
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 1995 - 7th Annual Conference Proceedings 

MIXED MODELS APPROACH TO ON-FARM TRIALS: AN MIXED MODELS APPROACH TO ON-FARM TRIALS: AN 

ALTERNATIVE TO META-ANALYSIS FOR COMPARING ONE ALTERNATIVE TO META-ANALYSIS FOR COMPARING ONE 

TREATMENT TO POSSIBLY DIFFERENT CONTROLS TREATMENT TO POSSIBLY DIFFERENT CONTROLS 

Peter M. Njuho 

George A. Milliken 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Njuho, Peter M. and Milliken, George A. (1995). "MIXED MODELS APPROACH TO ON-FARM TRIALS: AN 
ALTERNATIVE TO META-ANALYSIS FOR COMPARING ONE TREATMENT TO POSSIBLY DIFFERENT 
CONTROLS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1343 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/1995
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F1995%2Fproceedings%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F1995%2Fproceedings%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F1995%2Fproceedings%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1343
mailto:cads@k-state.edu


196 Kansas State University 

MIXED MODELS APPROACH TO ON-FARM TRIALS: AN ALTERNATIVE TO 
META-ANALYSIS FOR COMPARING ONE TREATMENT TO POSSIBLY 

DIFFERENT CONTROLS. 

Peter M. Njuho and George A. Milliken 
Department of Statistics 
Kansas State University 

Abstract 

The estimator of effect size, the sample mean difference divided by the sample standard 
error of the difference is studied in the context of mixed models and is related to the analysis of 
on-farm trials. A single treatment is compared against possibly different controls using a 
completely randomized design on each farm. A lower (l-u)l00% confidence limit on mean 
difference of the treatment and the average control is obtained. The best linear unbiased predictors 
(BLUPs) of the mean difference of the treatment and the individual controls as well as the lower 
{1-a)100% prediction limits are provided. The effect of omitting or not omitting the farm-by
treatment interaction variance component in the weighting process is assessed using two numerical 
examples. 

1. Introduction 

On-farm trials are experiments conducted in farmers' fields, usually with the cooperation 
and participation of the farmers (Amir and Knipscheer, 1989). Farmers are allowed to evaluate 
the treatment ("new" technology) on their farms while it is compared to the farmers' control 
("old" technology). It is unlikely that all farmers involved in the trial will have a common 
control. Lack of a common control makes it difficult to evaluate the treatment effect efficiently 
across the farms. A common practice is to use the same experimental design for all farms 
involved in the trial. Such practice fails to effectively control the known farm variations. For 
instance, one farm may require a completely randomized design, while another farm may require 
a randomized complete block design. The choice of the design to be used on a given farm depends 
on the nature of the within farm variation to be controlled. Therefore, using the same design 
structure on each farm may not be appropriate. 

Mixed models and meta-analysis methods are used to extract the information from the 
individual trials and combine the information across trials. These methods are used to compare 
the treatment to the mean of the controls and to the individual controls through the construction 
of confidence intervals and prediction intervals. 

Good experimental designs and the form of analyses appropriate to on-farm trials remain 
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to be defmed (Stucker and Hicks, 1993). Some groups of researchers do not regard any research 
conducted on farms as scientific whereas, many on-farm researchers disregard basic statistical 
principles. This paper provides a statistical procedure that allows for the treatment to be compared 
to possibly different controls on each farm while allowing for a different experimental design on 
each farm. The use of meta-analysis and mixed models methods are constructed in this on-farm 
trials setting. 

, 2. Model 

Suppose f farms have been randomly selected to be involved in an on-farm trial where a 
treatment is compared against the possibly different control on each farm. Assume that a 
completely randomized design (CRD) is used on each farm with the treatment and control each 
replicated r times. Thus the following development assumes the same design is used at each farm 
but this requirement is removed in later sections. The use of the CRD is more simplistic than those 
used in practice, but the basic principles are not design-specific. Hence, the CRD simply 
introduces the main ideas. 

A model to describe the response from the j th replication of the k til treatment from the i til 
farm is 

YiJ'k = ~ +fi + 'k +ftik + Eijk (1) 

i=1,2, ... ,f, j=1,2, ... ,r, k=T,Ci 

where, T=Treatment and Ci = Control on jtll farm, Yijk is the observed response in the jtll 

replication within the i til farm receiving the k th treatment, 1.1 is the overall mean, ~ is the i th 

farm effect, 't k is the k til treatment effect, flik is the interaction between the i til farm and the k th 

treatment, and £ijk is the random error or experimental unit error. 

