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Applied Statistics in Agriculture 

ANALYSIS OF PROPORTIONS FROM SPLIT-PLOT AND 
REPEATED MEASURES EXPERIMENTS 

Kenneth J. Koehler 

Iowa State University 

Several methods for analyzing proportions from split-plot and repeated measures exper

iments are illustrated and compared. One approach simply uses analysis of variance for the 

usual linear mixed model fit to split-plot and repeated measures experiments. Alternatively, 

logistic regression analysis is considered and a so-called robust estimate of the covariance 

matrix is used to adjust for possible correlations among responses. Finally, a quasi-likelihood 

approach to logistic regression analysis that requires more explicit specification of the co

variance structure for the observed proportions is considered. These methods are illustrated 

with the analyses of data from a repeated measures study of acorn consumption by blue 

jays and a study of the effects of several environmental factors on nest predation for ground 

nesting birds. 

KEY WORDS: logistic regression, robust covariance estimation, quasi-likelihood 

1. Introduction Studies involving repeated measures across time or measurements 

on sub-plots within whole plots frequently occur in agricultural and ecological research, and 

it is not unusual to have binary or multi-category responses. Two illustrations with binary 

responses are considered in their article. One study examines the effects of several environ

mental factors on nest predation among ground nesting birds. The binary response for a 

single nest is whether or not it was disturbed by a predator. In the other study, the binary 

response is whether or not a blue jay selects a particular acorn from a tray. There are many 

other applications. A botanist, for example, may repeatedly examine a particular site over a 

period of years to determine if a particular plant species exists or is dominant at the site. In 

a split-plot field experiment, the presence or absence of a particular disease, or the presence 

or absence of a certain insect species, may be recorded for plants in each sub-plot. 
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48 Kansas State University 

Commonly used statistical methods for counts and proportions, such as chi-square tests 

provided by PROC FREQ and logistic regression analysis provided by PROC LOGISTIC in 

SAS, do not account for correlations among responses arising in repeated measures studies 

and split-plot experiments. Provided the form of the logistic model is correctly specified, 

PROC LOGISTIC will generally produce consistent estimates of regression coefficients that 

have a limiting normal distribution, but PROC LOGISTIC will usually not provide an ap

propriate estimate of the covariance matrix or appropriate standard errors for the estimates 

of the regression parameters. We present a simple correction to the covariance matrix pro

duced by PROC LOGISTIC, that is often referred to as a robust estimator for the covariance 

matrix. This approach does not require a specification of the form of the covariance matrix 

for repeated measurements taken from a single subject or responses obtained from different 

sub-plots within a single whole plot. We consider a second approach where the covariance 

structure is directly modeled and used in the estimation of the coefficients in the logistic 

regression model. Inferences from both methods are compared with ANOVA results from 

the linear mixed model commonly used for split-plot experiments and repeated measures 

studies. 

2. Applications. We consider two applications in animal ecology. The first is 

small study of blue jay consumption of acorns involving just one between bird factor and 

one within bird factor. In the second application we analyze data from a study of the effects 

of several environmental factors on nest predation rates for ground nesting birds. This is a 

larger and somewhat more complex experiment. 

2.1 Blue Jay Study. When other sources offood are scarce, blue jays will eat acorns 

even though acorns contain a tannin that inhibits there ability digest protein. To investigate 

the hypothesis that blue jays offset the effect of the tannin by increasing protein uptake 

through selective foraging of acorns infested with weevil larvae, Dixon (1994) performed the 

following experiment. 

Ten blue jays were used in the experiment. Five of the birds (USED birds) had been 

previously used in a similar experiment, and the other five (NEW birds) had not been used 

in any previous experiment. This is the between bird factor. The birds were kept in separate 
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cages and it could reasonably be assumed that each bird acted independently of any other 

bird. After not being fed for 24 hours, each bird was presented with a tray containing 8 

weevil infested acorns and 8 uninfested acorns. The acorns were randomly arranged in the 

trays. The numbers of infested and uninfested acorns taken from the tray by each bird are 

shown in Table 1. Overall, 57 of the 80 uninfested acorns were taken and 32 of the 80 weevil 

infested acorns were taken, offering no support for the supposition that motivated the study. 

