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WAVELET NONPARAMETRIC 
REGRESSION WITH DEPENDENT DATA 

Chengjie Xiong and George A. Milliken 
Department of Statistics 
Kansas State University 
Manhattan, KS 66506 

Abstract 

Estimation of the regression function has many applications in agriculture and 
industry. Usually, the regression function is assumed a known functional form which 
depends on unknown parameters. Nonparametric regression theory makes no such 
assumption and often uses some kernel functions to form the so-called Watson­
N adaraya type estimators. Such estimators were extensively studied by Watson 
(1964), Nadaraya (1964, 1989) and Collomb (1981, 1985). When the data are in­
dependent,these estimators have nice asymptotic convergence properties. When the 
data are dependent, Gyorfi et al (1989) gave some large sample properties for the 
Watson-Nadaraya estimators. In this paper, the recently developed theory of wavelet 
will be used to estimate the regression function when the data are dependent. Large 
sample properties for the wavelet estimator will be proved, and the wavelet smoothing 
will be compared with the other well known nonparametric smoothing methods. 

Key Words: Wavelet, Multiresolution Analysis, Mixing Conditions, Complete 
Convergence in Probability. 

1 Introduction 

One of the primary goals in statistics is estimation of the regression function. More 
specifically, Given a random vector W = (X, y) E Rd+l such that the conditional 
expectation E(yIX = x) = r(x) exists, how should we estimate the function r(x) 
based on the data? 
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There are many different situations to be considered. If we are willing to assume 
that the data are jointly normally distributed, then r(x) is a linear function of x, 
and the question becomes how to estimate unknown intercept and partial slope pa­
rameters. Several packages can be used to estimate the unknown parameters by the 
method of least squares when the data are independent. If we believe that a linear 
function should be used to estimate r(x) , but that the data are not independent (e.g. 
time series data), classical time series analysis (Box, Jenkins, 1976) and ARMA mod­
els (Doob, 1953, Akaike, 1974) can be used to estimate the unknown parameters. If a 
plot of the data suggests very clear curvature, none of the above techniques directly 
apply. If the data {Xi, Yi}i=l are independent, Watson (1964), Nadaraya (1964, 1989) 
and Collomb (1981, 1985) studied the following so-called Watson-Nadaraya estimator 
and obtained asymptotic normality and pointwise consistency: 

A () Lb::l YiK( Xh;i ) r x - -------,,;fi'--
n - "'!1 K( X-Xi) , 

L..,,1=1 hn 

where K(x) is some nice kernel function on Rd and hn is the bandwidth. If the 
data {Xi, y }~1 are dependent, Gyorfi et al (1989) studied the above estimator and 
obtained some consistency results, and more importantly, they proved the uniform 
consistency of the estimator on any compact set G in Rd in the sense of complete 
convergence in probability. 

Wavelet analysis is a technique which approximates a signal in a step by step 
fashion. More specifically, a nested sequence of closed subspaces of L2(Rd ) can be 
constructed by spaning the family of functions formed by the scale changes and the 
translations of a father wavelet. The projections on these subspaces of the regression 
function are used as the estimator. With independent data, Antoniadis et al. (1994) 
studied the estimator of r(x) given by 

where Em is the m-th resolution projection from a multiresolution analysis on L2(Rd ). 

They obtained consistency and asymptotical normality. 
We consider the problem of nonparametric estimation of regression function by 

using the theory of wavelets with dependent data. This problem has the potential 
application in nonlinear autoregressive time series. We state the uniform consistency 
of the above estimator in the sense of complete convergence in probability in Section 
3. The proofs of these results will be given in Section 4. Some simulation study 
results about the performance of the wavelet regression estimator and a comparison 
between some well known regression estimators and wavelet estimators are given in 
Section 5. 
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164 Kansas State University 

2 Multiresolution Analysis and Wavelets 

The subject of wavelets has evolved very rapidly in the last ten years. In one sense 
wavelets are no different than other orthogonal systems, such as Legendre polyno­
mials. But there are notable differences: wavelet series have very good pointwise 
convergence properties, wavelet series are more localized and pick up edge effect bet­
ter, wavelets use fewer coefficients to represent certain signals and images. Because of 
such characteristics, wavelet theory has potentially important applications in statis­
tics, especially to nonparametric inference. In this section, the theory of wavelets will 
be briefly discussed, and then a nonparametric regression estimator based on a scaling 
function will be discussed. In the sequel, L2(Rd) denotes all measurable functions on 
Rd which are square integrable with respect to Lebesgue measure. 

