit treatment effect, the observations were 
aligned by subtracting estimates of both block and sub-unit treatment effects. For testing sub­
unit treatment effect, estimates of both block and main unit treatment effects were subtracted 
from each observation. Finally, for testing interaction, the observations were aligned by 
subtracting block, main unit and sub-unit effect estimates. 
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4.2. Results 
Nonnally distributed main-unit and sub-unit errors (see Tables 7 & 8): In this situation, all 

random effects were modeled as identically distributed standard nonnal distributions. The three 
methods perfonned almost identically to the previous study of the two-way layout in a 
completely randomized design. Both rank tests consistently had power almost equal to that of 
the F -test. As in the completely randomized case, the R T again showed poor power for testing 
interaction when both main and sub-unit main effects and interaction were present in the model. 
When only main and sub-unit effects were in the model, the RT again had type I error rates that 
inflated as the magnitude of the effects increased. This behavior was not as evident for other 
models, however. 

Exponentially distributed errors (see Tables 9 & 10): When the sub-unit error effect was 
exponentially distributed, both rank tests had more power than the F -test for all models. When 
all fixed effects were in the model, the power of the ART was clearly superior to the other two, 
although the drop-off in power for the RT was not as severe as had been observed in previous 
situations. 

Heterogeneous errors (see Tables 11-14): Two cases were considered. One of the errors was 
modeled as nonnally distributed with heterogeneous variances, while the other was modeled as 
nonnally distributed with homogeneous variances. In each case, the block effect was modeled as 
having a standard nonnal distribution. For all models, a ratio between the largest and the 
smallest variances of30:1 (very large) was considered. As in the completely randomized case, 
unequal error variances turned out to be a more serious problem than the lack of nonnality. 
However, while in the completely randomized case, the perfonnance of the rank tests was 
generally better than that of the F-test, in the split-unit case the results were mixed. 

The power of all tests was lower when the main units had heterogeneous variances, and the 
power became worse as the degree of the heterogeneity increased. When only main unit and sub­
unit treatment effects were present, the rank tests had better power for testing for main unit 
treatment effect, but slightly less power for testing for sub-unit treatment effect. In addition, the 
RT had nominal type I error rates that increased steadily with increasing effect magnitudes. 
When all effects were present, the FT had the best power, with the ART close behind and the RT 
a distant third. 

The rank tests perfonned consistently better than the FT when then sub-unit error effect had 
unequal variances. When the ratio of largest to smallest variance was 30: 1, the rank tests had 
more power. For all methods, there was also a slight nominal type I error rate inflation for 
testing the interaction effect, which became more severe as the variance ratio increased. 
Surprisingly, the RT showed less inflation than the either the FT or the ART. When only both 
main and sub-unit effects were modeled, the rank tests were much more powerful, with some 
nominal type I error rate inflation for testing interaction evident for all methods. However, while 
the FT and the ART nominal rates remained constant as the magnitude of the effects increased, 
the R T showed its familiar inflation as an increasing function of effect magnitude. When all 
fixed effects were in the model, the ART had much more power than the other two methods for 
testing interaction. 
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Investigation of the nominal type I error rates when the main or sub-unit variances were 
unequal revealed a problem of inflated nominal type I error rates similar to that of the completely 
randomized experiment (see Tables 11 & 13). When the main unit variances were 
heterogeneous, nominal type I error rates for testing the main unit treatment effect were often 
larger than expected. When the sub-unit variances were heterogeneous, nominal type I error 
rates for tests for sub-unit treatment and interaction effects were always inflated. However, 
heterogeneous main unit variances did not adversely affect the nominal levels of the sub-unit 
tests, and vice-versa. Once again, the inflation of the nominal rates for the RT was often a 
function of the magnitude of the modeled effects, while the inflation of the nominal rates for the 
FT and the ART seemed to be independent of the effect magnitude. Once more this indicates 
that when error variances are heterogeneous, test results may be misleading, especially when 
testing for interaction. This was not a problem when one of the underlying populations was 
skewed (exponentially distributed). 

