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Applied Statistics in Agriculture 

Abstract 

Alternative Analyses of Crossover Designs 
with More than Two Periods 

Carla L. Goad 
Department of Statistics, Oklahoma State University 

Dallas E. Johnson 
Department of Statistics, Kansas State University 

A crossover experiment is a special form of a repeated measures experiment. An 
appropriate analysis of a repeated measures experiment depends on the form of the variance­
covariance matrix of the repeated measures. Certain forms of this matrix yield valid analysis of 
variance F -tests while other forms invalidate these tests. In a crossover experiment where 
analysis of variance tests are invalid, two alternative tests of a linear contrast of the parameters 
are proposed. In addition to these approximate t-tests, three alternative methods for testing for 
equal treatment effects and equal carryover effects are proposed. A simulation study is 
conducted to evaluate these proposed alternative test procedures for power. Confidence levels 
and confidence interval lengths are also examined for those procedures from which an estimate 
of the linear contrast can be made. 

Keywords: crossover design, repeated measures 

1. Introduction 
A crossover design is an experimental design in which each experimental unit (subject) 

receives a sequence of experimental treatments over time. Sequences usually involve the subject 
receiving a different treatment during each of the successive experimental periods. However, 
one or more of the treatments may occur more than once in any sequence. While a completely 
randomized design could be used to estimate differences between treatments, a crossover design 
offers some distinct advantages. A crossover design often provides more precision with fewer 
subjects than a completely randomized design. In crossover designs, each subject serves as its 
own control. This allows one to estimate the standard errors of estimated differences in 
treatment effects with a measure of within subject variability which tends to be smaller than 
between subject variability. 

Much has already been written about the advantages, disadvantages, and analyses of two 
treatment / two period crossover designs. These techniques are nicely summarized by Jones and 
Kenward (1989) and Ratkowsky, Evans, and Alldredge (1993). 

There are two models often used for modeling results obtained from a crossover design. 
The first is a model that does not include parameters for carryover effects. Such a model is 

Yijke =!l + Si + Die + 't j + 7tk + E ijke (l.1) 
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for i = 1, 2, ... , s, j = 1, 2, ... , t, k = 1, 2, ... , p, and £ = 1, 2, ... , nb where Yijkl is the response 
measured on subject t in sequence i receiving treatment j in period k, /l is an overall mean 
parameter, Si is the ith sequence effect, 8if is the experimental error associated with the fth 

subject in the ith sequence, 'tj is the jth treatment effect, 1tk is the kth period effect, and Eijkt is the 
error associated with the £ th subject in sequence i that received treatment j in period k. Also it is 
assumed that E(8ig)=E(Eijkf)=O for all i, j, k, and £, and that all 8if'sandEijke's are 

independently distributed. 
A second model is one that includes carryover parameters. Such a model is 

Yijkf = /l + Si + 8 if + 't j + 1tk + A. m + Eijkf (1.2) 

where /l, Si, 8 if , 'tj, 1tk are defined as in (1.1), and A.m is the carryover effect of the mth treatment 
administered in period k-l, where m = 1, 2, ... , t. When k=l, there is no carryover effect. That 
is, there is no carryover parameter associated with the first period. The model with a parameter 
for carryover effects presents some other design issues such as confounding of effects and 
balancing of carryover effects (Cochran and Cox, 1957 and Williams, 1949). 

Consider this dairy science example. The effects of three different diet regimens on daily 
milk production of Holstein dairy cows are to be evaluated. All cows are at a similar point in 
their lactation cycle when the study begins. Each cow is assigned to a sequence of diet regimens. 
In each sequence, cows are assigned to the first diet regimen for a two week time period. During 
the third week of the diet regimen, the average daily milk production (pounds per day) is 
obtained. The second regimen then follows for a period of two weeks with data being collected 
during the third week. And the third regimen and measurements follow similarly. A strong 
period effect is expected since the cows' lactation states change during the study. Although a two 
week adaptation period to each diet regimen is allotted for each animal, residual effects of diet 
regimen may still exist. The data for this experiment appear in Table 1 where the three diet 
regimens are denoted by A, B, and C. Reasonably, the experimenter expects that the production 
values for each animal to be correlated. Should the usual ANOVA procedures be used in this 
analysis? 

Crossover designs are actually special types of repeated measures designs. Generally, in 
a repeated measures design each experimental unit is assigned a treatment after which a single 
response of interest is repeatedly measured over time. A crossover design is more complicated in 
that each experimental unit experiences a change in treatment from one measurement period to 
the next. 

When analyzing repeated measures designs, correlations between observations taken on a 
single subject must be considered. Standard analyses of repeated measures designs often use 
analysis of variance methods appropriate for split plot designs. However, in order for the 
methods to be appropriate, the variance-covariance structure of the responses taken over time on 
each subject must have a specific form. Similar requirements are likely to be necessary for 
crossover experiments that are to be analyzed by analysis of variance methods. When 
observations are correlated, alternative methods of analysis are needed. Here, alternatives to the 
usual analysis of variance tests for equal treatment and equal carryover effects are presented and 
evaluated. Alternative tests and estimates of linear contrasts are also investigated. 
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2. Validity of the Analysis of Variance Tests 
As in a repeated measures experiment, a crossover design model can be written in vector 

form as 
YiR=Xi~+tie, i=1,2, ... ,s,e=1,2, ... ,ni (2.1) 

where YiC is the px1 vector of repeated measures for subject e in sequence i, Xi is the appropriate 
design matrix for sequence i, ~ is the rx1 vector of parameters where r is the number of parameters 
specified by (1.1) or (1.2), and tit is the px1 vector of random errors associated with subject /, in 
sequence i. Define L as the pxp variance-covariance matrix of the error vectors tit and let 
Ili = E(Yie)' i = 1,2, ... , s. Assume til ~ iid N(O, L). Given the assumptions in (1.1) and (1.2), 
L = cI where c is a constant. However, in a repeated measures experiment, correlations among the 
tijk1'S are anticipated and accounted for in the analysis. 