Definition 2.1: 
A multiresolution analysis of L2(R) consists of an increasing sequence of closed 

subspaces Vj,j E Z, of L2(R) such that 
(a) nVj = {O}; 
(b) UVj = L2(R); 
(c) There exists a scaling function c.p E Vo such that {c.p(. - k), k E Z} is an orthonormal 
basis of Vo ; 
(d) for h E L2(R) , h(x) E Vo +-+ h(x - k) E Vo for all k E Z , and 
(e) h(x) E Vj +-+ h(2x) E Vj+1' 

The intuitive meaning of (e) is that in passing from Vj to Vj+l, the resolution 
of the approximation is doubled, and the approximation to the signal becomes more 
accurate. Mallat (1989) and Meyer (1990) have shown that given any multiresolution 
analysis, it is possible to derive a function 1/J such that the family {1/Jj,k, k E Z} 
is an orthonormal basis of the orthogonal complement Wj of Vj in Vj+l, and so 
{1/Jj,k,j,k E Z} is an orthonormal basis of L2(R), where 

These 1/Jj,k are called wavelets. The function 1/J is called the mother wavelet and the 
function c.p(x) is called the father wavelet. For any function f(x) E L2(R), there exists 
a unique sequence of constants {Cj,k} such that 

f( x) = L Cj,k1/Jj,k' 
j,kEZ 

This expansion is called the wavelet expansion of f(x). 
Since the wavelet series approximation to a function f is equivalent to the approx­

imation of f through the subspaces Vj's from the multiresolution analysis. We will 
primarily use the scaling function c.p in this paper. 

Definition 2.2 
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A scaling function <p is called r-regular for some positive integer r if it is r times 
differentiable and its derivatives satisfy for any pEN, 

where Cpk is some constant, k ::; rand t E R. 
Given a multiresolution analysis on R, one can construct a sequence of projection 

operators Ej : L2(R) -+ Vi which are associated with some integral kernel Ej(x, y) : 

as: 
The kernel Ej (x, y) can be explicitly expressed in terms of the scaling function <p 

Ej(x, y) = 2j 2: <p(2jx - k)<p(2jy - k). 
kEZ 

It is easy to see that Ej(x,y) = 2j Eo(2j x,2 j y) and that Eo(x,y) = Eo(x + k,y + k) 
for any k E Z and 

2: <p(x - k) = l. 
kEZ 

If <p is r-regular for some r > 0, it can be shown that, for any polynomial p of degree 
::; r, 

Ej(p) = p. 

The multiresolution analysis on L2(Rd) can be similarly defined. If <p is the 
scaling function that defines a multiresolution on L2(R), then ¢(tl' t2, . .. , td) = 
<P(tl)<P(t2) ... <p(td) can be used as a scaling function that gives a multiresolution anal­
ysis on L 2 (Rd ). In general, given a multiresolution analysis on L 2 (Rd ) with scaling 
function ¢(t), the projection operators Em and the corresponding kernels Em(x,y) 
can be expressed as: 

and 

Em(J)(x) = ( Em(x,y)f(y)dy, JRd 

Em(x, y) = 2: ¢(x - k)¢(y - k). 
kEZ d 

The following inequality is needed later. 
Theorem 2.1 

(1) 

If the scaling function ¢( t) from a multiresolution analysis on £2 (Rd ) is r-regular 
for some r > 0, then there exist constants Cn such that 

IEo(x,y)1 ::; (1 + I~~ yl)n 
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for any n E N. 
The proof of this theorem can be found in Walter (1994). 
Compactly supported scaling functions !.p and wavelet functions 'l/J are of particular 

interest mainly because of the good localization properties and the computational 
convenience they possess. Notice that if!.p is compactly supported, the kernel Em (x, y) 
is essentially a finite sum for any x and y. Daubechies (1988) has constructed a 
family of such !.pN and 'l/JN with the following property: there exists l/ > 0 such that 
!.pN,'l/JN E C"N, where!.p E cn+, means!.p E cn and !.p(n) is Holder continuous with 
exponent I (0 :::; I < 1). For example, Daubechies and Lagarias (1988) obtained 

!.p2 E C·5500 !.p3 E C1.0878... !.p4 E C1.6179 .... 