5. CONCLUSION AND SUMMARY 

The exact aligned rank procedure appears to be the overall best choice for performing tests in 
a general factorial experiment. When the error distribution was symmetric and error variances 
were homogeneous, the ART was nearly as powerful as the F-test, with an almost negligible 
difference in power between the two methods. For a skewed error distribution, the ART was 
clearly more powerful than the F-test. When the error variances were heterogeneous, both 
methods had problems maintaining nominal type I error levels for testing interaction, but the 
ART showed superior power for detecting main effects and interaction. 

Although the results were not as consistent as for the completely randomized case, the exact 
aligned rank procedure appears to be viable alternative to the normal theory F-test for performing 
tests in a split-unit factorial design, and is certainly a better choice than the rank transform 
method. Once more, when the error distributions were normal and error variances were 
homogeneous (situations in which the F-test is known to work well), the ART was always nearly 
as powerful, with usually an almost negligible difference in power between the two methods. 
For exponential error distributions, the ART was clearly more powerful than the F-test. 
Uniformly distributed errors were also examined for several models. The results were nearly 
identical to the case for normally distributed errors, with the F-test having the most power, 
followed closely by the ART and then the RT. The ART again often had slightly inflated 
nominal type I error rates for testing interaction. When the error variances were heterogeneous, 
both methods tended to have problems maintaining nominal type I error levels for interaction, 
although this problem was less severe in the split-unit case, while the ART usually had superior 
power for detecting main effects. Although the FT outperformed the ART in some cases, even 
when parametric assumptions were violated, the ART had superior power in most cases, and 
tended to enjoy a greater power advantage when it was the more powerful test, especially when 
the assumptions of normality and homogeneity of variance were violated. Even though the 
simulation results indicate that a nonexistent interaction effect can be introduced when error 
variances are unequal, this phenomenon occurs for both the FT and the ART. Since typically the 
analysis is performed without the benefit of definite knowledge of the nature of the error 
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variances, and since the ART generally has more power than the FT when variances are unequal, 
the ART seems a logical choice over the FT. 

One issue that deserves comment is the choice of estimator used for aligning observations. 
The mean was used in this study, but an argument could be made for using a more robust 
measure, especially when the error distribution is skewed. Higgins and Tashtoush (1994) 
examined the use of the trimmed mean and the median, but concluded that the in gain power did 
not necessarily override the greater ease of implementation of the procedure using the mean. 
Also, no matter which estimator of location is used, the performance of the test may be affected 
by the properties of that estimator for the underlying error distribution. This may explain, for 
example, the inflated type I error rates observed for samples from skewed distributions, where 
the mean is probably not the most robust measure of location. 

The problems with the rank transform method in two-way factorial designs are not alleviated 
by using the exact permutation distribution of the test statistic computed on the ranks. Based 
upon the results of this and other studies, the rank transform procedure should not be used to 
analyze data in a factorial arrangement, due to the serious type I error rate inflations caused by 
the transformation of data to ranks, and also to the poor power exhibited for some models. This 
implies that the rank transform procedure should be avoided in any design that allows for 
interaction between factors, including split-unit experiments. 
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Tables 

Table 1. Proportion of rejections at IX = .05, normally distributed errors with 
equal variance. A and B main effects present (a2=b I =c, a3=b2= -c). 

n=2 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .210 .968 1.00 1.00 

FR .199 .942 1.00 1.00 

FAR .199 .959 1.00 1.00 

Factor B F .329 .999 1.00 1.00 

FR .317 .996 1.00 1.00 

FAR .319 .998 1.00 1.00 

Interaction F .050 .050 .050 .050 

FR .054 .054 .054 .068 

FAR .056 .056 .056 .056 

n = 10 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Interaction F .049 .049 .049 .049 

FR .051 .134 .671 .997 

FAR .050 .050 .050 .050 
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Table 2. Proportion of rejections at ex = .05, normally distributed errors with equal 
variance. A, B and interaction effects present (abll=c, bl=ab41= -c). 

n=2 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .066 .213 .527 .830 

FR .066 .132 .193 .218 

FAR .065 .153 .252 .290 

Factor B F .139 .780 .997 1.00 

FR .134 .652 .940 .994 

FAR .140 .732 .989 1.00 

Interaction F .069 .260 .655 .931 

FR .066 .153 .230 .264 

FAR .075 .251 .617 .909 

Table 3. Proportion of rejections at ex = .05, identically exponentially distributed errors. 
A and B main effects present (a2=bl=c, a3=b2=-c). 

