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Abstract

Estimation of the regression function has many applications in agriculture and
industry. Usually, the regression function is assumed a known functional form which
depends on unknown parameters. Nonparametric regression theory makes no such
assumption and often uses some kernel functions to form the so-called Watson-
Nadaraya type estimators. Such estimators were extensively studied by Watson
(1964), Nadaraya (1964, 1989) and Collomb (1981, 1985). When the data are in-
dependent,these estimators have nice asymptotic convergence properties. When the
data are dependent, Gyorfi et al (1989) gave some large sample properties for the
Watson-Nadaraya estimators. In this paper, the recently developed theory of wavelet
will be used to estimate the regression function when the data are dependent. Large
sample properties for the wavelet estimator will be proved, and the wavelet smoothing
will be compared with the other well known nonparametric smoothing methods.

Key Words: Wavelet, Multiresolution Analysis, Mixing Conditions, Complete
Convergence in Probability.

1 Introduction

One of the primary goals in statistics is estimation of the regression function. More
specifically, Given a random vector W = (X,y) € R such that the conditional
expectation E(y|X = x) = r(x) exists, how should we estimate the function r(x)
based on the data?
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There are many different situations to be considered. If we are willing to assume
that the data are jointly normally distributed, then r(x) is a linear function of x,
and the question becomes how to estimate unknown intercept and partial slope pa-
rameters. Several packages can be used to estimate the unknown parameters by the
method of least squares when the data are independent. If we believe that a linear
function should be used to estimate r(x) , but that the data are not independent (e.g.
time series data), classical time series analysis (Box, Jenkins, 1976) and ARMA mod-
els (Doob, 1953, Akaike, 1974) can be used to estimate the unknown parameters. If a
plot of the data suggests very clear curvature, none of the above techniques directly
apply. If the data {Xj, y;}, are independent, Watson (1964), Nadaraya (1964, 1989)
and Collomb (1981, 1985) studied the following so-called Watson-Nadaraya estimator
and obtained asymptotic normality and pointwise consistency:

n YK x=Xj
'IQn(X): l_nl ( hn )

i=1

~-X. )
K(50)
where K(x) is some nice kernel function on R% and h,, is the bandwidth. If the
data {X;,y}r, are dependent, Gyorfi et al (1989) studied the above estimator and
obtained some consistency results, and more importantly, they proved the uniform
consistency of the estimator on any compact set G in R? in the sense of complete
convergence in probability.

Wavelet analysis is a technique which approximates a signal in a step by step
fashion. More specifically, a nested sequence of closed subspaces of L%(R?) can be
constructed by spaning the family of functions formed by the scale changes and the
translations of a father wavelet. The projections on these subspaces of the regression
function are used as the estimator. With independent data, Antoniadis et al. (1994)
studied the estimator of r(x) given by

DY En(x, X;)
Am, _ 1=1 1-m ) 1
) = S B X

where E,, is the m-th resolution projection from a multiresolution analysis on L?( R%).
They obtained consistency and asymptotical normality.

We consider the problem of nonparametric estimation of regression function by
using the theory of wavelets with dependent data. This problem has the potential
application in nonlinear autoregressive time series. We state the uniform consistency
of the above estimator in the sense of complete convergence in probability in Section
3. The proofs of these results will be given in Section 4. Some simulation study
results about the performance of the wavelet regression estimator and a comparison
between some well known regression estimators and wavelet estimators are given in
Section 5.
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2 Multiresolution Analysis and Wavelets

The subject of wavelets has evolved very rapidly in the last ten years. In one sense
wavelets are no different than other orthogonal systems, such as Legendre polyno-
mials. But there are notable differences: wavelet series have very good pointwise
convergence properties, wavelet series are more localized and pick up edge effect bet-
ter, wavelets use fewer coefficients to represent certain signals and images. Because of
such characteristics, wavelet theory has potentially important applications in statis-
tics, especially to nonparametric inference. In this section, the theory of wavelets will
be briefly discussed, and then a nonparametric regression estimator based on a scaling
function will be discussed. In the sequel, L?(R?) denotes all measurable functions on
R? which are square integrable with respect to Lebesgue measure.