Model (l) has three random effects with assumed distributions ~ ........ iidN(O,if,) , 

fliT"" iidN(O, ~), fliCj "" iidN(O, 0 2 fC) and £ijk are independent normal with mean zero and 

variance ~. Model (1) can be written in terms as a treatment (T) model and a set of control (Cp 

i=1,2, ... ,f) models. The treatment model is 

(2) 

where ~T = ~ + 'T. Let ViT = I.IT + ~ + fliT be the predictable function of treatment T on farm 

i, then (2) can be expressed as 
(3) 

Most often the farms used in on-farm trials are randomly selected, thus farmer's controls 
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198 Kansas State University 

(C11 C2 I' •• 1 C,) are random variables distributed with mean ~c and variance ~. The control 

models are 

Y/fC, = ~c + f; + ItIC, + ejjC" i= 1,2, ... ,f (4) 

where ~c :;; ~, and UIC, :;; ~c + f, + ftlC, is the predictable function of control C j on farm i. 

Hence, (4) can be expressed as 
Y··C :;; Uc + e j ·c q , I , Y , 

The expectations and variances of UIT and UjC" i=1,2, ... ,f are E[U,T] = ~T with 

Var(UiT) = if, + a2fT, and E[U/C) :;; ~c with Var(UiC) :;; if, + ~. 

(5) 

To estimate the variance components ~ and ~, one would need multiple treatments 

and controls per farm and in this case we have neither. Thus inorder to have identifiable 

parameters for model (1), we assume ~ :;; a:c :;;~. Under this assumption, the random 

variables UIT and U,C" i=1,2, ... ,fare distributed with different means ~T and ~c and a common 

variance, if, + ~. The meta-analysis framework uses standardized differences between the 

treatment and control means from each farm (Hedges, 1981). We define two measures of 
standardized mean difference as follows: 

a) l){T :;; (UIT-UIC) I OJ with VSr(l){T) = 2a! I a: 
b) l)~ :;; CUIT-UiC) I Vvar(UIT-UiC) with Vsr(l)~~) = 1 

where, Var(UIT - UIC) = 2a!, i=1,2, ... ,f. 

(6) 

(7) 

The random variables l):T and l)~ differ by the weighting factor or divisor, where the 

former ignores the farm-by-treatment interaction variance component in the weighting process. 
The two random variables have a functional relation which is expressed as 

l5:~ = (UiT-UiC) I JVSr(UiT-UiC) = CUIT-UiC) I V2~ 
(UIT - UIC) I 01 l5~ 

= = (8) 

This implies that l5~~ :;; A,[)~, where A, = Va: 12a!, i=1,2 •... ,f and ~ > O. 

Equation (6) is commonly used in meta-analysis (Hedges and Olkin, 1985; Li, Shi, and 

Roth, 1994). It is usually denoted by l5i :;; (~~ - ~~) I 0i for the i th study where ~~ and ~~ are 
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treatment and control means, respectively, with a common variance 0: . The parameter i5. defined 

by (5 ". E(?)j) , i c-c 1 . 0', f is known as the standardized mean difference or effect size (Hedges and 

. Hedges did not study-hy-treatment interaction 

cornponent in their weighting process hecause, generally in meta'-analysis 
could differ from one study to another. Hence, the study-by-treatment interaction variance 

component would not be interpretahle. 
In our case, the farm-by-treatment interaction variance component is mcluded .. Therefore, 

is based on the end the presentation, (6) and are 

compared using examples which help to determine the effect of omitting 0; m the weighting 

process. 

1 Prediction of 5;; 
-

Equations (3) and (5) are used for the prediction of both Uir and UiC,' The means Y.r and Y.c 

are unbiased estimators of IJ T and ~c' and and are predictors and ViCi ' 1.= 1 . " . ,f 

are '" Y A model describing the differences "'al'''C'.Con J.T 

the treatment and control means from the i th farm is constmcted as 

Equation can expressed a compact form as 

SI" co; 1.1 + t. .... F' $ I' Vj (10) 

'INhere, 1-1. "" iJ-1 - !-Ie' fl" cc ftT .- ftc and £, ~; e' T -" -
~ J I I I I .. 

c • 

1= I Model ( is a mixed 

model with fixed effect I.I s and random effects tf and €;f ~ i 0:= 1 ."., f. The expectation and 

variance of the random variahles Sp i = 1,2," .. ,f are E[St] ::: E[UiT - ViC) := I-iT - !-Ie 'Nith 

Var[SJ ~o 2(a~ + ri1 ! r) and COV(Si' SI') =. 0, !" Hence, the random variables 
2 2 

$1' $2' . " . Sf are independently distributed with mean I-Is and variance 2(01f + OJ J r). 