2.2 Nest Predation Study. This study was directed by Timothy Bergin and Louis 

Best, Department of Animal Ecology, Iowa State University, and Kathryn Freemark, Na

tional Wildlife Centre, Environment Canada, to study the effects of local habitat factors on 

nest predation along roadsides for ground nesting birds. Potential predators included rac

coons (Procyon lotor), striped skunks (Mephitis mephitis), red fox (Vulpes vulpes), coyotes 

(Canis latrans), mink (Mustela vison), badgers (Taxidea taxa), grackles (Quisculus quiscula), 

crows (Corvus brachyrhynchos), bullsnakes (Pituophis melanolencus sayi) , and rodents. 

Transects consisting of two rows of nests, with 5 nests in each row, were set up in 136 

locations along roadsides in 6 watersheds located in agricultural landscapes in South-Central 

Iowa. Roads are generally laid out as I-square mile sections in each watershed. One transect 

was placed in each section selected for the study and the roadside was randomly selected 

from the four sides of the square section subject to the constraints: 1) transects in different 

sections could not be located on opposite sides of the same segment of road to maintain 

independence of results in different transects, and 2) no transect could not cross drainages, 

water courses, or roadways that might prevent predators from treating it as a single entity. A 

200 meter buffer was maintained at the end of each road segment to avoid road intersections, 

and the transect was randomly positioned between the end buffers. 

The transects were located in the drainage ditches along the road sides. Each transect 

contained two rows of artificial nests, with one row placed 2 meters from the road edge (along 

the fore-slope of the drainage ditch) and the other row located along the back-slope of the 

drainage ditch. Each row contained 5 nests spaced 20 meters apart and the rows were offset. 

Two Coturnix quail eggs were placed in each nest. For each transect, the nests were checked 

at the end of a 7 day exposure period during June, the main breeding season for common 
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farm land birds. If at least one egg was broken or removed from a nest, its fate was assigned 

to predation. 

The data consist of the number predated nests and the total number of nests in both the 

fore-slope and back-slope of each transect along with information on the local environment 

for each transect. The road adjacent to the transect was classified at either paved or unpaved. 

The habitat adjacent to the other side of the transect was classified as either row crop or 

non-row crop. The border between the transect and the adjacent habitat was classified into 

three categories: herbaceous (less than 5% woody cover) without a fence, herbaceous with 

a fence, or wooded (at least 5 % woody cover). Fences and woody cover provide perches for 

avian predators and shelter for raccoons and other predators. These are whole plot (between 

transects) factors. The fore-slope/back-slope factor is a sub-plot (within transect) factor. 

For effective use of PROC LOGISTIC in SAS (SAS Institute, 1994), these factors were 

coded as binary regression variables: 

Xl = { 
0 unpaved 
1 paved Road type: 

X 2 = { 
0 non-row crop 
1 row crop 

Adjacent habitat: 

Border habitat: X3 = { 
0 other 
1 herbaceous with no fence 

X 4 = { 
0 other 
1 woody 

f 0 fore-slope 
Foreslope/backslope: X5 = l 1 back-slope 

Two interaction terms, X I X3 and X 2 X 4 , are also included in the following analyses. Pre

liminary analyses showed that there were no interactions between the whole plot factors and 

the sub-plot factor and other interactions between whole plot factors were also insignificant. 

Consequently, more complex models will not be considered in this article. 

The complete data set is too large to present here, but a summary of the observed nest 

predation rates is given in Table 2 for all combinations offactors occurring in the study. Note 
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that the combination of habitat factors corresponding to a woody border with an adjacent 

row group did not occur along a paved road in this study. Twenty-eight of the 1360 nests set 

up in this experiment were by weather or mowing and they were excluded from Table 2 and 

further analysi". Of the remaining 1332 nests, 307 nests (23%) were disturbed by predators. 

3. Linear mixed models. Simple analyses of the data sets described in the pre-

vious section are provided by a linear mixed model. Let Pij denote the observed proportion 

of successes for the j-th observation taken on the i-th primary unit (bird or transect). Then 

a rnixed model for the blue jay study is 

PiJ = fl + (bird type) + rli + (acorn type) + (bid by acorn interaction) + Cij (3.1) 

where 17i rv i.i.d.(O, er;;,) are random bird effects and Cij rv i.i.d.(O, er;). Similarly, a linear 

mixed model for the nest predation data is 

Pij = (30 + (31 Xli + (32 X 2i + (33 X 3i + (34 X 4i 

+ (35 Xli X 3i + (36 X 2i X 4i + 1]i + (37 X Sij + Cij 
(3.2) 

where 1]; rv i.i.d.(O, er~) are random transect effects and Cij rv i.i.d.(O, er;) are random within 

transect errors. 