Definition 2.1:

A multiresolution analysis of L?(R) consists of an increasing sequence of closed
subspaces V;,j € Z, of L*(R) such that
(a) OV, = {0};

(b) UV, = L*(R);

(c) There exists a scaling function ¢ € Vg such that {¢(.—k),k € Z} is an orthonormal
basis of Vj ;

(d) for h € L*(R) , h(z) € Vo ¢> h(z — k) € Vy for all k € Z | and

(e) h(z) € V; ¢+ h(2z) € V4.

The intuitive meaning of (e) is that in passing from V; to Vji1, the resolution
of the approximation is doubled, and the approximation to the signal becomes more
accurate. Mallat (1989) and Meyer (1990) have shown that given any multiresolution
analysis, it is possible to derive a function 9 such that the family {¢;s,.k € Z}
is an orthonormal basis of the orthogonal complement W; of V; in V)4, and so
{¥;k,J,k € Z} is an orthonormal basis of L*(R), where

in(z) = 279(2z — k).

These 1, ) are called wavelets. The function 1 is called the mother wavelet and the
function ¢(z) is called the father wavelet. For any function f(z) € L?(R), there exists
a unique sequence of constants {c;x} such that

f@)= > cinbjn

5k€EZ

This expansion is called the wavelet expansion of f(z).

Since the wavelet series approximation to a function f is equivalent to the approx-
imation of f through the subspaces V’s from the multiresolution analysis. We will
primarily use the scaling function ¢ in this paper.

Definition 2.2
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A scaling function ¢ is called r-regular for some positive integer r if it is r times
differentiable and its derivatives satisfy for any p € IV,

k

d -
[et)] < Cor(1+ 127,

where C, is some constant, & <r and t € R.
Given a multiresolution analysis on R, one can construct a sequence of projection
operators F; : L*(R) — V; which are associated with some integral kernel E;(z,y) :

h— EBi(h) = [ (. y)h(y)dy.

The kernel E;(z,y) can be explicitly expressed in terms of the scaling function ¢
as:
Ei(z,y)=2" ) ¢(2'z — k)p(2'y — k).
keZ
It is easy to see that F;(z,y) = 2/ FEo(27z,2’y) and that Eo(z,y) = Eo(z + k,y + k)
for any k € Z and
dolz—k)=1

keZ
If ¢ is r-regular for some r > 0, it can be shown that, for any polynomial p of degree
<,
Ej(p) = p.

The multiresolution analysis on L?(R%) can be similarly defined. If ¢ is the
scaling function that defines a multiresolution on L*(R), then ¢(t1,tq,...,14) =
©(t1)e(t2) ... ¢(ta) can be used as a scaling function that gives a multiresolution anal-
ysis on L%(R%). In general, given a multiresolution analysis on L?(R%) with scaling
function ¢(t), the projection operators F,, and the corresponding kernels E,,(x,y)
can be expressed as:

En(£)(x) = [ En(x)f(x)dy,

and

En(x,y)= Y ¢(x—k)op(y — k). (1)

kezd

The following inequality is needed later.

Theorem 2.1

If the scaling function ¢(t) from a multiresolution analysis on L%*( R?) is r-regular
for some r > 0, then there exist constants C, such that

Cn

|Eo(x%,y)] < m
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for any n € V.

The proof of this theorem can be found in Walter (1994).

Compactly supported scaling functions ¢ and wavelet functions 1 are of particular
interest mainly because of the good localization properties and the computational
convenience they possess. Notice that if ¢ is compactly supported, the kernel F,,(z,y)
is essentially a finite sum for any x and y. Daubechies (1988) has constructed a
family of such ¢y and n with the following property: there exists v > 0 such that
on,n € CYN, where ¢ € C™ means p € C™ and ¢™ is Hélder continuous with
exponent v (0 <+ < 1). For example, Daubechies and Lagarias (1988) obtained

©g c 0.5500 ©3 c 01.0878.‘. 04 c 01.6179....

The graphs of p4(z) and ¢7(z) are shown on Figure 1 and 2.