The sample standardized mean difference d iT , 1= 1 

expressed as 

c", f is the predictor of 5:~ and is 

~ ."~ ,--M --_--
diT '" (Uir - UiC ) j yVar(UiT - UiC) (11) 

i=I,2, ... ,f 
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To estimate the parameters, we express the model (10) in matrix notation as 

S=i ll +It+~ 
f "'s f 

(12) 

where, S = ( S11 S21' .. I Sf)', t = ( til t21 ... I tf )', ~ = ( e1• e21 ... I e, )',1, is an fxf 

identity matrix and if is an fxl vector of ones. By letting if = X and If = Z, (12) can be 

expressed in terms of X and Z as S = X ~s + Z t + ~ where, E[S] = X ~s 

with Vat{ S ] = ZVat{ t + ~ ]Z'. Let, f:A = Vat{ S], G = Vat{ t] and R = Vat{ ~], then 

II = ZGZ' + R. Thus, II is an fxf diagonal matrix of unknown variance components, that is, 

II = 2diag{ ~+~/r, ~+d/r, . . . I ~+fl,lr }. 
If II is a matrix of known variance components, the best linear unbiased estimator (BLUE) 

of ~s can be computed as 

Ds = (X'Il-1 X)-1x'a-1 S 

= {i'f ~ -1 j, r1j~ a -1 S 
f f 

= [I (2(~+~/m-1r1 I S; I 2(~+~/" 
;=1 i=1 

f 

The variance of Ds in (13) is Var(Ds) = (X'f:A-1X r 1 = [I {2{~ + if; I m-1]-1. 
;=1 

(13) 

If Il is a matrix of unknown variance components, an estimator of ~s can also be obtained 

by substituting il for II ( a matrix of estimates of variance components) in (13). The substitution 

does not alter the expected value of Ds but does have an effect on standard error (S.E.) of Ds 
(Kacker and Harville, 1984). Kacker and Harville (1984) provide a procedure for approximating 
the standard error of Ds and hence, 

Ds = (X'a-1 X)-1x'a-1 S 

= {i'f i::. -1 if r1j~ a-1 S 
f f 

= [I (2(O~+o1lrn-1r1 I Sj I 2(o!+~/" 
j=1 i=1 

f 

The variance of Ds in (14) is Var(Ds) = (X'a-1X r1 = [I (2(o!+~/m-1r1. 
;=1 

(14) 

According to Kacker and Harville (1984), the e~iimated standard error S.E.(Ds> = JVar(Ds> 

underestimates the actual standard error. A more conservative estimate of the standard error can 
be computed using their approach. The estimator Ds given in (13) is related to the diT in (11) as 
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f f 

Ps = [I (2(0; + 07 I r))-1r 1 I Si I 2(0; + 07 I r) 
i=1 i=1 

f f 

= [I (2(0; + 07 I r))-1r 1I diT I V2(0; + 07 I r) (15) 
i=1 i=1 

Equation (15) shows the relationship between Ps and the diP i = 1, 2, ... , f. 
f 

Let o! = [I (2(0;+07 I r))-1r1 denote the variance of the estimate Ps when farm-by
i=1 

treatment interaction variance component is included in the weighting process and 
f 

a~ = [I (207 I r)-1r 1 when it is not. Suppose O"~ and O"~ denote the estimates of o! and a~, 
1=1 

. I h ld th 2o!in ...2 d 2(ro; + o!in) ...2 h respectIve y. It 0 s true at 0;: 0u an 0;: up were 
rf rf 

o!in = min{ ~, ~, . . . , if, }. 

Lemma 1 

Assume 0; > 0 and if; > 0, i=l, 2, ... , f, then ~ 0;: ~ 

Proof of Lemma 1 

Clearly 2(~ + if; I r) ~ 2cit I " where ~ > 0, cit > 0 and i= 1, 2, ... , f. It follows 

that [2(~ + if; I r)r1 0;: [2cit I 11-1, i = 1, 2, ... , f which is equivalent to 
f f f f 

I (2(~ + 6t I r))-1 0;: I (26t I r)-1 This implies that [I (2(~ + 6t I r))-1r 1 ~ [I (20"~ I r)-1r 1 
i=1 i=1 i=1 i=1 

and hence, ~ 0;: ~ • 

The variances o! and a~ are comprised of the weights used in the weighting process to 

compute Ps when 0; is included and not included, respectively. The estimate ~ which 

corresponds to the use of (6) is reported to be smaller than the minimum of the estimates of 

variances of individual studies or farms (Li, Shi, and Roth, 1994). The estimate o! corresponds 

to the use of (7). Based on results of Lemma 1, the estimate o! is more conservative and less 

sensitive to the minimum of the estimates of the variances of individual farms than ~. 