The mixed linear model approach has some attractive features, but at best it provides 

only a good approximation. ANOVA tables and F-tests are easily computed with standard 

statistical software, such as PROC GLM or PROC MIXED in SAS. The inclusion of 1]i 

in the model induces a correlation of er~/ (er~ + ern between any two proportions (Pij , Pik ) 

obtained fwnJ tile s;-une primary unit. This equaJ correlation assumption may be called 

into question in studies where there are more than two subunits in each primary unit. 

Moreover, since variances of sample proportions are generally functions of their expectations, 

the homogeneous variance assumption, 

may be an issue of greater concern, especially when a substantial proportion of the observed 

Pi; values are zero (or one) or the model suggests a wide range of values for 7fij = E( Pij). 

Finally, the mixed linear model could yield estimates of 7fij less than zero or greater than 

one. 
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These are not issues of great concern in either the blue jay data or the nest predation 

data because estimates of the 7rij'S are mostly between .2 and .8. Also, each Pij is computed 

from a sample size of 8 acorns in the blue jay study and most Pij's are computed from a 

sample size of 5 nests in the nest predation study. Consequently, F-tests for the linear mixed 

model analysis provide reliable inferences for these two studies. 

The ANOVA table for the blue jay study is shown in Table 3. This analysis shows a 

significant difference between acorn types, with a higher proportion of uninfested acorns 

taken. There appears to be no significant difference between NEW and USED birds, and no 

interaction between bird type and acorn type. An analysis of arcsin( {p:;) yields similar 

F-values and essentially the same inferences (see Table 7). The ANOVA table for the nest 

predation study is shown in Table 4. Comparisons of p-values with the same model applied 

to arcsin( {p:;) are provided by the last two columns of Table 8. 

4. Logistic Regression. Logistic regression analysis has become the most popu-

lar method of analyzing the effects of covariates on proportions in the human health sciences 

and its use in agricultural and ecological sciences is increasing. Standard implementation 

of logistic regression, such as PROC LOGISTIC in SAS, are based on an assumption that 

each observed binary outcome is an independent Bernoulli trial which is generally violated 

in split-plot exp'2!'irnents a,nd repeated measures studies. Nevertheless, standard logistic 

regression will provide consistent estimates of regression parameters, but the computed co

variance matrix for the parameter estimator will generally be inappropriate. In particular, 

standard errors of regression parameters tend to be too small when there is positive cor

relation among responses from repeated measures on the same subject or from sub-plots 

within the same whole plot. This follows from the work of Huber (1967) on properties of 

estimators obtained from maximizing the wrong likelihood function. White (1982) provides 

a more accessible account, and Liang and Zeger (1986) apply this approach to longitudinal 

studies. We will describe maximum likelihood estimation for the standard logistic regression 

model in this section and describe alternative robust estimators for covariance matrices and 

standard errors. Alternative estimators for regression coefficients are described in Section 5. 

4.1 Independence Working Model. Using the notation from Section 2, let 7rij 
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denote the conditional probability that a particular acorn of the j-th type (infested or unin

fested) is selected by the i-th bird. The logit link function, 

links this probability to a linear combination of covariates, 

. {o New 
BIrd type: Xl = 1 Used Acorn type: X 2 = { ~ 

Then, 

non-row crop 
row crop 

( 4.2) 

Assuming that the result for each of the nij acorns of the j-th type presented to the i-th 

bird is an i.i.d. Bernoulli trial, then 

Y;. rv Binomial [n·· ]f" ((.I)] 2J 1J' 1J fJ ( 4.3) 

where lij is the number of acorns of the j-th type taken by the i-th bird. Further assuming 

that each bid responds independently of any other bird, the joint log-likelihood function is 

~((3) ~ ~ .~ {lOg (~;) + Yoj log [nij((3)] + (nij - Yij) log [1 - nij(f:l)]} 

= f: ~ {log (~j) + lij X~j f3 + nij[l + exp(X~j ,B)t1} . 
2=1 J=l ~ 

( 4.4) 

In the blue jay study mi = 2 types of acorns for each bird. Maximum likelihood estimates 

for the elements of f3 are obtained by setting the score function 

( 4.5) 

equal to the zero vector and solving the set of equations. Here 

and Pi = [lit/nil,"', limjnimJ' is the vector of observed proportions on the i-th primary 

unit (e.g., bird or transect). Generally, there is no closed form solution to these equations and 

53 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/5



5.4 Kansas State University 

some numerical optimization algorithm must be llsed to obtain the values of the maximum 

likelihood estimates (m.l.e.). 