An algorithm given by Daubechies and Lagarias (1988), the cascade algorthm,
allows us to compute the compactly supported scaling function as a limit of step
functions that are finer and finer scale approximations of ¢n. Given a finite sequence

of filter coefficients, cg, ¢1,. .., cn, define the linear operator A by
(Aa)n = Y cnogkar, a = (ak)rez,
keZ

where it is understood that ¢, = 0 if K < 0 or £ > N. Define ¢/ = A’a’, where
(a®)o = 1 and (a®)r = 0 for k # 0. Set

Pl(z) =28 Y alx(2e — k),
keEZ

where x is the indicator function of the interval [Z},1). Then, pointwise we have:

— 1 J
pn(z) = lim ¢’(2).
The coefficients co, . . ., cx should satisfy some analytical conditions so that ¢y is
a scaling function. These sequences can be found in Daubechies (1988). Table 1 and
2 give these filter coefficients for N =4 and N = 7.

3 Mixing Conditions and Wavelet Nonparamet-
ric Regression

Let (Z;)32_., be a sequence of random variables taking values either in R or R?. Let
F™ (n,m € Z,n < m) denote the o-algebra generated by {Z;,n <i < m}.
Definition 3.1

(Z;)22, is said to be uniformly mixing if the mixing coefficients

©r = sup sup |P(B|A) — P(B)]|,

n AEFm P(A)>0,BEFS,

—00?
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satisfy
lim ¢ = 0.
k—o0
A very important example of uniformly mixing process is the so-called m-dependence
process, which means that there exists some integer m > 0 such that

wr =0,

for all kK > m.

A fundamental inequality that will be used in the proof of the consistency of
the wavelet nonparametric regression estimator is due to Collomb as given below in
Theorem 3.1. (Collomb, 1984)

Theorem 3.1

If (Z;)$2, is uniformly mixing and there exist constants d, D and d such that

EZ; =0, |Z|<d, EZ}<D,
and
E|Z;| <4,
then for any ¢ > 0,

n
P(' Zle > 6) < eBﬁnﬁ"ﬁ—ac+6a2n(D+45dZi=l %‘),

=1
where « is a real and m is an integer satisfying

1
1<m<n amdgzl-.

Now, given a sequence of random variables (Z;)%,, we will assume that the se-
quence is uniformly mixing, and

Z; = (Xi,Ys),

where X; € R and Y; € R. Moreover, we will also assume that the conditional
expectation of Y given X

E(Y;|X; = x) = 1(x).

exists and is finite.

Many authors have investigated nonparametric techniques to estimate the function
r when the random variables Z; are independent and identically distributed. The
most extensively investigated nonparametric regression estimator (Watson, 1964 and
Nadaraya 1964) is defined from a convolution kernel K of R? and a sequence of
smoothing parameters {h,} by

n - n x—X; :
=1 K( hn )
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The parameter h, , which controls the degree of smoothness of the estimator r,, is
called the bandwidth. Under several mixing conditions, Hardle, Luckaus, Collomb
and Gyorfi et. al. also studied the property of the above convolution kernel estimate
7, and obtained the uniform complete convergence in probability on compact sets
in R* (See Hardle and Luckaus 1984, Collomb and Hardle 1986, Gyorfi et al 1989).
With i.i.d. data, Antoniadis et al. (1994) studied the estimator of r(x) given by

L YiEn(x, Xj)
P En(x,X5)

where F,, is the m-th resolution projection kernel from a multiresolution analysis on
L*(R%). They also obtained consistency and asymptotic normality results. In next
section we will study the uniform complete convergence in probability on compact
sets of the same estimator of r(x) based on a multiresolution analysis under some
mixing condition of the data.

4 Consistency of Wavelet Regression Estimators

Section 3 presented a wavelet estimator of the regression function r(x). The first seg-
ment of this section presents some regularity conditions and some necessary lemmas.
Next, the consistency results are stated, and then the proofs are provided. The same
notations as in section 3 are used here. A sequence of random vectors is denoted by
{Xi,yi}2,, where X; € RYand y; € R. It is assumed that the conditional expectation

E(yi] Xi = x) = r(x)

exists and is finite.
Let G denote a compact set in R? and G, denote the eg-neighborhood of G for
some €y > 0. Recall that, given a r-regular multiresolution analysis on L?(R?) with

r > 0 and the data {Xj,yi}, , the wavelet estimator for r(x) at m-th resolution is

defined as
) Bl X0y

Zi:l Em(X7 Xl)

(%) =

Definition 4.1:

A family of functions {f;(x)}:2, is said to be equally uniformly continuous on G
if for any ¢ > 0, there exists a common §(€) > 0 such that for any x; and x; in G,
|fi(x1) — fi(x2)] < efor all : € N, whenever |x; — x2| < d(e).
Definition 4.2:

A sequence of random vectors {Z; }2, is said to converge completely in probability
to a random vector Z if for any ¢ > 0

[ee]

S P(|Zi—Z] > €) < 00

1=1
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It is denoted by Z; P 7.