n=2 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .066 .246 .574 .828 

FR .083 .314 .621 .834 

FAR .086 .335 .665 .877 

Factor B F .084 .386 .762 .943 

FR .119 .497 .825 .956 

FAR .113 .485 .839 .966 

Interaction F .055 .055 .055 .055 

FR .058 .059 .059 .057 

FAR .074 .074 .074 .074 

n = 10 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .172 .898 1.00 1.00 

FR .329 .985 1.00 1.00 

FAR .332 .993 1.00 1.00 

Factor B F .251 .977 1.00 1.00 

FR .477 .999 1.00 1.00 

FAR .463 1.00 1.00 1.00 

Interaction F .048 .048 .048 .048 

FR .053 .060 .078 .121 

FAR .061 .061 .061 .061 
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Table 4. Proportion of rejections at a = .05, identically exponentially distributed 
errors. A, B and interaction effects present (ab I I =c, b I =ab41 =-c). 

n=2 c 

Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .049 .063 .097 .154 

FR .054 .073 .094 .121 

FAR .057 .080 .113 . I 51 

Factor B F .057 .155 .362 .610 

FR .073 .224 .405 .576 

FAR .072 .208 .420 .634 

Interaction F .058 .075 .113 .186 

FR .059 .082 .109 .142 

FAR .076 .100 .153 .234 

n=IO Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .059 .167 .412 .707 

FR .077 .238 .443 .616 

FAR .075 .268 .549 .774 

Factor B F .113 .638 .961 1.00 

FR .200 .832 .986 1.00 

FAR .185 .841 .992 1.00 

Interaction F .065 .227 .592 .891 

FR .089 .335 .634 .836 

FAR .091 .412 .846 .984 

Table 5. Proportion of rejections at a = .05, normally distributed errors with 
unequal variance. A and B main effects present (a2=bl=c, a3=b2= -c). 

n=2 c 

(30: I ratio) Test for: Statistic 0.5 1.5 2.5 3.5 

Factor A F .108 .218 .475 753 

FR .096 .280 562 .802 

FAR .097 .279 .613 .874 

Factor B F .108 .313 .651 .887 

FR .102 .380 .718 .914 

FAR .105 .406 .757 .945 

Interaction F .113 .113 .113 .113 

FR .080 .099 .110 .111 

FAR .134 .134 .134 .134 
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Table 6. Proportion of rejections at ex = .05, nonnally distributed errors with unequal 
variance. A, B and interaction effects present (abll=c, bl=ab41= -c). 

n=2 c 

(30: I ratio) Test for: Statistic 0.5 J.5 2.5 3.5 

Factor A F .097 .110 .132 .167 

FR .076 .090 .115 .146 

FAR .082 .093 .118 .144 

Factor B F .090 .160 .291 .481 

FR .075 .144 .275 .455 

FAR .075 .153 .302 .506 

Interaction F .117 .132 .164 .211 

FR .078 .086 .110 .140 

FAR .135 .157 .193 .248 

Table 7. Proportion of rejections at ex = .05, normally distributed errors with equal 
variance. MU and SU main effects present (m2=sl=c, m3=s2= -c). 

c 

Test for: Statistic 0.5 J.5 2.5 3.5 

MU Trt F .088 .474 .900 .994 

FR .091 .467 .889 993 

FAR .096 .481 .897 .993 

SU Trt F .500 1.00 1.00 1.00 

FR .449 1.00 1.00 1.00 

FAR .473 1.00 1.00 1.00 

Interaction F .049 .049 .049 .049 

FR .046 .047 .077 .148 

FAR .049 .049 .049 .049 
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Table 8. Proportion of rejections at c( = .05, nonnally distributed errors with equal variance. 
MU, SU main effects and interaction effect present (msll=-c, sl=ms41=c). 

c 

Test for: Statistic 0.5 1.5 2.5 3.5 

MU Trt F .052 .087 .168 .298 

FR .057 .078 .114 .146 

FAR .058 .087 .123 .155 

SU Trt F .187 .942 1.00 1.00 

FR .168 .875 .998 1.00 

FAR .179 .911 1.00 1.00 

Interaction F .079 .416 .894 .997 

FR .070 .269 .497 .642 

FAR .075 .383 .850 .991 

Table 9. Proportion of rejections at c( = .05, exponentially distributed sub-unit errors, nonnally distributed 
block effect and main unit errors. MU and SU main effects present (m2=sl=c, m3=s2= -c). 