Under model (2.1) and the assumptions on the error vectors, it can be shown that 

" - £=1 l' - 1 2 S J.!i - --, - , , ... , , 
ni 

and 
A 1 S nj 

L = - II(yu - ~)(Yie - ~y 
N- S i=if=l 

(2.2) 

s A 

where N = I n i , are sufficient statistics for ~ and L. Furthermore, L is an unbiased 
i=l 

estimator of the variance-covariance matrix, L, and ~ i is an unbiased estimator of Ilj, i = 1, 

2, ... , s. It can be shown that (N- S)L follows a p-variate central Wishart distribution with N-
A 

S degrees of freedom and variance-covariance matrix, L. That is, (N-S)L ~ Wp(N-s,L). 

The crossover model can be written terms of the sufficient statistics. Define the spx1 
vectors ~ and 11 as 

A 

III 

and 11 

III 

112 

Ils Ils 

, respectively, 

and let H be a spxr matrix such that 11 = H~, where r is the number of model parameters in ~ 
specified by either model (1.1) or (1.2). A model for the vector of observed sequence means, 

A • 

11 , IS 

~ = H~ + t *, where t* ~ NCO, L*) and (2.3) 
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_I ~ 0 0 
n l 

~*= 
0 _I ~ 0 = ~®Diag(-I ,_I , ... ,~) . n 2 (2.4) 

n l n 2 ns 

0 0 _I ~ 
ns 

When analysis of variance procedures are used to analyze repeated measures, it is presumed 
that ~ has Type H structure, which is defined later in this paragraph. In a repeated measures 
experiment however, Type H structure is not always the case. Consider a crossover experiment 
where sequences of treatments are defined by mutually orthogonal Latin squares. If there are an 
equal number of subjects assigned to each sequence, Goad and Johnson (1996) showed that for 
crossover designs without carryover parameters, the analysis of variance test for equal treatment 
effects is valid for any non-singular form of~. However, when there are an unequal number of 
subjects per sequence or when carryover parameters are included in the model, the usual analysis 
of variance tests may not be valid. Goad and Johnson also showed that for the unequal sample size 
case, valid analysis of variance tests for treatment and carryover exist when ~ has type H structure 
as defined by Huynh and Feldt (1970). A matrix ~ is said to have type H structure if 
~ = 11 Ip + Y jp' + jp y' for some constant 11 and some constant vector y where jp is a pxl 

vector of ones. 
Since the analysis of variance tests for equal treatment and/or equal carryover effects are 

likely to be invalid when ~ does not have type H structure, alternative procedures for a correct 
analysis must be considered. Some alternative methods for analyzing crossover experiments are 
proposed and evaluated for power in the next two sections. The alternative methods that are 
presented depend on the sufficients statistics given in (2.2). 

3. Alternative Analyses of Crossover Designs 
In this section three alternative approaches to the analysis of crossover designs are 

suggested for those cases where the variance-covariance matrix does not have type H structure 
and/or for unequal ni cases. 
3.1 Degrees of Freedom Adjustments 

Box (1954a) initially investigated the null distribution of the F -statistic in the analysis of 
variance under the effect of "group-to-group inequality of variance" in a one-way treatment 
structure. Box (1954b) continued this investigation by examining the effects of unequal variance 
in a two-way treatment structure. A randomized block experiment in which the variance changes 
from one block to the next was one possible scenario Box cited. Box also examined the effects 
of correlated errors on the null distribution of the analysis of variance F -statistic. Box showed 
that in the analysis of variance of the two-way treatment structure both the numerator and the 
denominator degrees of freedom of the F -statistic should be reduced by a multiple of E where 
0< E < 1, and E is a measure of how far ~ deviates from compound symmetry. For example, a 
test for no difference among treatment effects in a crossover design is a within subject test, and 
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the significance ofthe test statistic may be affected by the form of~. Under Ho: TI = T2 = ... = Tt 
the usual analysis of variance test statistic would be approximately distributed as F(t-I)E,(dfe)E' 
where the degrees of freedom for error, dfe, is a function of the total number of subjects, number 
of treatments, and number of periods. That is, under Ho 

F = SSTrt/ (t-l) ,.:., 
SSE/ dfe F(t-I)E,(dfe)E 

The reduction factor, E, developed by Box is given by the following formula 
p2 (cr .. _ cr )2 

(3.1) 

where the aij' s are the elements of~, crii is the mean of the diagonal terms of~, a i. is the 

mean of the terms is the ith row of ~,and cr is the grand mean of the elements of~. Note 

that when ~ possesses compound symmetry, E = 1. Geisser and Greenhouse (1958) showed 

that a lower bound for E is E > _1_, and suggested using this value to yield the most 
p-l 

conservative test of Ho under any existing covariance structure. Greenhouse and Geisser 
(1959) also used the elements of the sample variance-covariance matrix in (3.1) to compute 81, 
an estimate of E. This correction factor may also be computed by 

or by (3.2) 
E = ~r(Pi:P') r 

1 (p -1)tr~Pi:p')2 ] 

~ 

E ------1 - p_1 

(p-1)LA~ 
i=1 

where P is any (p-l)xp matrix of orthonormal contrasts and where Aj, A2, ... , Ap_1 are the nonzero 
~ 

characteristic roots of P~P'. Huynh and Feldt (1976) proposed using the reduction factor 

E2 = N(p-l)EI-2 . (3.3) 
(p-l )(N- s- (p-l) EI) 

Note that 82 is not only a function of 81 but also the total number of subjects, N, and the number 
of periods, p. Using equations (3.2) and (3.3), it is possible that 81 or 82 is greater than 1. In 

that event, using either method, the estimated correction factor is E = min {E i' I}. Any form of 
the variance-covariance matrix, ~, that deviates from type H structure can only decrease the 
degrees of freedom in determining the significance of F -statistics. 
3.2 A Multivariate Approach 

To analyze a crossover design using a multivariate approach, consider the definitions 
based on the sufficient statistics given in (2.3) and (2.4). 