The graphs of !.p4( x) and !.p7( x) are shown on Figure 1 and 2. 
An algorithm given by Daubechies and Lagarias (1988), the cascade algorthm, 

allows us to compute the compactly supported scaling function as a limit of step 
functions that are finer and finer scale approximations of !.pN. Given a finite sequence 
of filter coefficients, Co, C1, ... , CN, define the linear operator A by 

(Aa)n = L Cn-2k ak, a = (ak)kEz, 
kEZ 

where it is understood that Ck = 0 if k < 0 or k > N. Define aj 

(aO)o = 1 and (aO)k = 0 for k i- O. Set 

!.pj(x) = 2~ L a{x(2jx - k), 
kEZ 

where X is the indicator function of the interval [-;1, ~). Then, pointwise we have: 

The coefficients Co, ... ,CN should satisfy some analytical conditions so that !.pN is 
a scaling function. These sequences can be found in Daubechies (1988). Table 1 and 
2 give these filter coefficients for N = 4 and N = 7. 

3 Mixing Conditions and Wavelet Nonpararnet­
ric Regression 

Let (Zi)~_oo be a sequence of random variables taking values either in R or Rd. Let 
F;:' (n,m E Z,n:::; m) denote the O'-algebra generated by {Zi,n:::; i:::; m}. 

Definition 3.1 
(Zi )~1 is said to be uniformly mixing if the mixing coefficients 

!.pk = sup sup IP(BIA) - P(B)I, 
n AEF~oo,P(A»O,BEF,*k 
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satisfy 
lim 'Pk = 0. 

k-+oo 

A very important example of uniformly mixing process is the so-called m-dependence 
process, which means that there exists some integer m > ° such that 

'Pk = 0, 

for all k > m. 
A fundamental inequality that will be used in the proof of the consistency of 

the wavelet nonparametric regression estimator is due to Collomb as given below in 
Theorem 3.1. (Collomb, 1984) 

Theorem 3.1 
If (Zi)~1 is uniformly mixing and there exist constants d, D and 6 such that 

EZi = 0, IZil::; d, Ezl ::; D, 

and 

then for any f> 0, 

n 
P(I L Zil > f) ::; e3Ven~-a(+6a2n(D+48dI:::l 'Pi), 

i=1 

where 0' is a real and m is an integer satisfying 

1 
1 ::; m ::; n O'md::; 4. 

Now, given a sequence of random variables (Zi )i=1, we will assume that the se­
quence is uniformly mixing, and 

where X j E Rd and Yi E R. Moreover, we will also assume that the conditional 
expectation of Y given X 

E(YiIXj = x) = r(x). 

exists and is finite. 
Many authors have investigated nonparametric techniques to estimate the function 

r when the random variables Zi are independent and identically distributed. The 
most extensively investigated nonparametric regression estimator (Watson, 1964 and 
Nadaraya 1964) is defined from a convolution kernel K of Rd and a sequence of 
smoothing parameters {hn } by 
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The parameter hn , which controls the degree of smoothness of the estimator rn , is 
called the bandwidth. Under several mixing conditions, HardIe, Luckaus, Collomb 
and Gyorfi et. al. also studied the property of the above convolution kernel estimate 
rn and obtained the uniform complete convergence in probability on compact sets 
in Rd (See HardIe and Luckaus 1984, Collomb and HardIe 1986, Gyorfi et al 1989). 
With i.i.d. data, Antoniadis et al. (1994) studied the estimator of r(x) given by 

where Em is the m-th resolution projection kernel from a multiresolution analysis on 
L2(Rd). They also obtained consistency and asymptotic normality results. In next 
section we will study the uniform complete convergence in probability on compact 
sets of the same estimator of r(x) based on a multiresolution analysis under some 
mixing condition of the data. 