Three simple lemmas are stated next without proof.

Lemma 4.1:
If a sequence of random vectors {Z; };2; is uniformly mixing, then there exists a
constant A > 0 and a nondecreasing sequence of positive intergers {k, }°2, such that

1 <k,<nforanynée N and
n¢k7l

Ky,

where @y, are the mixing coefficients.

< A,

Lemma 4.2:
If a sequence of random vectors {Z; }{2, converges completely in probability to Z,
then it converges to Z in probability and almost surely.

Lemma 4.3
If two sequences of random vectors (S;)2, and (T;)2, converge completely to 0
in probability, respectively, then

S +T; 2% o,
and
ST, % 0.

The following regularity conditions are needed in the proof of the consistency
results:

(1) (X, yi)Z2, is uniformly mixing. i.e.
agm, e =0,
where ¢,, are defined on Section 3.

(2) the regression function r(x) is uniformly continuous and bounded on R?.

(3) There exists a constant I' > 0 such that for any : € N and any B € B(R)
P(X; € B) < TI'u(B),

and there exists another constant v > 0 such that for any : € N and any B € B(G,,),
P(X; € B) = 1u(B),

https://newprairiepress.org/agstatconference/1996/proceedings/14
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where B(RY) and B(G,,) are the o-field of the Borel sets on R? and G, , respectively,

and p is the Lebesgue measure.

(4) The probability density functions {h;(x)}2; of {X;}2; are equally uniformly
continuous on G, .

(5) There exists a constant 8 > 2 and a constant C; < oo such that for any 1 € N
Ely|® < C,
and there exists another constant C'; < co such that for any ¢« € N and any x € G,
Bl(y: — ()X = %] < O

(6) m — oo as n — oo and there exists a constant £ € (ﬁ,

1) such that

n2—7nd
lim

n—oo pék, Inn

where k,, is from Lemma 4.1 and [ is from condition (5).

The above conditions are in some sense natural. Condition (1) refers primarily to
time series data. It implies that the correlation between two observations becomes
smaller and smaller as the time gap between the observations gets bigger and bigger.
Condition (3) guarantees that the data will be available to estimate the regression
function at every point on the compact set (G. Condition (4) requires in some sense the
homogeneity of distributions for all observations, although not necessarily identical
distributions. Condition (5) is a moment condition. Condition (6) tells us how big
the subspace V; has to be used for the regression estimators, which basically controls
the smoothness of the data smoothing. The following gives an example of processes
which satisfies the above regularity conditions.

Example:
Let (z,v:) = (ai,7r(z;)) for © = 1,2,..., where r(z) is a continuously bounded
function on R. Let the process {z,}:2, be m-dependence for some positive integer m.

2

Suppose that z; has a normal distribution with mean p; and variance o, so x; has

the density function:

|
hi(z) = e 202
2o
for : = 1,2,.... Further, assume
m p; = po,
1—)00

for some finite po. Then all the conditions (1), (2), (3), (4) and (5) are satisfied on
any compact set G C R.
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Theorem 4.1:

Under the conditions (1), (2), (3), (4), (5) and (6), the wavelet regression estimator
r(x) converges completely in probability to r(x) uniformly on G. i.e.

sup [r7(x) — r(x)| Beag,
xeG

as n — oQ.

We now prove Theorem 4.1 through aseries of lemmas. Rewrite

AT A fn X
() = 2,
gn(X)
where
g Z:].—, Em XaXi i
fn(x) — 1 ( )y
n
and

i En(x, Xy
() = T PO K]

For any ¢ > 0, write:
v = oM (2)
Yi=y, Y,

and

noop N (D
f(x) = Zi= B Xi)yi
11
fux) =t (x) + £ (x),

where y}l) = YiX[Jyi|>né]s y,@) =Y — yi(l) and x4 is the indicator function of the set A.

In the sequal, C will be a universal constant which may differ from step to step.