In the estimation of ~s and computation of its variance, several cases can be considered 

by either making assumptions concerning variances 07, i = 1, 2, . . ., f or the number of 

replications'i or both. A few of these cases are highlighted below. 
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Case 1: Equal Numbers of Replications and Equal Variances 

Suppose variances iJ~. == 1, " f are equal to the unknown variance . Assume 

the farm-by-treatment interaction component, 0; to be greater than zero. Consider an 

number of replications case and a possibly different design on each farm. The unknown 

variance components, a~ and 0 2 are replaced by their estimators and hence (14) reduces to 
f f 

PI> [~(2(a;+a2/r)r1r1 I Sj I 2(a!+a2/r) 
~, ~1 

f -
( 11f) ~ YT-Yj ; 

J~1 

The variance 

2.3 Case Ii: Unequal Numbers of Replications and Equal Variances 

We number 
each farm are not equal thus, (14) can be written as 

f 

- [~ {2(0~ + 02 (1 
i·i 

f 

The variance of P.s in (] 7) IS Var(ps) [I (2(a! + 02 I r)rlr1,. 
i=1 

The estimates a! and eP~ are obtained either Ihrough maximum likelihood (ML), restricted 

maximum likelihood (REML), or method of moments (MM). These estimates are then used in 
the computation of ~,> and its estimated variance, 

2.4 Case HI: Unequal Numbers of Replications and Unequal Variances 

Suppose 07, i cod ,2,." J are different 

replications case and a possibly different design 

against possibly different controls, As stated 

and unknown.. Assume unequal number of 

on each farm, A single treatment is compared 

case n, the variance components ~. and a~, 

i = 1 ,2, ,~ , f are replaced by their estimators, These estjrnates are substituted in (4) and thus 

Ps [I (2(iJ! + cif ! r)-1r1:f Sj I 2(~ -I- 611 'i) 
1=1 i~1 
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f f 

;:: [~ (2(O~ + O~ I ri)r1r1~ ( ~.r- ~.Ci ) I 2{~ + ~ I ri) 
~1 ~1 

(18) 

f 

The variance of Ps in (18) is Var(ps) ;:: [~ (2(~ + ~ / ri>r1r1. 
i=1 

The within farm variance components are estimated by O~ ;:: MSE1 , O~ ;:: MSE2 , • • ., 

if, ;:: MSE, which are the within farm error mean squares and the farm by treatment variance 

component is estimated by ~ ;:: (MSF* TRT -MSE)/r. 

2.5 A Lower (1-a)100% Confidence Limit on ~r-~c 

To determine if the treatment performs better than the population of farmers' controls, 
a lower (1-a)100% confidence limit on the mean difference between the treatment and the 
average control, ~r-~c is obtained. An equal cost for observing a treatment and the control is 

assumed. Suppose Pr-Pc" i=I,2, ... ,fare random variables distributed normal with mean ~r-~c' 

and variance Var(Pr-pc) as in case III. A lower (1-a)100% confidence limit on the mean 

difference of the treatment and the average control is (Pr-Pc)-ta • v JVar(Pr-pc) where tao v is the 

t-value obtained at a-level with v degrees of freedom obtained using Satterthwaite's (1941) 
approximation procedure as 

f 

2( [~{2{~ + ~/ri)r1r1 )2 
v ~ ____ ~i=~1 ______________ __ 

f 

[approxi. Var([~ (2(~ + ~/ri>r1r1] 
i=1 

f 

The approximated variance of [~{2(~ + ~ I r i >r1]-1 can be obtained using the method discussed 
i=1 

by Giesbrecht and Bum (1985). A simpler approach is to bound the variance and then use the 
approximated degrees of freedom corresponding to the bounds. One can easily show that 

f 

( 21f )(~ + 02 rnin') S [~(2(~ + ~ I rr1r1 s ( 21f )(~ + 02 rnax') where, 
i=1 

02rnin, ;:: min{ ~/r1' ~r2' ... , if,lr,} and 02rnax, ;:: max{ ~/r1' 02/r2, ... , if,lr, L Thedegrees 

of freedom corresponding to ( 21f )(~ + 02 rnin' ) and (21f )(~ + 02 rnax' ) are denoted by Vrnin' 

and Vrnax' , respectively, and are approximated using the Satterthwaite's approximation as follows 
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Vmill " 

and 

i1mill BiMSF* TRT +B2(MSE, +MSE2 +"", +MSEmil1 - 1 +MSEmin <1 +,." +MSEr ) +83MSEmin , 

flmoo: ;00 8 1MSF * TRT +82 (MSE1 +MSEZ +", +MSEmfJ:X_1 ,t-MSEmax+1 +, --+MSEf ) +8SMSEmv.x ' 