4 Consistency of Wavelet Regression Estimators 

Section 3 presented a wavelet estimator of the regression function r(x). The first seg­
ment of this section presents some regularity conditions and some necessary lemmas. 
Next, the consistency results are stated, and then the proofs are provided. The same 
notations as in section 3 are used here. A sequence of random vectors is denoted by 
{Xi, Yi}~ll where Xi E Rd and Yi E R. It is assumed that the conditional expectation 

exists and is finite. 
Let G denote a compact set in Rd and G(Q denote the to-neighborhood of G for 

some to > O. Recall that, given a r-regular multiresolution analysis on L2(Rd) with 
r > 0 and the data {Xi, Yi}i=l , the wavelet estimator for r(x) at m-th resolution is 
defined as 

Definition 4.1: 
A family of functions {fi(X)}~l is said to be equally uniformly continuous on G 

if for any t > 0, there exists a common 5( t) > 0 such that for any Xl and X2 in G , 
Ifi(Xl) - fi (X2)1 :::; t for all i E N, whenever IXI - x21 :::; 6(t). 
Definition 4.2: 

A sequence of random vectors {Zi}~l is said to converge completely in probability 
to a random vector Z if for any t > 0 

= 
2::P(IZi - ZI > t) < 00. 

i=l 
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It is denoted by Zi P .co). Z. 
Three simple lemmas are stated next without proof. 

Lemma 4.1: 
If a sequence of random vectors {Zi}~l is uniformly mixing, then there exists a 

constant A> 0 and a nondecreasing sequence of positive intergers {kn}~=l such that 
1 S; kn S; n for any n E Nand 

where c.pkn are the mixing coefficients. 

Lemma 4.2: 
If a sequence of random vectors {ZiH~l converges completely in probability to Z, 

then it converges to Z in probability and almost surely. 

Lemma 4.3 
If two sequences of random vectors (Si)~l and (Ti)~l converge completely to 0 

in probability, respectively, then 

and 
S.T. P.co. 0 

I I --t . 

The following regularity conditions are needed in the proof of the consistency 
results: 

(1) (Xi, Yi)~l is uniformly mixing. i.e. 

lim c.pn = 0, 
n-+oo 

where c.pn are defined on Section 3. 

(2) the regression function r(x) is uniformly continuous and bounded on Rd. 

(3) There exists a constant f > 0 such that for any i E N and any B E B(Rd) 

P(Xi E B) S; f/1(B), 

and there exists another constant I > 0 such that for any i E N and any B E B (G (0)' 
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where B(Rd) and B(G eo ) are the O"-field of the Borel sets on Rd and Geo , respectively, 
and /-L is the Lebesgue measure. 

(4) The probability density functions {hi(X)}~l of {Xi}~l are equally uniformly 
continuous on G(Q. 

(5) There exists a constant f3 > 2 and a constant C1 < 00 such that for any i E N 

and there exists another constant C2 < 00 such that for any i E N and any x E G(Q' 

(6) m -+ 00 as n -+ 00 and there exists a constant ~ E (6!2' 1) such that 

2- md 
1. n 
1m --,---- = 00, 

n-rCXJ nekn In n 

where kn is from Lemma 4.1 and f3 is from condition (5). 
The above conditions are in some sense natural. Condition (1) refers primarily to 

time series data. It implies that the correlation between two observations becomes 
smaller and smaller as the time gap between the observations gets bigger and bigger. 
Condition (3) guarantees that the data will be available to estimate the regression 
function at every point on the compact set G. Condition (4) requires in some sense the 
homogeneity of distributions for all observations, although not necessarily identical 
distributions. Condition (5) is a moment condition. Condition (6) tells us how big 
the subspace Vj has to be used for the regression estimators, which basically controls 
the smoothness of the data smoothing. The following gives an example of processes 
which satisfies the above regularity conditions. 

Example: 
Let (Xi,Yi) = (xi,r(xi)) for i = 1,2, ... , where r(x) is a continuously bounded 

function on R. Let the process {Xi}~l be m-dependence for some positive integer m. 
Suppose that Xi has a normal distribution with mean /-Li and variance 0"2, so Xi has 
the density function: 

lim /-Li = /-Lo, 
~-rCXJ 

for some finite /-Lo. Then all the conditions (1), (2), (3), (4) and (5) are satisfied on 
any compact set GeR. 
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Theorem 4.1: 

Under the conditions (1), (2), (3), (4), (5) and (6), the wavelet regression estimator 
r:(x) converges completely in probability to r(x) uniformly on G. i.e. 

sup Ir~'(x) - r(x)1 ~ 0, 
XEG 

as n ---+ 00. 

We now prove Theorem 4.1 through aseries of lemmas. Rewrite 

where 

fn(x) = 2::'=1 Em(x, Xi)Yi 
n 

and 

For any e > 0, write: 

and 

f~l)(X) = 2::'=1 ElI1(X,Xi)Yi(1), 
n 

fn(x) = f~l)(x) + f~2)(x), 

where yP) = YiX[lYil~nel' y}2) = Yi - yP) and XA is the indicator function of the set A. 
In the sequal, C will be a universal constant which may differ from step to step. 