Lemma 4.4
Under conditions (1), (2), (3) and (5), there exist constants a and b not dependent

on n such that for any € > 0,

rl1v—§2—md

sup P(lf’r(LZ)(X) - Ef,(lz)(XH >¢) < ae P TR,
x€eG

where k,, is given in Lemma 4.1.
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Proof: Write

[P0~ B (x) = 3

I
™
e

(2)

Now by Schwartz’s inequality and condition (2) (3) and (5) we have that for any

x € G,
EA; = 0 (3)
Eoymd
Al < o2
n
- Cl], (4)
E E7n 7Xi i
ElAl < C | £ (%, X5)yi|
n
E(E ?m i
B )
n
< Cn ' E{( E//f|X~ 3 Em'x,X-,)l}
< O B (X0) 4 Co)2 B, X0) [}
< C'n_'
= 4,
E,
E|A2|2 S Cv (‘ ﬂ(XX)y|)
n
= Cn 2 EE((Bn(x, X)) X5)
< Cn’z‘zmd/ (r? (u)+C2)Em(X,u)hi(u)du
R4
S Cv,”/——‘_).:z’ln,([

D.

il

Since {Xj, y;} is uniformly mixing, {A;} is uniformly mixing. By Collomb’s inequality
in Theorem 3.1, for 1 < m* <n and am*d, < i-’

sup P(|fH(x) — BfP (x)| > ¢)
x€G
< 3\/‘;71%;”—:--—(1(,4-67L02(D+45d1 Zm*l »i)

3\/—n * —aet6na (Cr T2l 4O T Cné T 12""12‘ lw’

Now, take « to be Then for some large C,

1
Cm*né—1lgmd:

sup P(|f{#(x) — Ei{? (x)| > ¢)
xXeG
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< 63\/§n—%—¢m* —Cm*_l711"52"”“1c+m*_]nl"52*”"1[6'n*§m*_1+Cm*_1 :7:1 i)
m* _o—md 1-§ . e . :il P
< 63\/Enwm* e . m* [('(*(Cn " ZHT* )] (5)

Now, appeal to Lemma 4.1 and take m* to be the &k, from the lemma 4.1. There are
two possibilities:
Possibility 1:
lim k&, = o

n—r00
In this case, condition (1) gives
k7L
. =1 992
lim = = 0.
amdee]

Thus, when n is large enough, there exist constants a and b such that

pl—¢&p—md
sup P(|f{%(x) = Ef(x)| > ¢) < ae™" 5
x€eG

Possibility 2:

for all n > ng, for some ng. From (4.5), if m™ > kg

1D * - NP,

< A,
m* ko

for all n > ng. Thus there are some other constants «' and b’ such that when n is

large enough,
y ynl—&p—md
sup P(|f{? (x) = Ef)(x)| > ¢) < ale™w
XeG

The proof i1s now complete.

Lemma 4.5

Under conditions (1), (2), (3), (5) and (6),

sup [/ (x) — BiP (x)| =% 0,
xXeG

Proof: By the compactness of GG, G can be covered by a set of finite d-dimensional
balls {By}i, of radius r. Suppose By centers at €. . Next take r to be — T
Since
Clor® < (G,
then
[, < Cpblgmdit2)
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Define for any x € G:
S’/z(x) - f(Z)(X) - Ef.l(]2)(X),

§71 (X) - SH(X) - Sll(&i)?

where x € By for some k =1,2,...,1[,.
Now by the fact that Fo(x,y) is Lipschitz,

| Su (x)]
n 2 2
— l =1 Em(X,Xi)yi( ) - Em(&UXi)Yi( )
n
i B X = B (6 Xy,
Il

< sz”.—.l 'l1,5277L(1|271LX o 2111§k|
- n
§ Cn§27nd2m7,
— 0. (6)

as n — oo. Thus

Jim sup | 5. (x)] =0,

which implies that
AS"I?, (X)! Lﬁ) O

sup
xeG

Now by Lemma 4.4, if n is large enough,

P( max [S.(&)] > ¢

k=1,2,...,0n

S P86 > o)

<
k=1
< lysup P(1S.(x)] > €)
xeG y
bnl"ngmd
< [,,La@" B
nl“ﬁ')~7ud
S (j(77’f27yl(6[+2))[[64b_k‘-;%