J~~F* TFiT -- MSE) a co ~ 8, =-~_.c 2(t-1) 
r '1 r' 2. rf rf 

The degrees of freedom for the variance DT-PC can be approximated by the 

of vmil1 , and vmax' as "aver:::: (\lmin , + "max,)/2, The average approximated degrees of freedom, 

is almost equal to the farm-by-treatment interaction degrees of freedom for an equal variance and 
equal number of replications case, Therefore, it would be appropriate to use the tarm-by-treatment 
interaction degrees of freedom to compute the confidence limit. 

2,6 A Lower (1-,a)100% Prediction Limit on UiT-UiC; 

Most often, a farmer will he interested in knowing the predicted performance of the 

treatment, denoted by the predictable function UIT as compared to the predicted pert(mnance of 

the control on the farm, denoted hy the predictahle function UiC ,' The BLUPs, (jiT~OiC" i = 1, 
I " 

, .. , f and their lower (1-0)100% prediction limits are computed to enable each farmer to decide 

on adoption of the treatment We want to predict the response of a farmer's control and compare 

it to the predicted response of the treatment on the farm. The predictable function for farm i is 

Pi ViT - UfC; iJ T - ~C + ttiT - ftiC;' i = 1, 2, ,L The BLUP of Pi I" 

Pi arr - {jiC! '" ~,T -- VI,e; Sic A lower (1--a)100%prediction limit on UiT~Uic;that allows for 

decision 10 be made 

(Y;T-~,Ci )-tQ , v; V2(t;r:~--Of/~, 
squares by i'J i . Thus; 

each farmer, assuming equal numher of replications is 

icc:: 1, L. ., f Let denote a linear combination of the mean 
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fli = 2(0; + o;/r} 

=B1MSF* TRT +B2( MSE1 +MSE2 + ... +MSEi_1 +MSEi+1 + ... +MSE, ) +BaMSEi 

Using the Satterthwaite's approximation, vifli 1 ( 2(<fn. + ~ 1 r)}, i=l, 2, ... , f IS 

approximately distributed as a chi-square random variable with Vi degrees of freedom where 

[ fli ]2 
~ = --------------------~--------------------

[B1MSF* TR1]2 B 2 

3.1 Example 1 

+ ( __ 2 -([MSE1]2+ ... +[MSEi_1]2+[MSEi+1]2+ 
'-1 2(r-1) 

... +[MSEJ2 )+-1-[BaMSEi]2 ) 
2(r-1) 

3. Examples 

Consider a case where we have six farms, five replications per farm in a completely 
randomized design (CRD) and a single treatment along with the farmer's control. The treatment 
is compared against possibly different controls where the response is the yield of sorghum in 
bushels per acre. The 1991 Sorghum data given in Table 1 were obtained from Cooperative 
Extension Service Program, Department of Agronomy, Kansas State University. 

The method of moments estimates of variance components are given in Table 2. The 
farms, replications and treatments are denoted by F, Rep and Trt, respectively. These variance 
component estimates were used in the computation of the estimate of !-Is . 

Table 3 shows summarized results of the estimation of !-Is computed in four ways. 

Combining and computing with equal and unequal variances, and when the estimate of farm-by
treatment interaction variance component, 0;, was either omitted or not omitted. The estimates 

given in Table 3 were computed using (16) and (18). 
For the equal variance case, the estimate Ps is the same when 0; is either omitted or not 

omitted, but the estimated variances are different. These results indicate that for both equal and 
unequal variance cases, the estimated variance of Ps is smaller when the estimate of farm-by-

treatment interaction variance component is omitted in the weighting process than when it is not. 
These results are in agreement with Lemma 1. From Table 3, for unequal variance and ~ not 

omitted Ps = 5.02, S.E.(ps) = 10.016, the approximated degrees of freedom are 

vaver = (vmin* + vmax,)/2 = (4.32 + 5.805)/2 = 5.062", 5, and t.05,5.062 = 2.010. Thus, a lower 95% 

confidence limit on !-IT-!-IC is 5.02-(2.010) (10.016)=-15.11. The treatment fails to perform 

better than the mean of the population of farmers' controls since the lower 95 % confidence limit 
on !-IT-!-Ic is not greater than zero. 
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Table 4 provides the computed linear combination of mean squares (I;, the 

corresponding approximated degrees of freedom Vi' the approximated i-values at a 0.05, the 