Lemma 4.4 
Under conditions (1), (2), (3) and (5), there exist constants a and b not dependent 

on n such that for any E > 0, 

where kn is given in Lemma 4.1. 
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Proof: Write 

t Em(x, X i)Yi(2) - E(Em(x, X i)y[2)) 

i=1 n 
n 

L .6. i . (2) 
i=1 

Now by Schwartz's inequality and condition (2) (3) and (5) we have that for any 
xE G, 

E.6.i 0 (3) 

l.6. i 1 

n~2md 
< C--

n 
dl, (4) 

EI.6.i l < CE1Em(x, Xi)Yi 1 
n 

C E ( E(IEm(x, Xi)Yd IXi)) 
n 

< Cn -I E{ (Ey;IX;)~ IEm(x, Xi)l} 

< Cn- I E{(r2(Xd + C2)~IEm(x,Xi)l} 
< Cn- 1 

5, 

EI.6.i I2 < C E( IEm(x, Xi)Yil)2 
n 

Cn-2 EE((Em(x, X i)Yi)2IXi) 

< Cn-22md 1 (r2(u) + C2)Em(x, u)hi(u)du 
Rd 

< Cn- 22md 

D. 

Since {Xi, Yi} is uniformly mixing, {.6. i } is uniformly mixing. By Collomb's inequality 
in Theorem 3.1, for 1 ::; m* ::; nand am*dl ::; ~, 

sup P(lf~2)(X) - Efr\2)(x)1 > E) 
XEG 

r:; 'I' * 2 "m* < e3ven~-cx'+6ncx (D+4od 1 L..,i=l 'Pi) 

3 'en~_o'+6no2(Cn-22md+4Cn-lCne-12md"m* 'P') e vr:;. m* L....,.t=l t • 

Now, take a to be Cm*nZ 12md • Then for some large C, 

sup P(lf~2)(X) - Efr~2)(x)1 > E) 
xEG 
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Now, appeal to Lemma 4.1 and take m* to be the kn from the lemma 4.1. There are 
two possibilities: 

Possibility 1: 

In this case, condition (1) gives 

""kn r L..,i=l CPi - 0 
n~~ k -. 

n 

Thus, when n is large enough, there exist constants a and b such that 

Possibility 2: 

k" = ku, 

for all n 2': no, for some no. From (4.5), if 'm* > ko 

ncpm * ncp ko A --<--< 
rn* - ko - , 

for all n 2: no. Thus there are some other constants a' and b' such that when n is 
large enough, 

1-~2-md 

sup P(lf~2)(X) - Ef~2)(x)1 > c:) ::; a'e- b/n 
k n 

xEG 

The proof is now complete. 

Lemma 4.5 
Under conditions (1), (2), (3), (5) and (6), 

sup If~2)(X) - Efl~2)(x)1 ~ o. 
XEG 

Proof: By the compactness of G, G can be covered by a set of finite d-dimensional 
balls {Bd~n=l of radius r. Suppose Bk centers at ~k . Next take r to be n~2'!(d+2). 
Since 

then 
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Define for any x E G: 
Sn(X) = f~2)(x) - Ef,~2)(x), 

Sn (x) = Sn(x) - Sn(~d, 
where x E Bk for some k = 1,2, ... , In. 

Now by the fact that Eo(x, y) is Lipschitz, 

'" 
I Sn (x)1 

I Lf=l Em (x,Xi )y[2) - EI11(~k,Xi)y[2) 
11 

_ELi'=l Em (x,X i )yr2) - Em(~k,Xi)Yi(2) I 
11 

"n nf,2md l2mx _ 2111C I < CL..'=l <"k 

n 

as n -+ 00. Thus 
lim sup I Sn (x)1 = 0, 

n-+oo XEG 

which implies that 

sup I Sn (x)1 ~ o. 
XEG 

Now by Lemma 4.4, if n is large enough, 

P( max ISn(~k)1 > c:) 
k=1,2, ... ,ln 

In 

< 2: P(ISn(~dl > c:) 

< In SUp P(IS,,(x)1 > c:) 
xEG 

_b nl -c'2- md 

< ln ae kn 
l-c'2- md 

< C(nf,2m (d+2))d e-b n k n • 

Let ~ be from condition (6). If M is large enough, 

,,>1\1 

n>1\1 

< 00, 

Kansas State University 

(6) 
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for some s > 1. Now the lemma is proved by the following inequality: 

~ 

ISn(x)1 :::; ISn(~k)1 + 1 Sn (x)1 

and Lemma 4.3. 