Let € be from condition (6). If M is large enough,
S P s 140601 >

n>M
nl—§o—md

S C Z (7152771(44-2))46*0 =

n>M

< C Z n=°
n>M

< 0o,
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for some s > 1. Now the lemma is proved by the following inequality:
|9 (x)] < [Sulk) (x)]
and Lemma 4.3.
Lemma 4.6
Under conditions (1), (2), (3), (5) and (6),
sup | f,(x) — Bl (x)] =% 0.
xeG
Proof: By Lemma 4.3, Lemina 4.6 follows if the next statement is true,
supu J(x) = EfU (x)] =% 0. (7)
x€eG
To verify (7), write
/20 (x) = B (x)]
_ |Zi:1 Em(X,X]))l,\[|yi|Zné] o - E.,n(X,Xi)yi)<[]yi|2n§]I
n n

Since

Z“ FIH(X X) YiX{lyi|>n¢]

sup | ]
xeG 11
e o ymd |,
< (vvdzlzl |UJ\HUJ2nq

n
from Schwartz’s inequality, Chebyshev’s inequality and condition (5):

1 B (35 X5)YiX [y ne)

Esup | |
xeG n
1 1
< comi iz (By2)2 (P(lyil = nf))?
- n
7 _,é’)
< ( ),/L/Z 1 Tl 2

n
&5

S (:vf.zmr,{,”’ — ]

Now, by the inequality
[EJN 0] < Esup [(D(x)],
xeG

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/14



Conference on Applied Statistics in Agriculture

176 Kansas State ﬁﬁﬁﬁé}%’ niversity

for any ¢ > 0, we have that
P(sup [ f{V(x) = Bf{V(x)| = ¢)

xeqG
SV(x) = BV (x)])
[@

Esupxeq

< (O2

By condition (6), there exists a constant ' > 0 such that

) =8 oo1-seee)
znuln > S (J,'I[,l 2

7

so that

n=1
(o]
< ('Zn 5
n=1
< Q.

This finishes the proof.
Remark: A similar proof works for g, (x) since if y; = 1, then f,(x) = g.(x). i.e.

- P.co.
sup |gn (%) — Egu(x)] = 0,

XeG

as n — oQ.

Lemma 4.7
Under conditions (2) (3) and (4),

2 i hi(x)

sup gu(x) — | = 0,
xXeG,neEN n
as m — oQ.
Proof: For any D > 0,

imy hi(x)
2g.x) - —ﬁ;—~r

D S Bl ) = ),

n '

2 B2 2 ) — i,
n

Yoy Jra Eo(27x,2"x — v)(hi(x — 27"v) — hi(x))dv

1

= |

|
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izt Jiviep Eo(27x,2"x — v)(hi(x — 27"v) — hi(x))dv

8
Yzt Jvpsp Fo(27x,2"x — v)(hi(x — 27"v) — hi(x))dv

I8l

IN

|

+
I+11,

Il

say.
Now, for any € > 0, choose D large enough so that for any x € G:

Dot B2, 27— v)(Iix = 277v) (v,

11

1 = |

1
0/ Ly
vi>p (14 v ]2

€.

IN

By condition (4), for the above ¢ > 0, there exists a § > 0 such that for all x;,x2 € G,
V'I,,‘(Xl) — lli(Xz)' S €,

whenever |x; — x3| < 6. Thus there exists an Ny € N such that 27D < ¢, and so
for all x € G and n € N when m > Ny,

et Jjvien Lo(27x,2"x = v)(hi(x = 27"v) = hi(x))dv

I = |

1l

< E/ Eo(2"x,2"x — v)dv
[v|<D
1
< C’e/ —————dV
vigp (1 + [v[)*

< Ce.

The proof is now complete.
Remark: By Lemma 4.7, /¢, (x) is bounded when n € N, x € G, so by using the
inequality
|9 ()] < [Ega(x)] + 2, (x) — g, (x)]
and Lemma 4.3, it can be shown that:

- P.co.
sup |g.(x)(gn(x) — Eg,(x))] = 0. (3)
x€G

Lemma 4.8
Under conditions (2) (3) and (4), there exists some &y > 0 and some constant
integer Ny such that for m > N,
oS
P(inl g,(x) < dg) < oc.
| xeG

n=
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Proof: By lemma 4.7 and condition (3), there exists some constant vy such that for
all x € G and n € N when m > N

}Egn(x){ ~ Y-

Now, take dp < o , from Lemma 4.6 and

. B (x]— en(Fe (x] — o
inf gu(x) = inf Bg,(x) ;gg(hgn(X) gn(x)),

then

[ee]

: P()ilelé gu(X) < do)

n=

< Z P(sup(Fg,(x) —gu(x)) = 70 — 50)

n=1 xXeG
< Q0.