The model underlying (4.4) and (4.5) is often referred to as an "Independence Working 

Model," and we will denote the m.l.e. by,BIWlVI' When the assumptions of the Independence 

Working Model (I\VM) are satisfied, the limiting normal distribution for ~IWlVI is given by 

FJj (J3IWlVI - ,B) ~ N(O, Nell) ( 4.6) 

where 
N 

C\ = 2::(X.; Wi Vi Wi Xi) (4.7) 
i=1 

is the l\VM Fisher Information Matrix and the diagonal matrix 

1;: _ d', ,{1Til (,B)[l- 1Til(,B)] ... 1Ti,mi(,B)[l - 1Ti,mi(,B)]} 
Vi - lag , , 

nil nimi 
(4.8) 

is the l\VM covariance matrix for Pi. 

4.2 Robust Covariance Estimation. The estimate GIl, obtained by evaluating 

(4.7) and (4.8) at ~IWlVI' yields a good approximation to the covariance matrix of ~IWlVI 

when the assumptions of the l\VM model are satisfied. For the blue jay da,ta in Table 

I, the IWM model implies that the observed proportions of invested and uninfested nuts 

taken by a bird {Pil , Pi2 } are uncorrelated. Otherwise, Vi in (4.8) is not a diagonal matrix. 

Moreover, it implies that {Yil = 8 Pil , i = 1, ... , ,S} arc i.i.d. binomial random variables and 

{til = 8 Pil , i = 6, ... ,10} are i.i.d. binomial random variables. Since the bird type factor 

is not significant and the overall average number of uninfested acorns taken per bird is 5.7, 

we would expect many of the observed counts to be 5, 6, or 7. Instead, most counts are more 

extreme, either at the upper bound of 8 or below 5, and the observed counts exhibit greater 

variation than binomial variances can accommodate. Some birds appear to have a stronger 

preference for uninfested acorns than other birds. Some birds take all or nearly all of the 

uninfested acorns and other birds take only a few. Hence, this extra-binomial variability 

in counts can also be viewed as positive within bird correlation. If a particular uninfested 

acorn is not taken it is likely the most other uninfested acorns and also not taken, but if it 

was taken then it is likely all of the other uninfested acorns were taken. Hence, the diagonal 
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elements of Vi in (4.8) are too small when there is positive within subject or within sub-plot 

correlation. 

Although correlations among repeated measures, or correlations within whole plots, in

validate the use of C11 as an estimate of the covariance matrix of ~rwM' ~rwM still provides a 

consistent estimator for (3 in (4.1) with a limiting normal distribution. A consistent estimator 

for the covariance matrix of (3rwM is 

c-1 C2 C- 1 , ( 4.9) 

where 
N 

C2 = L X; Wi [Pi - 7i'i(,BrWM)] [Pi - 7i'i(,BrWM)l' Wi Xi ( 4.10) 
i=l 

is an estimate of the covariance matrix of the score function in (4.5). Note that C2 is the 

formula for C1 with 1%, the estimated IWM covariance matrix for Pi, replaced by [Pi -

7i'i (~rWM)] [Pi - 7i'i (,BrwM)l', essentially a one-degree-of-freedom estimate of an arbitrary 

• • .!' P C' -1 C' C' -1, ft 11 d " d' h" t' t " b t" covarIance matrIX lor i. 1 2 1 IS 0 en ca e a san W1C es 1ma or or a ro us 

estimator. It allows for arbitrary correlation among Bernoulli outcomes within sub-plots and 

between sub-plots in the same whole plot. Values of (3rwM and standard errors computed 

from both C11 and C11 C2 C1 are shown in Table 5 for the blue jay study and Table 6 for 

the nest predation study. 

Experience has shown that C11 C2 C11 provides a surprisingly good estimator in large 

samples (e.g., N > 100 and (3 of low dimension), but its behavior in small samples, where 

it could be rather inefficient, is largely unexplored. Pendergast, et. al. (1996) further 

discussion of this approach and references to simulation studies. 