Lemma 4.6 
Under conditions (1), (2), (:3), (5) and (6), 

Proof: By Lemma 4.3, Lemma 4.6 follows if the next statement is true, 

If (I)( ). - £f(I)( )1 P.co. a sup n X n X --7 . (7) 
xEG 

To verify (7), write 

If2)(x) - Ef~l) (x) 1 

1 I:f=l Em(x, Xi)YiX[IYil>n~l _ EI:~l Em(x, XdYiX[lYd>n~ll. 
n n 

Since 

from Schwartz's inequality, Chebyshev's inequality and condition (5): 

E sup 1 I:f=1 Em(x, Xi)YiX[lYd>n~ll 
XEG n 

< C2mdI:f=I(EYn~(p(IYil ~ ne))~ 
n 

",n =l.§. 
< C2md L.i=] n 2 

n 

< C2mdn -Jf3. 

Now, by the inequality 
IEfS1)(x)1 :::; E sup If~l)(x)l, 

XEG 
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for any t > 0, we have that 

P(sup If~1)(X) - Efi1) (x) I 2 t) 
XEG 

< E(suPXEG If2J(x) - EfJ\1) (x) I) 

< C')'lnd f ~ n . 

By condition (6), there exists a constant C > 0 such that 

2'lnd :::::!.P. < C' 1- W3+2) n 2 _ n 2, 

so that 

00 

L P(sup If~1)(X) - Ef~I)(x)1 2 t) 
n=1 XEG 

n=\ 

< 00. 

This finishes the proof. 
Remark: A similar proof works for gn(x) since if Yi = 1, then fn(x) = gn(x). i.e. 

as n -+ 00. 

Lemma 4.7 
Under conditions (2) (3) and (4), 

as m -+ 00. 

Proof: For any D > 0, 

IEgn(x) _ Li=1 hi(x) I 
n 

I L7=1 JRd Em(x, u)(h;(u) - h;(x))du
1 

n 
I Li=1 JRd2'ln dEo(2'lnx,2I11U)(hi(U) - hi(x))du

1 
n 

I Lf=l JRd Eo (2'ln x , 2111x - v)(hj(x - 2- l11 v) - hj(x))dv I 
n 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/14



Applied Statistics in Agriculture 

< 1 2:7=1 ~vl<D Eo(2mx, 2111 x - v)(hj(x - 2-mv) - hi(x))dv 1 

11 

+1 2:7=1 ~vl>D Eo(2mx, 2m x - v)(hj(x - 2-m v) - hj(x))dv I 
n 

I + II, 

say. 
Now, for any E > 0, choose D large enough so that for any x E G: 

I I I 2:i=l ~VI>D Eo(2mx, 2111 x - v)(hJx - 2- l11 v) - hi(x))dv I 
11 

< C r 1 dv 
J1vl>D (1 + IVl)2d 

< Eo 

By condition (4), for the above E > 0, there exists ad> ° such that for all Xl, X2 E GEQ 

whenever IX1 - x21 :::; d. Thus there exists an No E N such that 2-m D < d, and so 
for all X E G and n E N when 111 > No, 

I 1 2:~1 ~vl<D Eo(27nx, 2rnx - v)(hJx - 2- rn v) - hj(x))dv I 

Jl 

< E r Eo(2mx, 2111X - v)dv 
Jlvl~D 

< CE r 1 dv 
Jlvl~D (1 + Ivl)2d 

< CEo 

The proof is now complete. 
Remark: By Lemma 4.7, EYn(x) is bounded when n E N, x E G, so by using the 

inequality 

and Lemma 4.3, it can be shown that: 

(8) 

Lemma 4.8 
Under conditions (2) (3) and (4), there exists some do > 0 and some constant 

integer No such that for m > No 

I: P( inf 9n(X) :::; do) < 00. 
n=l xEG 
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Proof: By lemma 4.7 and condition (3), there exists some constant {o such that for 
all x E G and n E N when m > No 

Now, take 60 < {o , from Lemma 4.6 and 

then 

00 

L P( inf gn(x) :::; 60 ) 
n=1 XEG 

00 

< L P(sup(Egn(x) - g,,(x)) ~ {o - 60 ) 

n=1 xEG 

< 00. 