Let a'~ be an estimable linear function of~. Since J.l = H~, a'~ = a'H-J.l = b'J.l 
where b = H'-a and H- is the Moore-Penrose generalized inverse of H. It can be shown that 
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b'~ is an unbiased estimator of a'p. Under the preceding assumptions, the vector b can be 
partitioned as b = [bt' b2' ... bs'1' where each b i is a px1 vector. Then 

5 , 5 I ' 
b'~ = Ib i ~i and var(b'~) = b'L*b = I-bi Lb i . 

i=1 i=1 n i 

Consider the hypothesis Ho: a'p = ao, where ao is a specified constant. If L is known, a 
test of Ho can be based on 

(3.4) 
s , 

"~b. Lb. L...J ni I I 

i=l 

which has a standard normal distribution. When L is substituted for L in (3.4), the resulting 
test statistic does not follow a standard normal distribution. The distributional properties of 

var(b'~) = ± ~b'ii:bi need to be examined before a test statistic can be recommended. 
i=lni 

First note that 

~ I ~ (~ 1 ~J ~ var(b'~) = 6tmb'iLbi = tr 6t ~bibiL = tr(AL) (3.5) 

where A = ± ~bi b'i . Also note that A is a non-negative matrix. Let a = rank(Ai:). Then 
i=1 ni 

tr(Ai:) = tr(rr'i:) = tr(r'i:r) where r is any pxa matrix of rank a such that rrr = A. Since 

(N- s)i: ~ W p (N- s, L), it can be shown that (N - s)(r 'i:r) ~ Wa (N - s, r 'Lr) . 

Next, define the statistic U = utr(AL) where u is a constant. Using the results for the 
tr(AL) 

trace of a Wishart matrix by Mathai (1980), the first two cumulants of U are K I = u and 

K 2 = 2 u 2 . Setting these equal to the first two cumulants of the X2 -distribution with u degrees 
N-s 

of freedom (which correspond to the mean and variance of the X2-distribution), an approximation 

to the value of u, 0, can be obtained using Satterthwaite's (1946) approach. Thus the 
approximate degrees offreedam afU are given by 

~ (N- s)[tr(Ai:) f 
u = (3.6) 

tr(Ai:)2 

Thus, the distribution of U can be approximated by a X2 -distribution, and U ,:.., X 2 (0). The 

range of possible values for 0 is 
(N-s) ::::; 0 ::::; (N-s)a ::::; (N-s)p 

since [tr(Ai:) f ~ 1 and [tr(Ai:)]2 ::::; rank(Ai:)[tr(Ai:) 2 ] (Graybill, 1969, p. 303). 
tr(Ai:)2 
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With this information, the distribution of the test statistic for Ho: a'~ = ao can be 
approximated by a t-distribution with 0 degrees of freedom. That is, 

b'Ci-ao b'Ci-ao . (A) 
-----;=~=~= = ~ tv. 
~ ~b'£b. Jtr(A£) 
L.... 1 1 

i=! n i 

An approximate (l-a)100% confidence interval for the linear combination a'~ = b'~, is 

b'~ ± tu/2,u Jtr(A£) 

(3.7) 

(3.8) 

where ta/2,u is the upper a/2 critical point of the t-distribution with 0 degrees of freedom. 
Many data analysts are primarily interested in pairwise comparisons of the treatment 

effects, 'tl - 'tz, 'tl - 't3, ... . The preceding results are in no way confined solely to pairwise 
contrasts. The results are applicable to any within subject contrast including comparisons of 
treatment effects, period effects, and carryover effects. 

Overall tests for equal treatment effects and equal carryover effects are also needed. In 
a manner similar to that used to develop the approximate t -test given in (3.7) an approximate 
F-test for treatment effects can be developed. Consider a set of simultaneous contrasts of 
parameters, C~, where C is a qxr matrix of orthogonal contrasts. Note that rank(C) = q and 

that C~ is an unbiased estimator of C~. Also note that 

Cp = CH-Ci ~ N(CH-H~, CH-L *H- 'C' ). 
An approximate F-statistic for the hypothesis Ho: C~ = 0 can be formed by 

A 2 

F =! ~(Ci'~) 
~ , .... * 

q j=! bj L bj 

where c/ is the jth row of C, b/ 

£ * = £ ® Diag(-l ,_l_,. .. ,~). Then F 
n l nz ns 

'H' Cj , 

statistics developed in (3.7). 

(3.9) 

and estimates L* by 

where t/s are the approximate t-

The problem here is determining an appropriate number of degrees of freedom to be 
associated with this F-statistic. Since there are q linearly independent contrasts determining q 
terms in the summation, the numerator degrees of freedom should be q. However, each term 
in the summation has a different number of degrees of freedom, OJ, associated with it. If 

each of these approximate t -statistics has a different measure of degrees of freedom associated 
with it, then what measure of denominator degrees of freedom should be associated with the 
proposed F-statistic above? One possible choice is to use the value that yields the most 
conservative test. That is, use U = min {Uj}. Another choice is to use U = max {Uj} 

J J 

3.3 A Mixed Models Approach 
A third approach that can be considered is a mixed models approach or a method of using 

estimated generalized least squares estimates to construct test statistics. To demonstrate, 
consider once again the sufficient statistics for a crossover experiment. One has 
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p, = HP + E * , where E * ~ N(O, '2:*). 
Then a uniformly minimum variance unbiased estimator of an estimable function a' P is 
a'~G where ~G = (H''2: *-1 HfH''2: *-1 p,. In addition, a'~G ~ N(a'p, a'(H''2: *-1 H)- a) . 

Since '2:* is not known, ~G cannot be determined. However, '2:* can be estimated by 

i: * = i: ® Diag(-l- , _1_ , ... ,~). Then a mixed model estimator or estimated generalized least 
n l n 2 ns 

squares estimator of a'p is a'~EG where ~EG = (H'i: *-1 HfH'i: *-1 P, . 
Inferences about a' P can be based on the critical points from the standard normal 

distribution when the ni's are sufficiently large. However, when the ni's are small, the 

distributional properties of the variance of a' ~EG cannot be determined making it impossible 

to construct exact test statistics that may follow a t- or F-distribution. For the simple linear 
hypothesis, Ho: a'p = 0, a reasonable alternative is to consider the test statistic 

A 

a'P EG 
t = 

Ja'(H'i: *-1 H)- a 
(3.10) 

and approximate its distribution by at-distribution with u degrees of freedom where u is the 
degrees of freedom estimate given in 3.6. An approximate (1 - a)100% confidence interval 
estimate of the linear contrast a' P is 

a'~EG ± tu /2,GJa'(H'i:*-I Hra . (3.11) 

An approximate F-test for the hypothesis Ho: Cp = 0 could also be given by 
A 2 

F = ! :t ____ (Cj PEG) • 
q j~lc/(H''2:*-1Hrcj (3.12) 

1 q 2 
Then F = - :L>j where t/s are the approximate t-statistics developed in (3.10). An 

q j~l 

estimate of the denominator degrees of freedom can be computed in the same manner as in the 
multivariate approach described in Section 3.2. 