BLU Ps of , j == 1, 2,. .,f the estimated standard and the 95 % 

prediction limits for each farm .. 
A farmer would adopt the treatment if the lower 95 % prediction limit on the difference 

between the predicted response of the treatment and the predicted response of his control on the 
farm is greater thai! zero. Results in Table 4 indicate that none the farms should adopt the new 
treatmenL 

3 Example 2 

A single treatment was compared against possihly different controls "il/here ten farms were 
involved in the tria1. The first six farms used a CRD and the rest used a ReRD. There were equal. 
numbers of replications per farm. A general form of the model for CRD used 011 the six farms can 

be expressed as 

rifA- cc ~l i Ii + 1: k + ., i=1,2,. jc-:::l,2, .. ,.5, k=--c: 

Similarly, a general model for the rest of the farms using RCBD is 

v -"·f· Lijk-,..",,-r t'1~ -;- -'-Ii c ·--c 7 8 . t ik ' E yk' 1 ~- " , j=L2 ..... ,k':-::T, 

All the terms in the above two models are the same as those defined in model (1) except 
for r(f)ij VJhich represents the effect of the j til replication in the i th farm. Regardless of the model 

used, (9) remains the same and therefore, the estimate of I-ls and its estimated variance can be 

obtained as descrihed in Example 1. In the analysis, we created a new hlocking variable where 
the new hlock equals 1 if the data is from CRD and equals the replication number within the farm 

if data is from RCBD. This allows SAS/ST AT software to predict an appropriate estimate of farm-
hy~ treatment interaction variance component The contribution to the block within farm variance 

component, o~(f) is zero for CRD whereas for RCBD is not. 

The 1992 Sorghum data given in Tahle 5 were obtained from Cooperative Extension 
Service Program, Department of Agronomy, Kansas State university. The farms replications, 
treatments, blocks and yields are denoted hy F, R, 'Ift, Blk and Yld, respectively. Table 6 

contams restricted maximum likelihood estimates (REML) of variance components. The estimates 
of variance components obtained using the method of moments were used as the starting values 
in the iteration process using PROC MIXED (SAS, 1992). The estimates of variance components 
showed in Table 6 are used in the computations that are necessary for the estimation of I-ls ' 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1995/proceedings/17



Applied Statistics in Agriculture 

Table 7 provides summarized results obtained for the estimation of ~s computed in four 

ways, combining and computing with equal and unequal variances and when ~ was either 

omitted or not omitted in the weighting process. From Table 7, for unequal variance and ~ not 

omitted Ps = 23.62, S.E.(ps) = 9.913, the approximated degrees of freedom are 

vaver = (7.860 + 10.993)/2 = 9.426l':; 9, and f.05•9.426 = 1.824. A lower 95 % confidence limit on Ps 

is 23.62-(1.824)(9.913)=5.54. This treatment performs better than the mean of the population 
of farmers' controls since the lower 95 % confidence limit on ~s is greater than zero. 

Table 8 shows the computations for the BLUPs of UiT-UiC ' i=l, 2, ... ,f and the 
I 

estimated standard errors, and the lower 95% prediction limits for each farm. The results in Table 
8 suggest that just farms 9 and 10 should adopt the new treatment. 

4 _ Summary and Conclusions 

A mixed model approach applies to the analysis of data from on-farm trials. The farm-by
treatment interaction variance, a! is assumed to be greater than zero unlike in meta-analysis 

where it is not necessarily interpretable. In on-farm trials, the same response is measured in all 
the farms under consideration and therefore, the farm-by-treatment interaction variance is 
meaningful and should be computed. Meta-analysis methods have wrongfully ignored farm-by
treatment interaction variance. 

The rationale for testing the treatment against the mean of the controls is to recommend 
to the farmers the former once it performs better than the latter. A treatment is said to perform 
better than the mean of the population of farmers' controls if the lower (1-a)100% confidence 
limit on ~s is greater than zero. A lower (1-a)1 00% prediction limit on each predictable function 

provides a narrow inference back to the single farmer. The information from the BLUP and 
prediction limit provides for the farmer the predicted performance of the treatment and assess how 
well it compares to the predicted performance of the control on the farm. Mixed model methods 
should be used for prediction rather than simple differences between means. 