Thus the proof is complete. 
Similar to the proof to Lemma 4.8, one can also prove when m is large, 

00 

L P( inf Ign(x) I :::; 60 ) < 00. 
n=1 XEG 

Lemma 4.9 
Under condition (2) and (3), 

sup IE.f~~(x) - r(x)Egn(x)1 -t 0, 
XEG 

as n -t 00 and m -t 00. 

Proof: By condition (2), for any E > 0, there exists some O(E) > ° such that for 
Xl, X2 E GEQ 

whenever IX1 - x21 :::; 6( c). 
Now, for any X E G, 

IEfn(x) - r(x)Egn(x)1 

I 2::i=l(E(Em(x, Xi)Yi) - r(x)E(Em(x,Xi))) I 
n 

I 2::i=l (E(E(Em(x, Xi)YdXi)) - r(x)E(Em(x, Xi))) I 
n 

< I 2::i=l(E(r(Xi )Em (x, Xi)) - r(x)Em(x,Xi)) I 
n 
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n 

n 

I 2:i=l J1u_xl>o(f)(r(U) - r(x))Em(x, u)hi(u)dul 
+----~~~~--------------------

n 
I + II, 

say. 
SInce 

",n J' emull E (2111 ')1l1) Ih ( )d III :::; tL.i=] , lu-xl<o(c) .G --'0 X, - U i U U 

n 
:::; Ct, 

and for the given t > 0, there exists some N(E) > 0 such that if m > N(t) then 

1111 
< 2:~1 ~u-xl>o() I(r'(u) - r(x))Em(x, u)lhi(u)du 

n 

",n J' C2 md h ( )d < CL.i=l lu-xl>O(f) (1+2mlu-xl)3d i U U 

n 
< CE, 

Lemma 4.9 is proved. 

Proof of Theorem 4.1 

By the following equality and condition (2), for any x E G, 

f;:'(x) - r(x) = 
[(In(x) - Efn(x)) - r(x)(gn(x) - Egn(x)) + (Efn(x) - r(x)Egn(x))] 

gn(x) 

We therefore have that 

sup 17~;~'(x) - r(x)1 
XEG 
sUPxEG Ifn(x) - Efn(x)1 < 

infxEG Ign(x) I 
CSUPXEG 19n(x) - Egn(x)1 

+ infxEG Ign(x)1 
supxEG IEfn(x) - r(x)Egn(x) I 

+ infxEG Ign(x) I 
I+f1+III, 
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say. 
For any E> 0, 

P(I> E) P(I > E, inf Ign(X)1 > 50) + P(I > E, inf Ign(x)1 :s; 50) 
XEG XEG 

l' + II', 

say, where 50 is from Lemma 4.8. By Lemma 4.6, Lemma 4.8 and the remarks after 
them, 

00 00 

< L P(I sup Ifn(x) - Efn(x)1 > OOE) 
n=l xEG 

< 00, 

and 

00 

Lll' < 
n=l 

< 00, 

so that: 
00 

L P(I > E) < 00. 

n=1 

Similarly, 

L P(ll > E) < 00. 

n=l 

By Lemma 4.8, Lemma 4.9 and the remarks after them, 

00 

L P(Ill > E) < 00. 

n=l 

Thus, Theorem 4.1 is proved. 

5 Simulation 

Some simulation studies about the wavelet nonparametric regression estimator are 
conducted. The compactly supported scaling functions given by Daubechies (1988) 
are used to construct the nonparametric regression estimate. More specifically, in 
the family of scaling functions given by Daubechies, 'P7( x) is used. In addition, 
in the cascade algorithm to compute 'P7(X) (Section 2), eight iterations are used. 
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The following autoregressive time series model IS used to generate 100 data pairs 
(Xt, Yt) = (Xt, xt+d, t = 1,2, ... ,100: 

where {et}~l are i.i.d. uniform random variables from -0.5 to 0.5. The regression 
function is estimated by the proposed wavelet method. To choose the parameter 
m optimally, the classical cross-validation method is used, i.e. the best m should 
minimize the following cross-validation function: 

n 

CV(m) = n- 1 2")Yi - 7~~~i(xd)2, 
i=1 

where f:'i(X) is the leave-one-out estimator obtained by estimating r(x) with the i-th 
data point removed. We found that it is only necessary to consider m=I,2,3,4,5. 
Table 3 gives the cross validation mean square error for different m's. 