The power of each of these three alternative tests for equal treatment effects and equal 
carryover effects and how they compare to the usual analysis of variance tests are examined in 
Section 4. For simple linear contrasts, the power of the approximate t-tests, as well as the 
confidence levels and confidence interval length are also examined. 

4. Simulation Results 
The proposed alternative methods of analysis and the usual analysis of variance methods 

were examined in a simulation study. Designs chosen for the simulation study were Williams' 
designs since the treatment and carryover effects are not confounded in these designs. Two 
crossover designs were examined: p=t=3 Williams design (MOLS, Table 2) and p=t=4 Williams 
design (Table 3). In order to examine the reliability of these alternative methods, several 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1997/proceedings/12



Applied Statistics in Agriculture 

covariance structures for L were examined. For the p=t=3 designs, models with and without 
carryover parameters were investigated. In this simulation study, tests for equal treatment effects 
and equal carryover effects were investigated. 
4.1 Methods Used in Simulation 

F or the vector form of the model (2.1), the sufficient statistics, ~ i and i: , were simulated 
for each crossover design. The proposed alternative methods of analysis for simultaneous and 
single degree of freedom contrasts were compared to the usual analysis of variance F-tests and t­
tests for a linear contrast. Tests of treatment effects and of the carryover effects were analyzed. 

Variance-covariance matrices having compound symmetry (8 = 1.00) and matrices that 
deviate from compound symmetry were used in the simulation study. Box's 8 was used to 
characterize a matrix since 8 is not a function of the number of subjects per sequence. In this 
particular study, the variances, 0/ , of the observations during each period were chosen such that 
0/ = cr/ = ... = cr/ = cr2. Without loss of generality, cr2 = 1 was chosen. 

Let the elements of L be given by 

1 P12 P13 PIt 

P12 1 P23 P2t 

L= P13 P23 1 

P(t-l)t 

PIt P2t P(t-l)t 1 

The values of Pij were chosen so that a range of values for 8 resulted. For a repeated measures 
experiment, reasonable values of Pij are 1 ?:: Pij ?:: PiG+!) ?:: 0 where 1 :s i < j :s t. That is, 
observations from adjacent periods should be more strongly, positively correlated than those 
from non-adjacent periods. For this simulation study, the values of Pij used are given in Table 4 
and Table 5. 

One ofthe hypothesis tests to be evaluated was the test for equal treatment effects, Ho: 1"A 
= 1"B = ... = 1"t. When L = cr2I, the test statistic for testing this hypothesis, SSTrt/cr2, has a non­
central X2 -distribution with t-l degrees of freedom and non-centrality parameter 

Ie = ~(CP)'[C(X'X)-C'rl(Cp) where C is an appropriate contrast matrix for testing Ho and 
2cr 

X is the design matrix. The power of the test for equal treatment effects depends only on the 'tj'S 
through A. Now for t treatments, s sequences and n subjects per sequence 

tIt 
A= sn2 L('t j _~J2 where ~.=-L'tj . 

2cr E j=i t j=i 
Without loss of generality the values of A were changed by letting 'tA = 0, 0.1, 0.2, ... , 1.2 in 
model (1.1) while keeping the remaining 't/s= o. When 'tA = 0, Ho is true, and an estimate oftest 
size is obtained. When 't A = 1.2, the power of the tests neared 1, and larger values for 't A were 
not necessary. 
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In the case of the linear contrasts of the parameters, denoted by a'/3, the powers of the 
standard normal test and the t-test are functions of the actual value of a'/3, a scalar value. To 
approximate the powers of the test procedures for Ho: a'/3 = 0, a'/3 needed to assume a value of 0 
(to estimate the sizes of the tests) and values of increasing distance from zero to estimate the 
power of the tests. Since the standard normal and t-distributions are symmetric about zero, only 
increasing positive values of a'/3 were necessary. The values of a'/3 in the simulations were 
determined by the values of the treatment parameters. In this simulation, the linear contrast 
hypothesis was Ho: 'tA - 'tB = O. As in the case of the analysis of variance F-test for equal 
treatment effects, the actual values of the 't/s do not determine the powers of the tests. A range 
of values for a'/3 was obtained by using the same method of defining the 't/s as before. That is, 
for all simulations 't A assumed the values 0, 0.1, 0.2, ... , 1.2 while 'tB = 0 always. In the 
discussion that follows, the value of 't A is referred to as the "treatment difference." 

Tests for equal carryover effects and linear contrasts of the carryover parameters were 
also simulated. The values of the treatment and carryover differences varied from 0 to 1 by 0.2 in 
model (1.2). The value of'tA is again the "treatment difference," and the value of AA is referred to 
as the "carryover difference," where 'tA and AA are parameters in model (1.2). 

For (1.1) samples of equal size were simulated and for (1.2) both equal and unequal 
sample sizes were investigated. Tables 6 and 7 provide the conditions of the simulations. The 
six and four digit numbers in the tables refer to the sample sizes that were used for each 
sequence. For example, in the p=t=3 Williams' design 233233 means that sequences 1 and 4 
(defined in Table 2) had samples of size 2 while all other sequences had samples of size 3. There 
were 1000 simulations of the sufficient statistics for each 't A, sample size configuration, and L 
combination for the model with no carryover parameters (1.1) F or the model with carryover 
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power of the test is based on 6,000 simulations. Likewise, the tests for equal carryover effects 
pooled information from all levels of treatment difference (0, 0.2, 0.4, 0.6, 0.8, 1.0). 
4.2. Approximate F -tests 

Several methods for testing a hypothesis of equal treatment effects were evaluated for 
each set of simulated data. The first four were based on the usual analysis of variance F-statistic 
for testing equal treatment effects. This F -statistic was compared to critical points from the F­
distribution with four different choices for degrees of freedom. One choice used degrees of 
freedom equal to those that would be appropriate when :L has type H structure. The three others 
used degrees of freedom adjustments: the lower bound for Box's 8, Greenhouse and Geisser's 

E l' and Huynh and Feldt's E 2. 