Regardless of the experimental design used in a given farm, all the random variables 
cancel out as a result of within farm comparisons, except for the farm-by-treatment interaction 

component and the within farm variance ~ , i = 1,2, ... ,f. This point was demonstrated in Example 

2, where a CRD was used at some farms and a RCBD was used on other farms. This fact makes 
our statistical procedure invariant with respect to the experimental design used at each farm. 
From both Example 1 and 2, we conclude that the estimate of farm-by-treatment interaction 
variance component is needed to be used in the weighting process for all on-farm trials. 
Unavailability of a common control only or a common experimental design on each farm should 
not be a hindrance to conducting and analyzing on-farm trials. 
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Table l:Yield of Sorghum in 1991 (Bushel per Acre) for Example 1 

Fm Rep Tmt Yld Fm Rep Tmt Yld Fm Rep Tmt Yld 

1 
1 
1 
1 
1 
I 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 T 74,4 3 1 T 110.5 5 1 T 143,4 
1 C1 93.6 3 1 C3 106.3 5 1 C5 129.8 
2 T 42.7 3 2 T 91.2 5 2 T 171.5 
2 C1 79.7 3 2 C3 95.0 5 2 C5 119,4 
3 T 61.1 3 3 T 141.7 5 3 T 135.7 
3 C1 96,4 3 3 C3 137,4 5 3 C5 107.6 
4 T 84.8 3 4 T 88.5 5 4 T 149.0 
4 C1 104.9 3 4 C3 101.5 5 4 C5 145.1 
5 T 68.7 3 5 T 117.8 5 5 T 140.8 
5 C1 95.1 3 5 C3 114.9 5 5 C5 130.8 
1 T 101.8 4 1 T 165.6 6 1 T 199.2 
1 C2 114.2 4 1 C4 138.1 6 1 C6 154.3 
2 T 92.7 4 2 T 146.4 6 2 T 192.5 
2 C2 106.7 4 2 C4 128.8 6 2 C6 155.3 
3 T 61.7 4 3 T 153.0 6 3 T 160.0 
3 C2 88.7 4 3 C4 121.1 6 3 C6 136,4 
4 T 109.1 4 4 T 109.3 6 4 T 175.9 
4 C2 127.1 4 4 C4 89.2 6 4 C6 132.5 
5 T 98.2 4 5 T 131.8 6 5 T 168.2 
5 C2 113.5 4 5 C4 128.6 6 5 C6 140.6 

Table 2: The Estimates of Variance Component for the Random 
Effects for Example 1 

Random Effect Variance Estimate 
Component 

Farm cT, 683.452 
Farm*Treatment ~ 248.693 

Farm 1 ~ 166.003 
Farm 2 ~ 266.236 
Farm 3 ifa 370.270 
Farm 4 a! 411.217 
Farm 5 ifs 195.057 
Farm 6 ifs 189.075 

Pooled Residual (J2 266.310 
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Means: Difference and Corresponding Standard 

Table 4 :The BLUPs and the Lower 95% Prediction Umits for Each Farm for Examplel 

r~af:r n~-vi--l---r fQ~~rSE.(S) r ~~:e'95% 
, - i. 0 . 563.788 ! 4.320 -I -27.60"' 2 o~ 23. 74-4----4,r- '.7-7-.-06~)~--I 
I 2.0 603.881 4.918 I -17.34 2.022 124.574 -67.03 

3.0 .495 I 5 I 1 1 971 25.407 I -51. 

4.0 I 661 873 I 5.805 ,20.06 1.955 25. -3024 

I 5.0 ! 575 409 I 4492 J 21 54 I 2.066 .988 j -28.02 

L_~J 573.017 1 .. 4.456._ 35.34 1 2..:07~_~1_23.:_'3_8_· ....... __ -!_,4~.~_L.3_---, 
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Table 5: The 1991 Sorghum Data for Example 2 (Column 1-CRD, Column 2-RCBD) 

