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Applied Statistics in Agriculture 

Some Experiences with Neural Networks 

Lynda L. Ballou and Dallas E. Johnson 
Department of Statistics 
Kansas State University 

Manhattan, Kansas 

Abstract 

This paper gives a brief overview of artificial neural networks which may be used to 
model data similar to the kind where one usually considers regression models. Many 
practitioners believe that neural networks perform better than regression models for 
prediction purposes. Some simulations were performed using three different neural 
net programs, namely Braincel, Ripley's S+ program, and Nychka's S+ program. 
These simulations reveal some interesting aspects of neural net programs which 
should be of interest to anyone considering the use of neural net programs to model 
continuous data. 

1. A Brief Introduction to Neural Networks 

An artificial neural network, usually referred to as a neural network, has no widely recognized 
definition. A descriptive definition is: ''Neural networks consist of many simple neurons or 
processors (real or simulated) that have densely parallel interconnections. The processors 
communicate across connections in terms of "activations" and "inhibitions" - signals that excite or 
inhibit responses by connected processors - rather than with symbols or messages that have high­
level meanings." (Kinoshita and Palevsky, 1987). In the remainder ofthis section a brief introduction 
to neural networks is described. For a more detailed description see Bishop (1995). 

Figure 1 describes a simplistic neural network, this neural network could be referred to as a 
neural network with no hidden layer. The inputs or the independent variables are directly connected 
to the output or predicted value of the dependent variable, the connections are via weights that a 
neural net program will develop. The assumptions for a neural network are similar to the assumptions 
required when modeling data with a linear regression model; that is, that a dependent variable is a 
function ofthe independent variables, Xl> ... ,Xv and random error. Many neural networks, but not 
all, assume that the random errors are independently and identically distributed with mean zero and 
a common variance. The input variables can be either quantitative or qualitative and are assumed to 
be uncorrelated. It is assumed that all important relationships between the independent variables have 
been recognized and dealt with before fitting the data with a neural network program. A variable x" 
that is always equal to one is always included and is used as an intercept that corrects for bias in the 
fitted model. In neural network terminology, it is customary to refer to the observed value of the 
dependent variable a the target value and denote it, t, and the prediction for the neural net by y. The 
objective in modeling data with neural networks is to get y "close" to t for all data points. The output 
or the predicted value, y, is some function of the independent variables. If a linear model is the choice 
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for the neural net then 
n 

y(X) = L WjXj' where Xo = 1 and Wj are unknown weights. 
i=O 

If y is not some linear combination of the independent variables but believed to be some other 
function of the independent variables then a more general neural network assumes that 

y(x) = ~ t. w,x,) , 
where g(o) is called the activation function. The activation function could be a binary function, a 
linear function or some sigmoidal function. The weights in the model are determined so that an error 
function is minimized. The error function is dependent on the computer program being used. 
Suppose that the observed data are given by (Xb t1), ... ,(xN, tN). One commonly used error function 
is the least squares error function 

N 

E(w) = L [y(xn;w) -tn]2, 
n=l 

where Y(Xn, w) is the predicted value of the dependent variable for the nth observation. Another 
possible error function is the Minkowski error function 

N 

E(w) = L Iy(~;w) -tnI R, for some R>O. 
n=l 

If the activation function being considered is linear and the error function is the least squares error 
function then the error function is minimized by w = (X'XylX't. In this case, one gets the usual 
multiple regression solution. If g( 0), the activation function, is not linear or if the error function is 
not the least squares error function, then the weights must be determined through an iterative process. 