Based on the Table 3, it is clear that the wavelet regression estimator with m=2 is 
the best. To compare our method with some well-known curve estimation methods, 
we compute the following mean square error for different estimators: 

n 

MSE = n-1 I)Vi - f(Xi))2. 
'i=1 

The smoothness parameter is bandwidth (ban) for the kernel estimators, degrees of 
freedom (df) for the cubic spline, m for the wavelet estimator and the fraction of 
data (f) used in the estimation at each point for the lowess estimator. Table 4 gives 
the MSE for several kernel estimators and the lowess estimator. Figure 3, 4, 5, 6, 7 
and 8 show the best estimated curve by the wavelet method and the corresponding 
comparisons. (solid line is the wavelet estimated curve, dashed lines are the estimated 
curves from other methods.) 

Our simulation results show that the wavelet regression estimator is very com­
petitive compared with the other well known estimators. In addition, as expected, 
the wavelet regression estimator shows a better performance in picking up the edge 
effect, especially on the left boundary of the scatter plot. We also see that wavelet 
estimator can pick up some very small fluctuations on the right portion of the scatter 
plot while keeping the smoothness of the estimated curve, this is in contrast with the 
fact that most other smoot hers tend to oversmooth in that portion of the data. 

6 Conclusions 

It is well known that most currently available data smoot hers do not perform very 
well on the boundary. Since all smoothel's use the weighted averages to estimate 

181 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/14



182 Kansas State University 

the regression function, it is expected the estimates at the boundary points will be 
somehow skewed since only data from one side are available. Although the wavelet 
regression estimator still uses the weighted averages to estimate the regression func­
tion, it is superior in the sense that the wavelet kernel is compactly supported, very 
smooth and highly concentrated around the peak point. Thus, even though it still 
uses the one side data to estimate the regression function on the boundary, it can 
more efficiently use the data from the one side to perform the estimation by concen­
trating on the data very close to the points being estimated. This is also why the 
wavelet estimator is very sensitive to the fluctuations of the data even in the inte­
rior part of the data. On the other hand, because of the smoothness of the wavelet 
kernel, the sensitivity to the fluctuations of the data does not tend to undersmooth 
the data overall. In this sense, the wavelet estimator nicely balances the smoothness 
and sharpness of the data smoothing. Another advantage of the wavelet estimator is 
in the cross validation. Since the smoothing pCLrameter m is discrete, it is feasible to 
choose m by using cross validations. 
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Table 1: Filter Coefficients for <P4 (x) 

Co 0.230377813309 
Cl 0.714846570553 
C2 0.630880767930 
C3 -0.027983769417 
C4 -0.187034811719 
C5 0.030841381836 
C6 0.032883011667 
C7 -0.010597401785 

Table 2: Filter Coefficients for <P7( x) 

Co 0.077852054085 
Cl 0.396539319482 
C2 0.729132090846 
C3 0.469782287405 
C4 -0.143906003929 
C5 -0.224036184994 
C6 0.071309219267 
C7 0.080612609151 
Cs -0.038029936935 
Cg -0.016574541631 
ClO 0.012550998556 
Cll 0.000429577973 
C12 -0.001801640704 
C13 0.000353713800 
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Table 3: Cross-validation mean square error 

m CV 
1 0.11353 
2 0.10355 
3 0.12127 
4 0.33212 
5 l.21126 

Table 4: Mean square error for different estimators 

Method Smoothness MSE 
wavelet m=2 0.0835154 
normal kernel ban=0.25 0.0822207 
box kernel ban=0.25 0.08865488 
triangle kernel ban=0.25 0.08144265 
cubic spline df=10 0.08095377 
lowess f=1/2 0.0889217 
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Figure 1: Daubechies Scaling Function 'P4(X) 
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Figure 3: Regression Curve With Optimal m=2 
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Figure 5: Comparison of the wavelet method and the box kernel method 
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Figure 6: Comparison of the wavelet rnethod and the triangle kernel method 
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Figure 7: Comparison of the wavelet method and the lowess method 
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Figure 8: Comparison of the wavelet method and the cubic spline method 
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