c 

Test for: Statistic 0.5 1.5 2.5 3.5 

MU Trt F .066 .198 .470 .748 

FR .074 .234 .513 .770 

FAR .074 .240 .542 .801 

SUTrt F .095 .543 .909 .989 

FR .126 .657 .948 .996 

FAR .125 .655 .952 .997 

Interaction F .044 .044 .044 .044 

FR .049 .049 .049 .055 

FAR .058 .058 .058 .058 
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Table 10. Proportion of rejections at ex = .05, exponentially distributed sub-unit errors, normally distributed 
block effect and main unit errors. MU, SU main effects and interaction effect present (msll =-c, sl =ms41 =c). 

c 

Tcst for: Statistic 0.5 1.5 2.5 3.0 

MUTrt F .054 .068 .096 .138 

FR .055 .070 .094 .120 

FAR .056 .074 .098 .132 

SU Trt F .061 .220 .518 .778 

FR .076 .282 .574 .778 

FAR .076 .274 .582 .805 

Interaction F .050 .080 .160 .288 

FR .055 .094 .155 .227 

FAR .064 .105 .198 .345 

Table II. Proportion of rejections at ex=0.05, normally distributed errors, unequal main unit error variances. 
Ratio largest to smallest variance 30: I. MU and SU main effects present (m2=s I =c, m3=s2= -c). 

c 

Test for: Statistic 0.0 0.5 1.5 2.5 3.5 

MU Trt F .083 .088 .130 .223 .366 

FR .090 .095 .151 .257 .405 

FAR .084 .090 .142 .258 .407 

SU Trt F .050 .509 1.00 1.00 1.00 

FR .056 .422 1.00 1.00 1.00 

FAR .050 .440 1.00 1.00 1.00 

Interaction F .052 .052 .052 .052 .052 

FR .051 .057 .080 .107 .120 

FAR .050 .050 .050 .050 .050 
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Table 12. Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error variances. 
Ratio largest to smallest variance 30: I. MU, SU main effects and interaction effect present (ms J I =-c, s I =ms41 =c). 

c 

Test for: Statistic 0.5 1.5 2.5 3.5 

MUTrt F .084 .088 .097 .109 

FR .091 .092 .094 .101 

FAR .085 .087 .094 .103 

SU Trt F .194 .936 1.00 1.00 

FR .133 .691 .969 1.00 

FAR .144 .777 .991 1.00 

Interaction F .082 A21 .890 .996 

FR .067 .152 .302 A58 

FAR .070 .307 .735 .947 

Table 13. Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error variances. 
Ratio largest to smallest variance 30: 1. MU and SU main effects present (m2=s I =c, m3=s2= -c). 

c 

Test for: Statistic 0.0 0.5 1.5 2.5 3.5 

MU Trt F .052 .063 .155 .350 .619 

FR .055 .070 .184 .389 .625 

FAR .052 .067 .191 A37 .701 

SU Trt F .074 .095 All .911 .999 

FR .073 .131 .666 .985 1.00 

FAR .068 .114 .636 .984 1.00 

Interaction F .083 .083 .083 .083 .083 

FR .065 .065 .074 .081 .083 

FAR .105 .105 .105 .105 .105 
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Table 14. Proportion of rejections at a=0.05, nonnally distributed errors, unequal sub-unit error variances. Ratio largest to 
smallest variance 30: 1. MU, SU main effects and interaction effect prescnt (ms II =-c, sl =ms41 =c). 

c 

Test for: Statistic 0.5 1.5 2.5 3.5 

MU Trt F .053 .059 .079 .111 

FR .057 .075 .095 .122 

FAR .054 .073 .101 .135 

SU Trt F .081 .159 .370 682 

FR .090 .240 .537 .816 

FAR .078 .210 .510 .814 

Interaction F .085 .102 .143 .219 

FR .070 .107 .170 .242 

FAR .108 .135 .193 .294 
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