Figure 2 describes a neural network with one hidden layer. It is interesting to note that 
existing literature about neural networks vary in the manner in which they label neural network 
structures. For instance, some authors count the input layer, so that Figure 2 would be called a 2-
layer network while other authors also count the output layer and call it a 3-layer network. Warren 
Sarle (URL ftp://ftp.sas.comJpub/neural/FAQ.htmI) has suggested that only the hidden layers within 
a neural network should be counted. This is the convention followed in this paper. Consequently 

in this paper, Figure 2 describes a I-layer network. 
The neural network displayed in Figure 2 is a series of input variables connected to the two 

output variables by a network of weights and nodes within the hidden layer. The assumptions about 
the model are similar to the assumptions for Figure 1. That is, it is assumed that the each dependent 
variable is a function of some hidden layer variables which are functions of the independent variables 
plus some random error. Again Xo is always equal to one. Each node within the hidden layer except 
the node Zo (which will correct for bias in the hidden layer) is connected to the independent variables, 
Xl> ... , "n. The outputs or the predicted values of the dependent variable are functions of the 
weighted values of the values produced at the nodes in the hidden layer, and the values at the nodes 
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are weighted values of the independent variables. All weights are determined so that an error function 
is minimized. This process is done by various algorithms depending upon whether the activation 
functions are differentiable. Note that neural networks can have multiple hidden layers, if needed, 
to provide a better fit to the data. 

2. Motivation 

The data that are the motivation for this paper was supplied by a client. The client was trying 
to predict total biomass with ten independent variables. The independent variables measured are 
incident radiation, reflectance at 8 different wave lengths (460 nm, 510 nm, 560 nm, 610 nm (red), 
660 nm, 710 nm, 760 nm, and 810 nm (nir», and the normalized difference vegetation index (NDVI 
= (r810 -r610)/(r81O+r61O) where rw is the reflectance measurement at the wave length, w). The client 
used a neural network program called Braincel on these data and was impressed with the predictions 
for total biomass that were generated from the neural net. Braincel is a program developed by 
Promised Land Technologies (http://promland.coml). 

In typical applications of neural networks the data set is divided into two pieces; one portion 
of the data is called the training data set and the other portion is called the test data set. The neural 
network program uses the training data set to develop a model, then the model is used to predict the 
dependent variable for the test data set and an error function is evaluated. This evaluation of the error 
function for the test data set is the typical method of determining the "goodness of fit" for the model. 
Following the guidelines in a typical application, this data was randomly divided into two parts, the 
training data set had 387 observations and the test data had 164. Using the training data, a neural 
network was developed. In order to assess goodness offit, a graph of the observed total biomass was 
plotted against the total biomass predicted by the neural network and the coefficient of determination 
was calculated, see Figure 3. One might ask how this would compare to a typical multiple regression 
analysis. A simple multiple regression analysis on the independent variables was performed using a 
model that only contained linear terms. Stepwise regression was used to select terms for the final 
model. The terms in the final model were all significant at a 0.15 level or lower. Figure 4 shows the 
observed total biomass plotted against the predicted total biomass from the resulting linear regression 
model. A comparison of the plots in Figures 3 and 4 clearly indicates that the neural network did a 
much better job of fitting the data then the regression model. In order to improve the fit of a 
regression model, a quadratic model was then used. This model contained the squared and cross­
product terms as well as linear terms. The terms in the final model were those that were significant 
at the 0.15 level or lower using stepwise regression enforcing the inclusion of all linear terms. Figure 
5 shows a graph of the observed total biomass plotted against the predicted total biomass from the 
resulting quadratic regression model. Once again it appears that the neural network also outperforms 
the quadratic regression model. The predicted values for total biomass for the test data set were also 
calculated for each of these models: the Braincel model, the linear regression model and the quadratic 
regression model. Although they are not shown here, graphs of the predicted biomass were plotted 
against actual biomass for each of the three models using the test data. The patterns seen in Figures 
3,4, and 5 also appear in the test data with R2 = 0.6111 for the Braincel model, R2 = 0.4208 for the 
linear regression model, and R2 = 0.5440 for the quadratic regression model. Again the neural 
network seems to out perform the regression models. 

The above graphs motivated an interest in neural networks; they also raised two interesting 
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questions that need answering. First, could a lack-of-fit test, or equivalently, a test for model 
adequacy, be developed that does not depend upon test data? If so, then this test could help 
determine an appropriate number of hidden layers and the number of nodes within each layer that 
would need to be used in the neural network. Another question is can prediction intervals be 
determined to measure the reliability of a prediction from a neural network? These questions are not 
answered here, but seeking answers to these questions led to some experiences that are being 
reported. 