4.3 Quasi-likelihood estimation. This approach requires the specification of a 

model for the covariance matrix of Pi based on the elements of 7i'i((3) and a few additional 

extra-variation or correlation parameters. For both the blue jay and nest predation studies 

we propose 

(4.11) 

as the covariance matrix for Pi, where Vi is defined in (4.8). Here '1 denotes the correlation 

between Pi1 and Pi2 , and 01 and O2 are extra binomial variation parameters for Pi1 and Pi2 , 
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respectively. Note that ~i reduces to v; in (4.8) when ()1 = ()2 = 1 and I = 0, requirements 

of the I\VM. 

Given a formula for ~" quasi-likelihood estimation (McCullagh and NeIder, 1989, Chap

ter 8), or equivalently Gauss-Newton estimation (l\Iorel and Koehler. 1995), could be used 

to obtain an improved estimator for (3. This is done by solving the equations obtained by 

setting the "score function," 

N 

U((3) = 2.:= X; Vi vVi 2::;-1 (Pi - ?Ti) (4.12) 
i=l 

equa.l to the zero vector. The solution, denoted by /3Q , must be obtained numerically. This 
A (0) A 

can be done by starting with (3 = (3rwi'vl and computing 

, ' (k-1) '. A A (k-1) 
At each step, ?Ti = ?Ti((3 ) and Vi and ~i are evaluated at (3 and estimates of the 

extra vari2ction/ correlation parameters 

N 
~ ( \2 L..,nij Pij - .I 

o = -'-.i=-=l ____ _ 
j N j = 1,2 (4.1:3) 

2.:=i" ;,1 (1 - i" ij ) 
;=1 

and 

;=1 
r - '--'---;=1 =N========--

~ t;i";d 1 - JriI!i"i2(l- Jri2) 

(4.14) 

Alternatively, a sum of squared Pearson residuals IS often used to estimate ()j (\Villiams, 

1982) . 

The limiting normal distribution for the final estimate (3Q is given by 

where 

[ ]

-1 
/r • , .. /1 ;r ,;" -1 T T 7 ~Q = Inn Iv 2.:= /\:i ~i Hi ~i Hi \'i Xi ' 

N-toc . , 
(4.15) 
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Using I'i and ti to denote Ii and L:i evaluated at i3 Q and the final values of Bl , B2 and ;(, an 

estimate of the covariance matrix of f3 Q is 

(4,16) 

Values of f3 Q and standard errors obtained from (4,16) are shown in the last 2 columns of 

Tables,] and 6 for the blue jay and nest predation data sets, respectively, For the blue jay 

stud,'l, 01 = 2,56, B2 = L09, and -) = 0,:30, For the nest predation study, Bl = 1,62, B2 = 2,08 

alld:Y = 0,29, These estimates indicate moderate positive correlations among binary out-

comes both within sub-plots (acorn types) and between sub-plots (acorn types) in the same 

transect (bird), 

5. Discussion The values of f3 IWNI are nearly the same as the corresponding values 

of f3 Q in both Tables 5 and 6, This is a typical result in such studies, The loss of efficiency 

in using f3 HV;\1 instead of f3 Q is usually quite smalL The IVVM standard errors, however, 

tend to be too small in the presence of positive correlations among the binary responses, 

The robust estimator provides a good adjustment to the covariance matrix for f3 IWlvI and 

inferences derived from f3 1WNI and robust standard errors are similar to inferences derived 

fromf3 q , 

Simple ANOVA methods need not always be abandoned, however, in favor of logistic 

regression or some other generalized linear modeL Analysis of variance for standard linear 

mixed models provides essentially the same inferences as the quasi-likelihood approach to 

logistic regression for both the blue jay and nest predation studies. Tables 7 and 8 shovv 

that the use of the variallce stabilizing transformation arcsin(~) provides a closer match 

with the p-values from the quasi-likelihood approach to logistic regression. but even without 

the variance stabilizing transformation the split-plot ANOVA is not terribly misleading. 

Differences in results from the three approaches: logistic regression with robust covari

ance estimation, the quasi-likelihood approach to logistic regression, and the linear mixed 

model A.\OVA, are small relative to the ability of any of the models to approximate the 

t.rue underlying biological relationships. Hence, it seems silly to quibble about which ap

proach is Inore "correct" in either of these two studies. Of course, the simila.rity between 
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a linear model and a generalized linear model with a logistic link function will deteriorate 

as response probabilities approach either zero or one, and a logistic model would generally 

be preferred in situations where response probabilities and smaller than 0.1 or larger than 0.9. 
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Xl 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

Table 1: Numbers of weevil-infested (W) and uninfested (U) acorns taken 
from trays presented to 10 different blue jays. 