Thus the proof is complete.
Similar to the proof to Lemma 4.8, one can also prove when m is large,

Z P()lclelé ‘gn(xﬂ < 50) < 00,

n=1

Lemma 4.9

Under condition (2) and (3),

sup | f.(x) — r(x)Egn(x)] — 0,
xeG
as n — oo and m — oo.
Proof: By condition (2), for any ¢ > 0, there exists some d(€) > 0 such that for
X17X2 E GEO
r(x1) = r(x2)] <e,
whenever |x; — x| < d(e).
Now, for any x € G,

|Efn(x) = 1(x)Ega( )’
_ IZ?zl(E(/%(Xaxi)Yi) —r(x)E( ?111(X7Xi)))l
= |

2z (BB (L (%, Xi)yi| X)) — r(x) B(En(x, Xi)))
l

~

, |
n

izt (B(r(X)En(x, X)) — r(x)Eu(x, Xi))

I

IN
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|50 Jpa(r(u) — r(x))En(x, u)h;(u)du|
| 2o flu—x1g5(c)(7"(u) — 1(x))Em(x, u)hi(u)dul
T s () — 00 B, w)bi(u)dul

n

IN

[+11,

say.
since

622;1 jiu~x|§5(e) .;)M(l /L"U(meﬂ Qmu)ihi(u)du

]

IN

1l
< Ce,

and for the given € > 0, there exists some N(¢) > 0 such that if m > N(¢) then
2izt Juoxgzao 1) = v(x)) B (x, u)[hi(u)du

1] <
11
n s (rpmd / ] 1
021:] jiu—x|>5(5) (]+27niu_x|)3(l [/Z(u)(' u
- i
< Cl,

Lemma 4.9 is proved.

Proof of Theorem 4.1

By the following equality and condition (2), for any x € G,

(%) —r(x) =

[(fn(x) - Efn<x)) - l'(X)(g”(X) — bgn(x)) + (Ef,1(x) - Y(X>Egn<x))]
gu(x) .

We therefore have that

sup |77 (x) — 1(x)]

xeG
SUPxeq |/n(x) - Ef,,(X)]
infxea [gn(x)]
Wy 10.(x) — B ()]
infxec [gn(x)]
L f,(x) — r(x)Egn(x)
infxea |gn(x)]
T+ 11+ 111,

IN

SUPxeq
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say.
For any € > 0,

P(I>¢) = P(I>c inflg.(x)]| > do) + P(1> ¢ inf gu(x)] < &)
= ['4+1/I,
say, where dg is from Lemma 4.8. By Lemma 4.6, Lemma 4.8 and the remarks after
them,
Z I' < Z P(|sup | fu(x) = Ef,(x)] > do€)
n=1 n=1 xeG
< 00,
and
< O (inf [ g.(x)] <
;11 < ; P(inf 1g.(x)] < do)
< 00,
so that: .
> P(I >¢) < oo
n=1
Similarly,

ST P(II>¢) < co.

n=1

By Lemma 4.8, Lemma 4.9 and the remarks after them,

SO P(II > €) < 0.

n=1

Thus, Theorem 4.1 is proved.

5 Simulation

Some simulation studies about the wavelet nonparametric regression estimator are
conducted. The compactly supported scaling functions given by Daubechies (1988)
are used to construct the nonparametric regression estimate. More specifically, in
the family of scaling functions given by Daubechies, @7(z) is used. In addition,
in the cascade algorithm to compute ¢7(x) (Section 2), eight iterations are used.
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The following autoregressive time series model is used to generate 100 data pairs
(24, y¢) = (T4, Te41),t = 1,2,..., 100

Ty 4 sin(a_y)
1+ w?