Tests based on the multivariate approach described in Section 3.2 were also evaluated. In 
this case t-1 test statistics given by (3.7), and an approximate F-statistic given by (3.9) are 
computed. The approximate degrees of freedom for each of the approximate t-statistics were 
computed by (3.6). Since the t-1 test statistics do not yield the same value for Vi' the 
approximate degrees of freedom for the denominator, alternative degrees of freedom choices 

were examined. The first two were: min {Vi} and max {Vi} . A third alternative was a lower 
I I 

bound, N - s, for all Vi. The p=t=3 Williams' design has v i values that are bounded above by 

2(N - 6) = [Rank(A:L)](N - 6). The p=t=4 Williams' design has v i that are bounded above by 
2(N - 4) = [Rank(A:L)](N - 4) and 3(N - 4) = [Rank(A:L)](N - 4) depending on the orthogonal 
linear contrast. The fourth and fifth alternatives were 2(N - s) and 3(N - s). The sixth alternative 
was the degrees of freedom due to error that is computed in the usual analysis of variance 
procedure. 

For the mixed models approach the approximate F-statistic given by (3.12) is evaluated. 
The same six denominator degrees of freedom estimates as described for the multivariate 
approach were used in the mixed models approach. For each of the multivariate and mixed 
models approaches six observed significance levels were determined according to the six 
F(t-1,df) distributions where df was determined by each of the above six methods discussed. 
The power of each of these procedures was obtained. 
4.3 Approximate F -test Results 

A guide to the notation used in simulation results for the approximate F-tests is 
summarized in Table 8. All tests were conducted at the nominal 0.05 level. 

In the three treatment / three period design, V is invariant with respect to the orthogonal 
contrasts, and rank(A:L) = 2 (Goad 1994). Hence, F1 and F7 use the unique value of v. 

Among each of the alternative procedures for testing for equal treatment effects, a 
preferred test is recommended. Criteria for selecting the preferred test are: 

1. the test exhibits size and power similar to the ANOV A F when 8 = 1.00, 
2. the size of the test is conservative across the values of 8 , 

3. the test demonstrates strong power. 
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After determining the preferred test from each of the alternative procedures for each of the 
models, the usual ANOVA test for equal treatment effects is compared to each of the preferred 
tests from the alternative procedures. 

Among the degrees of freedom adjustment techniques, HF is the preferred test across all 
the values for n and E when there is no carryover. The HF test was conservative (size < 0.05) in 
this crossover setting, but it also exhibited a greater power than the other two methods, BOX and 
GG. The power of the HF test did coincide with the usual analysis of variance test, F, when E = 
1.00, as expected. These statements are true for both of the p=t=3 and p=t=4 cases. 

When there is carryover, GG and HF tests for equal treatment effects tended to yield sizes 
that were larger than 0.05 in both the equal and unequal sample size cases making these tests 
unacceptable. For testing equal treatment effects, BOX exhibited a test size slightly smaller than 
0.05 for all sample size cases when E was low and was the preferred degrees of freedom 
adjustment test for equal treatment effects for this reason. For the tests of equal carryover 
effects, the degrees of freedom adjustment techniques when E < I exhibited test sizes considerably 
smaller than 0.05. All of the degrees of freedom adjustment techniques were quite conservative in 
the tests for equal carryover effects. Among the degrees of freedom adjustment methods, HF was 
the preferred method for testing for equal carryover effects. 

For the multivariate methods, first consider designs without carryover. All but F3 
performed similarly to F when E = 1.00. However, F5 and F6 had inflated test sizes for smaller 
values of E making them unacceptable. For larger values of E, each of the other five methods 
tended to have similar powers. F4 exhibited better power for low values of E and is the preferred 
test among the multivariate alternatives. In the model with carryover parameters (1.2), Fl and F4 
demonstrate size and power most like F when E = 1.00 when testing for equal treatment effects. 
For a low value of E, Fl is the preferred test for both equal and unequal sample size cases. When 
testing for equal carryover effects, F 1 is again the preferred test of the multivariate approaches. 

In the mixed models approach for designs without carryover, none of the tests for equal 
treatment effects can be recommended due to the fact that the sizes of these tests were at least 
twice the nominal value of 0.05. F9 was the best of those considered. For designs with 
carryover, F9 was again the best choice although the size of the test for equal treatment effects 
was still above 0.05. In the test for equal carryover effects, F9 is the best option when testing for 
equal carryover effects for all of the sample size cases considered. For both models, all of the 
mixed models approaches exhibited a rapid increase in power in addition to the large size. When 
E < 1, the difference between the power curves associated with F9 and the power curves 
associated with F, any of the degrees of freedom adjustment, or multivariate approaches is 
greater than the differences between the sizes of the tests. When sample sizes were small (2 or 3), 
the mixed models approaches performed poorly with respect to test size. 

Figures 1 and 2 give the power curves for the preferred tests of equal treatment effects (F, 
HF, F4, F9) from each alternative procedure for two values of E in the four treatment I four 
period design when the model with no carryover parameters (1.1) is used. These curves are for 
tests based on three subjects per sequence. For larger values of nand E < 1, the power curves 
tended to be similar to those in Figure 2. (Since E = 1.00 in Figure 2, the power curves for the 
usual ANOVA and Huynh-Feldt methods coincide.) 
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Figure 3 demonstrates the power curves for the preferred tests of equal treatment effects 
(F, HF, Fl, F9) from each alternative approach when a model with a carryover parameters is 
used. Only Fl meets the requirement of test size smaller than 0.05 consistently for all of the 
sample size choices. 

Figure 4 contains the power curves for the preferred tests (F, HF, Fl, F9) of equal 
carryover effects. Of those that satisfy the 0.05 test size requirement, the usual ANOVA F-test 
has marginally better power than the others. The mixed models approach does not meet the size 
requirement. 
4.4 Tests of a Linear Contrast 

For each of the crossover design models (1.1) and (1.2), ten different methods for testing 
a linear contrast (pairwise difference) of the treatment effects were evaluated for each set of 
simulated data. For the model containing carryover parameters (1.2), tests of a linear contrast of 
the carryover parameters were also evaluated. Again, all of these tests were conducted at the 
nominal 0.05 level. Since a known variance-covariance matrix, L, was used in all simulations, 
the standard normal test statistic given in (3.4) was computed and used as an optimal test 
statistic. 

The usual t-test, 

b'i! 
t = -----;========= , 

MSEfb; b; 
i=1 n i 

,where b\ are the lxp elements ofb' = [b'l b'2 ... b's] , 

was also computed and compared to critical values from the t-distribution with degrees of 
freedom equal to that of the mean square error (MSE) from the usual analysis of variance. 