F R Tmt Blk Yld F R Tmt Blk Yld F R Tmt Blk Yld 

1 1 T 1 63.5 5 1 T 1 123.9 7 1 T 1 152.9 

1 1 C1 1 94.3 5 1 C5 1 99.7 7 1 C7 1 151.1 

1 2 T 1 75.1 5 2 T 1 111.4 7 2 T 2 202.9 

1 2 C1 1 105.2 5 2 C5 1 94.9 7 2 C7 2 131.9 

1 3 T 1 76.7 5 3 T 1 136.6 7 3 T 3 184.0 

1 3 Cl 1 107.6 5 3 C5 1 132.8 7 3 C7 3 143.7 

1 4 T 1 86.8 5 4 T 1 135.5 7 4 T 4 190.8 

1 4 Cl 1 99.0 5 4 C5 1 103.5 7 4 C7 4 155.4 

1 5 T 1 85.2 5 5 T 1 150.7 7 5 T 5 212.5 

1 5 C1 1 93.4 5 5 C5 1 126.3 7 5 C7 5 171.3 

2 1 T 1 102.2 6 1 T 1 175.0 8 1 T 1 232.5 

2 1 C2 1 115.3 6 1 C6 1 138.5 8 1 C8 1 183.7 

2 2 T 1 94.2 6 2 T 1 129.2 8 2 T 2 215.5 

2 2 C2 1 96.2 6 2 C6 1 110.9 8 2 C8 2 181.3 

2 3 T 1 95.9 6 3 T 1 128.3 8 3 T 3 228.8 

2 3 C2 1 113.4 6 3 C6 1 92.9 8 3 C8 3 178.8 

2 4 T 1 98.8 6 4 T 1 114.0 8 4 T 4 214.2 

2 4 C2 1 110.1 6 4 C6 1 83.1 8 4 C8 4 144.9 

2 5 T 1 94.8 6 5 T 1 131.0 8 5 T 5 199.0 

2 5 C2 1 101.2 6 5 C6 1 80.0 8 5 C8 6 149.3 

3 1 T 1 112.7 9 1 T 1 197.2 

3 1 C3 1 110.6 9 1 C9 1 152.5 

3 2 T I 107.0 9 2 T 2 207.5 

3 2 C3 1 115.7 9 2 C9 2 149.2 

3 3 T 1 120.4 9 3 T 3 209.2 

3 3 C3 1 127.9 9 3 C9 3 154.1 

3 4 T 1 110.9 9 4 T 4 237.5 

3 4 C3 1 99.8 9 4 C9 4 180.2 

3 5 T 1 102.4 9 5 T 5 244.0 

3 5 C3 1 105.8 9 5 C9 5 176.1 

4 1 T 1 142.4 10 1 T 1 253.7 

4 1 C4 1 134.7 10 1 ClO 1 193.6 

4 2 T 1 128.6 10 2 T 2 261.8 

4 2 C4 1 127.5 10 2 ClO 2 202.0 

4 3 T 1 137.2 10 3 T 3 262.3 

4 3 C4 1 138.3 10 3 ClO 3 161.3 

4 4 T 1 111.5 10 4 T 4 205.9 

4 4 C4 1 104.3 10 4 ClO 4 143.9 

4 5 T 1 101.8 10 5 T 5 225.5 

4 5 C4 1 87.0 10 5 ClO 5 149.0 
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Table 8: The Estimates of Variance Components for the Random Effects for Example 2 

Random Variance Estimate 
Effect Component 

Farm if, 1432.373 
Block(Farm) ~(I) 230.680 
Farm*Treatment ~ 435.884 

Farm 1 ~ 63.746 
Farm 2 ~ 39.182 
Farm 3 a; 79.555 
Farm 4 a! 388.984 
Farm 5 cis 252.982 
Farm 6 ~ 490.091 
Farm 7 a; 302.714 
Farm 8 a! 77.858 
Farm 9 ife 34.364 
Farm 10 ~o 156.453 

Pooled Residual (J2 200.029 

Table 10: Estimates of the Means Difference and the Corresponding Standard Errors for 
Example 2 Sorghum Data. 

Equal V arian~e Unequal V arian~e 
Estimate Standard Error Estimate Standard Error 

Ps S·E.(Ps) Ps S·E.(Ps} 

o! omitted 23.76 2.829 21.14 1.873 

~ not omitted 23.76 9.756 23.62 9.713 
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Table 8: The BLUPs and the Lower 95% Prediction Limits for Each Farm for Example2 

Farm f1 j Vj Sj I t S.E.(Sj) Lower 95% 0.05, v, 

1 Pred. Limit 

1.0 897.27 
I 

8.066 -22.44 1.857 29.954 -78.06 
2.0 887.44 7.894 I -10.06 1.863 29.790 -65.56 
3.0 903.59 8.176 I -1.28 1.854 30.060 -57.01 
4.0 I 1027.36 10.319 5.94 1.807 32.054 -51.98 

I 5.0 I 972.96 9.387 20.18 1.824 31.192 -36.71 
I 6.0 1067.80 10.993 28.42 1.796 32.677 -30.27 

I 7.0 992.85 9.731 37.94 1.817 31.509 -19.31 
8.0 902.91 8.164 50.40 1.855 30.048 -5.34 
9.0 885.51 7.860 56.66 1.864 29.758 1.19 
10.0 934.35 8.714 71.88 1.840 30.567 15.64 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1995/proceedings/17


	MIXED MODELS APPROACH TO ON-FARM TRIALS: AN ALTERNATIVE TO META-ANALYSIS FOR COMPARING ONE TREATMENT TO POSSIBLY DIFFERENT CONTROLS
	Recommended Citation

	tmp.1448397365.pdf.7fEyC