One of the basic assumptions in using neural networks is that the input variables are 
uncorrelated with one another. This assumption is generally ignored in much of the literature. To 
see if the results from Braince1 could be improved by using uncorrelated input variables, a principal 
component analysis was performed on the ten original input variables and the resulting ten principal 
components were used as input variables in Braince1 to create a new neural network. Figure 6 shows 
a graph of the actual biomass plotted against the predicted biomass from Braince1 using the principal 
components as inputs. While the value ofR2 is slightly smaller in Figure 6 then Figure 3, the plot in 
Figure 6 may be slightly more appealing to many data analysts. 

3. Some Experiences with Braincel, Ripley's S+ Program, and Nychka's S+ Program 

Consider a case where data that is being modeled is of the form 

t ij = trxi;~)+Eij for i=1,2, ... ,m and j=1,2, ... ,n 

where Eij ~ i.i.d. N(O, (J2) and for each ofm different values of the ~'s there are n values ofy called 
true replicates. When there are true replicates, the typical test for model adequacy is performed by 
partitioning the residual sum of squares (SSR) from a fitted model into two parts. The first part is 
the sum of squares due to pure error (SSPE) which can be used to estimate (J2 and the second part 
is the sum of squares due to lack-of-fit (SSLF). The test for model adequacy in those case when tr~, 
~) = ~'~, Graybill (1976) is then done by calculating the test statistic 

F = SSLF/(m -p) 
SSPE/m(n -1) 

m m 

where p is the rank of X = [Xl> x2>""~]', SSPE = L (tij -ti·)2, and SSLF = L (ti. -y/. Model 
i=l i=l 

adequacy is rejected when F > F(a, m-p, m(n-1». In these cases, one says there is significant lack­
of-fit. 

To develop a test for adequacy of a neural network, it seems appropriate to begin with the 
case where there are true replicates as described above. For neural networks, a similar partitioning 
of the residual sum of squares can be done, however, questions that need to be answered are: What 
is p? and What is the distribution of the test statistic F? To help to determine p, data were simulated 
in the following way: 

t .. =f(x1· X_.)+(JE .. 
1J 1''''21 1J 

for i = 1,2, ... ,25 and j = 1,2 

where Eij ~ i.i.d. N(O,l), ~i ~i.i.d. N(O,l), and Xli, X2i and Eij are independent. In the first set of 
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simulations several linear and quadratic functions of Xli and X2i were used. In addition, several 
different values of 0 were considered. Table 1 provides the expected values of the various sums of 
squares for different generating models when a correct regression model is used to fit the data. 
A question of interest is what are the expectations of these sums of squares when the data are fit with 
a neural net? In order to gain some insight into the answer to this question, ten different sets of data 

2 2 
tij = 2Xli + 1. 60~i + 1.25x1i +0. 75~i + 3Xli~i + Eij for i = 1,2, ... ,25 and j = 1,2 

were simulated. For each case, a neural net was fit to each data set using Braince1, and the sum of 
squares residuals (SSR) was calculated for each set. SSR was then partitioned into SSPE and SSLF 
= S SR - S SPE. Note that sum of squares residual and sum of squares lack-of-fit depend on the neural 
net, but sum of squares pure error does not. Visual examinations of the resulting sum of squares 
were unrevealing in terms of helping to determine an appropriate value ofp. The sum of squares 
seemed to change dramatically from simulation to simulation for any given case. Sometimes the sum 
of squares residual were reasonably close to (n-p * )02 (where p * = the number of weights created by 
the neural network) as one might hope, but at other times they were much too large to seem 
reasonable. Consequently, instead of answering the question about what p should be in creating F, 
the simulations generated more questions. One would be how does the number of nodes and the 
number of hidden layers relate to p, if at all? In order to gain a better understanding of what was 
occurring when using Braince1 to model simulated data, it was decided that there was a need for a 
much larger simulation study. The data simulated for this study were generated by;where Eij ~ i.i.d. 
N(O,l), Xp ~i.i.d. N(O,l), and Xli, x2i, and Eij are independent. 