Four methods were based on a multivariate approach. The test statistic was computed 
according to (3.7). This test statistic was compared to critical values from the t-distribution using 
four different estimates of its degrees of freedom. The four degrees of freedom estimates used in 
the simulation were v as computed by (3.6), N - s which is the lower bound for v, 2(N - s) 

which is the upper bound for v (as determined by the linear contrast LA - L8 ), and the error 
degrees of freedom from the analysis of variance. 
4.5 Approximate t-test Results 

Table 9 provides a guide to the notation used in the linear contrast power analysis. 
In the power analysis the power curves of TU and Z converge to one another as the ni's 

become large. As in Section 4.3 a preferred test from each of the alternative approaches is 
obtained. Then each of these preferred tests is compared to TU and Z with respect to power, 
confidence level, and confidence interval length. 

Among the multivariate alternatives T3 and T4 tend to converge as n increases for both 
crossover models. When E is small, T3 is a conservative test. Nevertheless, it has better power 
than the other methods. Among the mixed models alternatives, T6 is most similar to TU at E = 
1.00. However, all of the mixed models alternatives have inflated sizes. This situation improves 
as n increases or as E nears 1. For the model with no carryover parameters (1.1), T3 and T6 are 
the preferred tests. Figure 5 contains power curves comparing best methods from each of the 
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four approaches (Z, TU, T3, T6). The multivariate approach (T3) compares most favorably to Z 
and meets the 0.05 size requirement. 

For the model with carryover parameters (1.2), consider first the linear contrast of the 
treatment effects. T2 tended to control for size better than the other multivariate approach methods, 
especially when there are large differences among sample sizes. T6 performed better than each of 
the other three mixed model approaches. For tests of a linear contrast of the carryover parameters, 
the conservative tests T2 and T6 were again the best. Inflated test sizes occur for the usual t-test 
for treatment effects, but for the tests of a linear contrast of the carryover parameters the usual t­
test does control test size. In both cases the mixed models approach exhibits a test size that is 
greater than 0.05. 

In addition to the analysis of power for each of these ten tests, confidence intervals for the 
linear contrast were computed from each set of simulated data. For the multivariate and mixed 
models approaches, these intervals were computed by using (3.8) and (3.11), respectively where 
the four estimates of degrees of freedom used previously determined the values of t a/2,,, in the 

confidence interval calculations. The observed confidence levels and average confidence interval 
lengths were computed for each of the methods. Since confidence level and confidence interval 
length are each independent of the actual treatment difference values, the estimated confidence 
levels and average confidence interval lengths were computed by pooling information across all 
of the treatment differences and carryover differences. As a consequence these two 
characteristics are based on 13,000 simulations using model (1.1) and 36,000 simulations using 
model (1.2). 

F or crossover design models (1.1) and (1.2), the following information about confidence 
levels and length of confidence intervals was observed. All of the multivariate methods yielded 
confidence levels in excess of the nominal 0.95 level. Among the mixed models methods, T6 
yielded a confidence level that was closest to 0.95. All four of the confidence levels for the 
mixed models approach were below 0.95 however. 

Table 10 shows observed confidence levels for different sample sizes and different values 
of E for the p=t=4 Williams' design. Table 11 show confidence levels (Z, TU, T2, T6) for the 
model with carryover parameters (1.2) for both treatment and carryover differences. An 
examination of Tables 10 and 11 reveal that T3 and T2, respectively, produce intervals that have 
observed confidence levels closest to 0.95, and consequently, each is the recommended method 
for the model indicated in the tables. 

Tables 12 and 13 show the observed interval lengths for the models without carryover 
and with carryover, respectively. The observed lengths based on Z are also included for 
companson purposes. 
4.6 Example 

Consider again the dairy science example. First, type H structure of L was tested.). It 
2 A 

was found the L does not have type H structure, (X2 = 15.05, p=0.0005, E2 = 0.8542). Tests of 
equal treatment, equal period, and equal carryover effects were each conducted using the usual 
ANOVA F-test, the Huynh-Feldt test, a multivariate approach, and a mixed models approach. 
Additionally, pairwise comparisons of treatment effects and carryover effects were tested. All 
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test procedures were performed using a SAS program by Goad and Johnson (1993). The test 
statistics and their significance levels appear in Table 14. 

5. Conclusions 
Since a crossover design is a special form of a repeated measures design, then one should 

take the variance-covariance structure of the repeated measures into consideration when 
analyzing the collected data. Three alternative approaches to the analysis of a crossover 
experiment were proposed for cases when the variance-covariance matrix does not have type H 
structure. 

If 2: does not have type H structure, of the methods presented here, the following 
recommendations are made. For a model with no carryover parameters, a recommended test for 
equal treatment effects is to use the Huynh-Feldt adjusted degrees of freedom method. For tests 
or confidence interval estimates of a linear contrast of the treatment parameters, the 
recommendation based on the simulation study is to use the multivariate method T3. For a 
model that does contain carryover parameters, multivariate method F1 is recommended for the 
test of equal treatment effects. The usual ANOVA F-test for equal carryover effects is 
recommended. For the test of a linear contrast of the treatment parameters, a multivariate 
approach (T2) is recommended. For the test of a linear contrast of the carryover parameters, the 
usual t-test is recommended. In all cases, the mixed models approach exhibits large test sizes, 
and the authors are reluctant to recommend this approach. 
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Table 1: Dairy Science Example (p=t=3 Williams' Design) 
Cow 

Diet Period 1 2 3 4 5 6 7 
Sequence 1 A 1 60.7 59.7 61.9 61.8 62.6 

B 2 52.5 49.8 55.3 59.5 60.1 
C 3 47.6 44.4 50.7 55.2 54.6 

Sequence 2 A 1 62.5 57.9 59.0 59.6 57.1 57.2 
C 2 58.6 57.1 55.2 62.3 57.5 58.2 
B 3 47.3 49.4 47.4 54.1 48.8 49.2 

Sequence 3 B 1 55.6 52.9 52.7 53.l 60.5 58.0 
A 2 58.6 51.9 51.2 46.8 60.4 50.7 
C 3 57.3 50.5 47.8 44.5 59.8 48.4 