Ty = + e,

where {e;}", are i.i.d. uniform random variables {rom -0.5 to 0.5. The regression
function is estimated by the proposed wavelet method. To choose the parameter
m optimally, the classical cross-validation method is used, i.e. the best m should
minimize the following cross-validation function:

CV(m)=n="Y (yi — (i),

=1

m
.2

where 77%.(x) is the leave-one-out estimator obtained by estimating r(z) with the i-th
data point removed. We found that it is only necessary to consider m=1,2,3,4,5.
Table 3 gives the cross validation mean square error for different m’s.

Based on the Table 3, it is clear that the wavelet regression estimator with m=2 is
the best. To compare our method with some well-known curve estimation methods,

we compute the following mean square error for different estimators:

MSE =n""> (y; — ()

=1

The smoothness parameter is bandwidth (ban) for the kernel estimators, degrees of
freedom (df) for the cubic spline, m for the wavelet estimator and the fraction of
data (f) used in the estimation at each point for the lowess estimator. Table 4 gives
the MSE for several kernel estimators and the lowess estimator. Figure 3, 4, 5, 6, 7
and 8 show the best estimated curve by the wavelet method and the corresponding
comparisons. (solid line is the wavelet estimated curve, dashed lines are the estimated
curves from other methods.)

Our simulation results show that the wavelet regression estimator is very com-
petitive compared with the other well known estimators. In addition, as expected,
the wavelet regression estimator shows a better performance in picking up the edge
effect, especially on the left boundary of the scatter plot. We also see that wavelet
estimator can pick up some very small fluctuations on the right portion of the scatter
plot while keeping the smoothness of the estimated curve, this is in contrast with the
fact that most other smoothers tend to oversmooth in that portion of the data.

6 Conclusions
It is well known that most currently available data smoothers do not perform very

well on the boundary. Since all smoothers use tihie weighted averages to estimate
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the regression function, it is expected the estimates at the boundary points will be
somehow skewed since only data from one side are available. Although the wavelet
regression estimator still uses the weighted averages to estimate the regression func-
tion, it is superior in the sense that the wavelet kernel is compactly supported, very
smooth and highly concentrated around the peak point. Thus, even though it still
uses the one side data to estimate the regression function on the boundary, it can
more efficiently use the data from the one side to perform the estimation by concen-
trating on the data very close to the points being estimated. This is also why the
wavelet estimator is very sensitive to the fluctuations of the data even in the inte-
rior part of the data. On the other hand, because of the smoothness of the wavelet
kernel, the sensitivity to the fluctuations of the data does not tend to undersmooth
the data overall. In this sense, the wavelet estimator nicely balances the smoothness
and sharpness of the data smoothing. Another advantage of the wavelet estimator is
in the cross validation. Since the smoothing parameter m is discrete, it 1s feasible to
choose m by using cross validations.
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Table 1: Filter Coefficients for p4(z)

cop  0.230377813309
cp 0.714846570553
c; 0.630880767930
cz -0.027933769417
cg  -0.187034811719
cs  0.030841381836
ce  0.032883011667
c¢r -0.010597401785

Table 2: IMilter Coefficients for ¢r7(z)

o 0.077852054085
¢ 0.396539319482
¢, 0.729132090846
¢z 0.469782287405
¢y -0.143906003929
¢, -0.224036184994
¢ 0.071309219267
¢z 0.080612609151
cg - -0.038029936935
¢y -0.016574541631
cro 0.012550998556
cn 0.000429577973
ciz -0.001801640704
¢z 0.000353713800
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Table 3: Cross-validation mean square error

m CV
0.11353
0.10355
0.12127
0.33212
1.21126

Ot s W o —

Table 4: Mean square error for different estimators

Method Smoothness
wavelet m=2
normal kernel ban=0.25
box kernel ban=0.25
triangle kernel ~ ban=0.25
cubic spline df=10
lowess f=1/2

MSE
0.0835154
0.0822207
0.08865488
0.08144265
0.08095377

0.0889217
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Figure 1: Daubechies Scaling Function @4(z)
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Figure 3: Regression Curve With Optimal m=2
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Figure 4: Comparison of the wavelet method and the normal kernel method
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Figure 5: Comparison of the wavelet method and the box kernel method
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Figure 6: Comparison of the wavelet method and the triangle kernel method
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Figure 7: Comparison of the wavelet method and the lowess method
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Figure 8: Comparison of the wavelet method and the cubic spline method
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