Braince1 is an add-on to Microsoft Excel, it is relatively easy to use in most situations but for 
a large simulation study it became apparent that a different program was needed. Ripley's S+ 
Program is a S-Plus function that is available on a disk in Modern Applied Statistics with S-Plus 
(1994) by William N. Venables and Brian D. Ripley. 

Ripley's S-Plus program was used to develop neural nets for each of 1000 data sets. The 
neural networks each have two input variables and one hidden layer with two nodes. Note that the 
neural network determines estimates for 9 parameters. After the neural net was fit for each data set, 
the sum of squares residual was calculated. Figure 7 shows a histogram for the SSR except that all 
SSR> 600 were put into the last category. This graph has the general shape ofaX2 which would 
seem reasonable, but the mean of130.45 was considerably higher than the expected mean of the SSR 
for a quadratic model which is 44. In an effort to understand this problem, one of the data sets was 
selected and fit by a neural net 1000 times. The graph for the SSR for this repeated fitting is 
displayed in Figure 8. Examination of Figure 8 shows that about 25% of the time the SSR are about 
48 (a somewhat reasonable value) while approximately 75% of the time the value is between 90 and 
1 05 (an unreasonable value). This graph indicates that this Ripley's S+ program is performing poorly 
in terms of fitting a neural net to this data set. 

After much consideration another program that fits neural networks was tried. Nychka's S+ 
program is a S-Plus function created by Douglas Nychka, Department of Statistics North Carolina 
State University. This function is available from the authors. (To obtain this function in UNIX follow 
these steps: mkdir funfits, cd funfits, ftp ftp.eos.ncsu.edu, cd/pub/statistics/stattools/pub/funfits, get 
funfits.tar.Z, quit, uncompress funfits.tar.Z, tar -xvffunfits.tar, follow the instructions in the README file.) 

183 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1997/proceedings/15



184 Kansas State University 

Nychka's S-Plus program was used to develop neural net models for each of the 1000 data sets 
simulated for Ripley's program. Again each neural network had two input variables and one hidden 
layer with two nodes. After the neural net was fit for each data set, the sum of squares residual was 
calculated. Figure 9 shows a histogram for the SSR. This graph also has the general shape ofaX2 
distribution and while the mean of the SSR is 54.2962 which is higher than the expected sum of 
squares for the residual for a quadratic model which is 44, it is at least reasonable. In an effort to 
determine reliability of this program, the data set that was selected for Figure 8 was fit with Nychka's 
neural net 1000 times. The results of these repeated fittings are shown in Figure 10. Figure 10 
indicates that the program is producing consistent results since the SSR have a minimum value of 
48.1173 and a maximum value of 48 .1461. This graph also indicates that this program is performing 
much more consistently than Ripley S+ program. 

In an final effort to compare programs, Braincel was used to fit neural nets to each of the 
1000 simulated data sets. Again the neural networks have two input variables with two nodes in the 
hidden layer. Figure 11 shows the S SR which has the general shape ofax2 distribution but the mean 
of95.5309 is higher than the expected sum of squares residual for a quadratic model which is 44. 
This figure indicates that Braincel is performing better than Ripley's S+ program but not as well as 
Nychka's S+ program. 

Table 1. Expectations of sum of squares under different 
models when the correct model is fit. 

Model 

Sum of Squares Linear Quadratic 

SSR 4702 4402 

SSPE 2502 2502 

SSLF 2202 1902 
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Inputs Output 

Xo 
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Figure 1. Neural Net with No Hidden Layer 

Inputs Hidden Layer Outputs 

Figure 2. Neural Net with One Hidden Layer 
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4. Summary 

600 

While neural networks appear to produce very interesting results in terms of their ability to 
accurately predict continuous data, one should use caution when selecting a neural network program 
or believing the results. One should always keep the type of data that is being modeled in mind. 
There are many neural network programs available and those described in this paper are but a few. 
Before any program is used, its reliability should be verified. That is, one needs to see if the iterative 
process consistently provides equivalent models by reanalyzing the data many times. Research is 
presently being conducted that will help data analysts determine the adequacy of the fit of a neural 
network. The results will be reported at a later time. 
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