Sequence 4 B 1 60.5 53.3 59.2 56.2 50.5 56.0 54.9 
C 2 59.8 53.6 57.8 53.0 55.4 54.4 54.1 
A 3 52.3 47.6 57.3 46.2 54.5 48.1 44.7 

Sequence 5 C 1 62.8 55.8 56.0 62.3 60.1 
A 2 55.6 52.1 48.2 55.1 54.6 
B 3 57.8 59.l 52.4 62.8 60.5 

Sequence 6 C 1 54.9 60.6 55.9 
B 2 45.7 52.6 46.0 
A 3 52.8 50.3 50.6 

Table 2: 3 x 3 Williams' Design (MOLS) 
Sequence 

Period 1 2 3 4 5 6 
1 A A B B C C 
2 B C A C A B 
3 C B C A B A 
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Table 3: 

Period 
1 
2 
3 
4 

Four Treatment / Four Period Crossover Design 
Sequences 

1 2 3 
A B C 
B C D 
D A B 
C D A 

Table 4: Four Treatment / Four Period Design: 
L: Matrices Used in the Simulation, 

2 2 2 2 
(JI = (J2 = (J3 = (J4 = 1 

P12 = P23 = P34 P13 = P24 PI4 

0.8 0.4 0.05 
0.8 0.6 0.10 
0.8 0.6 0.20 
0.8 0.6 0.40 
0.8 0.7 0.60 
0.8 0.8 0.80 

0.4799 
0.4727 
0.5238 
0.6410 
0.8205 
1.0000 

Table 5: Three Treatment / Three Period Design: 
L: Matrices Used in the Simulation, 

(Jf = (J~ = (Jj = 1 and P12 = P23 = 0.75 

PI3 E 

0.15 0.5586 
0.25 0.6098 
0.25 0.6739 
0.50 0.8000 
0.75 1.0000 

Kansas State University 

4 
D 
A 
C 
B 
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Table 6: 3 x 3 Williams' Design Simulation Conditions 
Variance-

Covariance Matrix 
E 

0.5586 
No Carryover Model 

333333 
555555 
777777 
999999 

333333 
233333 
223333 
233233 

Carryover Model 
555555 
455555 
445555 
355555 
335555 

-O:6098 Immr------

999333 
939339* 

O:6739 rmml---
i 999999 i 

08000rmm-r------

1:::::I]ii~~[]::::::-5::5:5::::;!:* 
*one Latin square with ni=9 and second Latin square with ni=3 
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Table 7: 4 x 4 Williams' Design Simulation 
Conditions 

Variance­
Covariance Matrix 

E 

0.4799 
No Carryover Model 

3333 
5555 
7777 

i 9999 

O:4727r~m 
i 9999 

····················()" .. S23·S··················T·····························jjj·3··························· ..... 

l 5555 
i 7777 
! 9999 

O:64iO r-mr 
l 9999 

····················(f820·g-················T····························j"3"33""····························· 

i 5555 
! 7777 
i 9999 

···················LOOOo-·················T····························j"3"33 .. ····························· 

\ 5555 
! 7777 
1 9999 

Kansas State University 
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Table 8: Notation Used to Describe the Tests of Equal Treatment and 
Carryover Effects 

Test Description 
F I Usual analysis of variance test 
Acijustment to the Degrees of Freedom 
BOX Conservative estimate for Box's E (E = 1I(t-l)) 
GG Greenhouse-Geisser adjustment, e 1 

HF Huynh-Feldt adjustment, e 2 

Multivariate Approach (df = denominator degrees of freedom) 
Fl df = IIl:in{vi} 

1 

F2* df = m~x{vi} 
1 

F3 df= lower bound for v;, N - s 
F4 df= 2(N - s) 
F5* df= 3(N - s) 
F6 df= df due to error from the usual ANOVA 
Mixed Models Approach 

F7 df = IIl:in{vJ 
1 

F8* df = m~x{vi} 
1 

F9 df= lower bound for v;, N - s 
FlO df= 2(N - s) 
Fll * df= 3(N - s) 
F12 df= df due to error from the usual ANOVA 
* not applicable to p=t=3 Williams' design 
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Table 9: Notation Used to Describe the Tests of Linear Contrasts, 
Confidence Intervals, and Confidence Interval Lengths 

Test Description 
Z Standard normal test method, actual value of L used 
TU Usual t-test 

Multivariate Approach (d/= degrees o/freedom/or approximate t-tests) 
Tl df= v 
T2 df = N - s, lower bound for v 
T3 df = 2(N - s), upper bound for v 
T4 df = df due to error from the usual ANOV A 

Mixed Models Approach 
T5 df= v 
T6 
T7 
T8 

df = N - s, lower bound for v 
df = 2(N - s), upper bound for v 
df = df due to error from the usual ANOV A 
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Table 10: Confidence Levels of Preferred Methods -
Model with No Carryover Parameters 

p=t=4 Williams' Design 
E Sample Z TU T3 T6 

0.4727 3333 0.9488 0.9780 0.9523 0.9097 
5555 0.9492 0.9764 0.9545 0.9345 
7777 0.9455 0.9732 0.9479 0.9372 
9999 0.9508 0.9742 0.9523 0.9421 

0.4799 3333 0.9505 0.9737 0.9593 0.9278 
5555 0.9488 0.9677 0.9546 0.9398 
7777 0.9510 0.9676 0.9551 0.9416 
9999 0.9505 0.9682 0.9512 0.9444 

0.5238 3333 0.9479 0.9752 0.9592 0.9253 
5555 0.9503 0.9742 0.9572 0.9358 
7777 0.9494 0.9723 0.9512 0.9394 
9999 0.9488 0.9718 0.9502 0.9445 

0.6410 3333 0.9508 0.9735 0.9662 0.9252 
5555 0.9487 0.9703 0.9602 0.9412 
7777 0.9501 0.9659 0.9563 0.9412 
9999 0.9490 0.9658 0.9552 0.9443 

0.8205 3333 0.9482 0.9718 0.9688 0.9275 
5555 0.9518 0.9663 0.9616 0.9425 
7777 0.9503 0.9667 0.9589 0.9418 
9999 0.9506 0.9633 0.9575 0.9448 

1.0000 3333 0.9505 0.9668 0.9688 0.9263 
5555 0.9532 0.9619 0.9622 0.9416 
7777 0.9502 0.9583 0.9587 . 0.9420 
9999 0.9523 0.9579 0.9577 0.9445 
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Table 11: 