New Birds Used Birds 
Acorn Type Acorn Type 

Bird U W Bird U W 

1 8 1 6 7 5 
2 4 2 7 2 3 
3 3 2 8 8 4 
4 6 6 9 8 3 
5 3 2 10 8 4 

Table 2. Observed nest predation rates. 

Foreslope Backslope 
Number Observed Number Observed 

Habitat variables of predation of predation 
X 2 X3 X 4 nests rate nests rate 
0 1 0 5 0.00 5 0.00 
0 0 1 10 0.10 10 0.40 
0 0 0 34 0.15 35 0.11 
1 1 0 25 0.24 25 0.36 
1 0 0 58 0.17 60 0.30 
0 1 0 14 0.14 14 0.29 
0 0 1 65 0.35 65 0.46 
0 0 0 124 0.08 123 0.28 
1 1 0 55 0.07 54 0.09 
1 0 1 46 0.15 50 0.26 
1 0 0 231 0.18 224 0.34 
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Table 3. Linear mixed model ANOVA for the blue jay data. 

Source of variation df SS MS F p-value 

Bird type 1 .1758 .1758 2.42 .158 
Birds within type 8 .5813 .0727 
Acorn type 1 .5695 .5695 14.02 .005 
Bird type X acorn type 1 .0195 .0195 0.48 .507 
Within bird error 8 .3250 .0406 

Table 4. Linear mixed model ANOVA (Type III sums of squares) for the 
nest predation data. 

Source of variation df SS MS F p-value 

Road type (Xd 1 0.1574 .1574 1.82 .1800 
Adj. habitat (X2 ) 1 0.2508 .2508 2.90 .0912 
No Border Fence (X3) 1 0.0071 .0071 0.08 .7750 
Woody Border (X4 ) 1 0.8298 .8298 9.58 .0024 
X 1 X 3 1 0.1620 .1620 1.87 .1738 
X 2 X 4 1 0.6172 .6172 7.13 .0086 
Among transects 129 11.1754 0.0866 
ForeslopejBackslope 1 1.2719 1.2719 25.99 .0001 
Within transects 135 6.6059 0.0489 

Table 5. Parameter estimates and standard errors for the blue jay data. 

Standard Errors 
Standard 

Variable BrwM IWM Robust BQ error 
Intercept 0.406 0.322 0.452 0.405 0.516 
Bird type (Xd 1.329 0.548 0.963 1.329 0.876 
Acorn type (X2 ) -1.136 0.467 0.603 -1.136 0.530 
Xl X 2 -0.799 0.718 0.937 -0.799 0.867 
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Table 6. Parameter estimates and standard errors for the nest predation data. 

Standard errors 
Standard 

A 

Variable BIWM IWM Robust BQ error 
Intercept -2.220 0.232 0.301 -2.227 0.347 
Road type (Xd 0.278 0.195 0.290 0.270 0.302 
Adj. habitat (X2) 0.478 0.171 0.249 0.490 0.266 
No Border Fence (X3) 0.285 0.353 0.617 0.294 0.547 
Woody Border (X4) 1.107 0.225 0.361 1.138 0.348 
X I X 3 -1.281 0.454 0.729 -1.277 0.704 
X 2X 4 -1.431 0.352 0.591 -1.417 0.545 
Backslope (X5) 0.785 0.137 0.155 0.784 0.156 

Table 7. P-values for various methods of analysis of the blue jay data. 

Logistic regression 
Quasi- Linear Linear mixed 

IWM Robust likeihood mixed model using 
Variable ( 4.6) (4.9) ( 4.16) model arcsin( VP) 
Bird type (Xl) .015 .167 .129 .158 .123 
Acorn type (X2 ) .015 .059 .032 .005 .008 
Interaction (Xl X 2 ) .266 .394 .357 .507 .406 

Table 8. P-values for various methods of analysis for the nest predation data. 

Logistic regression 
Quasi- Linear Linear mixed 

IWM Robust likelihood mixed model using 
Variable (4.6) (4.9) ( 4.16) model arcsin( VP) 
Road type (Xd .154 .338 .371 .180 .273 
Adj. habitat (X2) .005 .055 .065 .091 .071 
No Border Fence (X3) .420 .645 .591 .775 .598 
Woody Border (X4) .000 .002 .001 .002 .002 
X 1 X3 .005 .079 .070 .174 .091 
X 2 X 4 .000 .015 .009 .009 .003 
BackslopejForeslope (X5) .000 .000 000 .000 .000 
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