E 

0.5586 

Kansas State University 

Confidence Level of Preferred Methods - Model with Carryover Parameters 
p = t = 3 Williams' Design 

Treatment Carryover 
Sample Z TV T2 T6 Z TV T2 T6 
223333 0.9509 0.9093 0.9578 0.9338 0.9505 0.9586 0.9573 0.9344 
233233 0.9491 0.9115 0.9584 0.9337 0.9488 0.9566 0.9569 0.9344 
233333 0.9492 0.9126 0.9567 0.9338 0.9487 0.9541 0.9551 0.9351 
333333 0.9527 0.9166 0.9577 0.9371 0.9511 0.9565 0.9574 0.9351 
335555 0.9516 0.9063 0.9549 0.9423 0.9508 0.9544 0.9528 0.9444 
355555 0.9506 0.9106 0.9535 0.9412 0.9507 0.9504 0.9527 0.9439 
445555 0.9499 0.9076 0.9536 0.9406 0.9485 0.9521 0.9518 0.9403 
455555 0.9524 0.9139 0.9558 0.9419 0.9496 0.9529 0.9531 0.9415 
555555 0.9509 0.9128 0.9553 0.9438 0.9501 0.9516 0.9516 0.9416 
939339 0.9503 0.9109 0.9516 0.9441 0.9511 0.9669 0.9523 0.9441 
999333 0.9518 0.9324 0.9528 0.9437 0.9490 0.9524 0.9699 0.9438 
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Table 12: Interval Lengths of Preferred Methods-
Model with No Carryover Parameters 

p=t=4 Williams' Design 
c Sample Z TV T3 T6 

0.4727. 3333 0.8765 1.0618 0.9565 0.6810 
5555 0.6790 0.7997 0.7111 0.5040 
7777 0.5738 0.6649 0.5897 0.4191 
9999 0.5061 0.5845 0.5181 0.3678 

0.4799 3333 1.0121 1.1687 1.1192 0.6706 
5555 0.7840 0.8767 0.8257 0.4894 
7777 0.6626 0.7309 0.6858 0.4048 
9999 0.5843 0.6392 0.5991 0.6392 

0.5238 3333 0.8765 1.0556 0.9790 0.7376 
5555 0.6790 0.7866 0.7175 0.5381 
7777 0.5738 0.6555 0.5955 0.4465 
9999 0.5061 0.5738 0.5205 0.3909 

0.6410 3333 0.8765 1.0264 1.0017 0.8077 
5555 0.6790 0.7612 0.7289 0.588. 
7777 0.5738 0.6308 0.6012 0.4877 
9999 0.5061 0.5504 0.5237 0.4252 

0.8205 3333 0.8002 0.9295 0.9265 0.8383 
5555 0.6198 0.6839 0.6679 0.6093 
7777 0.5238 0.5677 0.5519 0.5063 
9999 0.4620 0.4941 0.4796 0.4414 

1.0000 3333 0.7157 0.8082 0.8292 0.8029 
5555 0.5544 0.5938 0.5971 0.5844 
7777 0.4685 0.4918 0.4932 0.4857 
9999 0.4132 0.4288 0.4295 0.4244 
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Table 13: Interval Lengths of Preferred Methods - Model with Carryover Parameters 
p = t = 3 Williams' Design 

Treatment Carryover 
E Sample Z TU T2 T6 Z TU T2 T6 

0.5586 223333 1.2706 1.1318 1.4515 0.6599 1.4466 1.5396 1.6415 0.8005 
233233 1.2706 1.1340 1.4549 0.6604 1.4466 1.5425 1.6460 0.7996 
233333 1.1934 1.0729 1.3487 0.6285 1.4187 1.4832 1.5940 0.7406 
333333 1.1410 1.0270 1.2745 0.6193 1.3148 1.3778 1.4615 0.7162 
335555 1.0155 0.8802 1.0844 0.4985 1.1526 1.2016 1.2269 0.6130 
355555 0.9375 0.8221 0.9951 0.4718 1.1245 1.1465 1.1899 0.5577 
445555 0.9353 0.8179 0.9922 0.4792 1.0707 1.1056 1.1325 0.5669 
455555 0.9043 0.7956 0.9572 0.4679 1.0594 1.0844 1.1183 0.5452 
555555 0.8838 0.7795 0.9335 0.4648 1.0184 1.0458 0.8875 0.5363 
939339 0.9791 0.8555 1.0213 0.5018 0.9383 1.0355 0.9521 0.5639 
999333 0.8497 0.8008 0.8875 0.5037 0.9297 0.9546 0.9699 0.5271 
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Table 14: Test Statistics and Their Significance Levels for the Dairy Science Example 

Methods 
Effects UsualANOVA Huynh-Feldt Multivariate, F 1 Mixed Models, F9 
Diet 4.00 4.00 4.3865* 3.1362 

p=0.0236 p=0.0511 p=0.0228 p=0.0602 
Period 47.97 47.97 288.2389 290.5940 

p<O.OOOI p<O.OOOI p<O.OOOI p<O.OOOI 
Carryover 22.40* 22.40 32.8925 55.7624 

p<O.OOOI p<O.OOOI p<O.OOOI p<O.OOOl 

Methods for Linear Contrasts 
Effect Usual t Multivariate, T2 Mixed Models, T6 
Diet 
A-B 2.67 2.80* 2.46 

p=0.0098 p=0.0095 p=0.0105 
A-C 2.14 2.06* 1.64 

p=0.0364 p=0.0493 p=0.1124 
B-C -0.38 -0.41 * -0.83 

p=0.7084 p=0.6857 p=0.4147 

Carryover 
A-B 2.98* 3.83 3.06 

p=0.0042 p=0.0008 p=0.0050 
A-C 6.69* 8.33 10.18 

p<O.OOOI p<O.OOOl p<O.OOOl 
B-C 3.86* 4.33 7.84 

p=0.0003 p=0.0002 p<O.OOOl 
* recommended test procedures for a model containing carryover parameters 
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Figure 1: Power Curves for Tests of Equal Treatment Effects 
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Figure 2: Power Curves for Tests of Equal Treatment Effects 
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Figure 3: Power Curves for Tests of Equal Treatment Effects 
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Figure 4: Power Curves for Tests of Equal Carryover Effects 
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Figure 5: Power Curves for a Unear Contrast of Treatment Effects 
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