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ABSTRACT 

A prediction function is developed for sugarcane yield using preplant soil nutrition levels, 
cultivar, and soil type. A tree regression approach is used because the resulting function 
encompasses the complexity of response between yield, multiple nutrients and other 
factors, while handling large amounts of data and providing information useful in the 
development of fertilizer and other production recommendations. Data collected from 
148 control plots of experiments performed on commercial fields in the Everglades 
Agricultural Area of Florida are used to illustrate the method. 

Keywords: Binary tree, Soil testing, Florida Everglades Agricultural Area 

1.0 Introduction 

It is generally accepted that optimal plant growth and yield is conditional on plants 
having access to adequate nutrition. Too little of anyone nutrient limits growth, 
regardless of the levels of other nutrients. As the level of a limiting nutrient is increased, 
yields increase up to the point that another nutrient is limiting or the plant has reached 
its full genetic potential. In a controlled yield trial these effects can be demonstrated, 
but usually by fixing the levels of most nutrients and varying the levels of only a couple 
nutrients. 

In this study, a predictive equation is developed for crop yield using preplant soil 
nutrition and other factors affecting sugarcane grown in South Florida. The objective 
was to relate levels of nutrients in common soil test analysis and generally known crop 
and location characteristics, such as cultivar type, soil type and 'crop' year, to sugarcane 
yield. Such a predictive function would be very useful to the soil test lab in making 
fertilizer recommendations. 

Because the data are not from controlled experiments and because of the effects 
discussed above, standard linear model analysis of these data provide predictions with 
very low precision. Other dimension reduction techniques, such as principle component 
regression, do not improve significantly over the original glm's. The inclusion of 
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interaction effects into the model increases the degree of multicollinearity in the model 
but does nothing to improve prediction. 

Among the general class of robust regression techniques, tree regression offers the best 
chance of developing a prediction function which encompasses the complexity of 
response while providing a function which could easily be used by the soil test lab. 
Because tree regression is still a relatively new technique and not found in general 
statistical methodology text books, a review is provided in the next section. 

2.0 Tree Regression 

Let the real-valued variable y denote the response or dependent variable and X = {Xl ... 
Xp} denote a vector of independent or predictor variables from the measurement space 
O. In a regression analysis, our objective is either to 1) explore the structure of the 
relationship between y and X or 2) predict y for future values of X. This goal is usually 
accomplished through the development and estimation of a real-valued predictor 
function, denoted f(x) defined on O. 

If the predictor function is known except for a finite set of parameters 8, that is E(YlX 
= x) 
= f(x, 8) , least square techniques can be used to estimate 8. If further the form of the 
function is assumed linear in these parameters, elegant estimation and goodness-of-fit 
procedures are available. 

What if the form of the predictor is not known, and the dimensionality of X is such that 
some form of variable selection is required? Assuming a linear predictor, either a 
stepwise or best subsets selection algorithm is usually recommended. The properties of 
these procedures and associated diagnostic tools are generally known. Tree-based 
regression, like other robust regression techniques, facilitates development of predictors 
when its general form is not known. 

In tree-based regression, the measurement space, 0 is partitioned by repeated binary 
splitting of subsets of 0 into two descendent subsets, starting with 0 itself. The partition 
of 0 is usually represented as a binary tree (Figure 1), denoted T, with nodes, tk , k = 1, 
2, ... , K. This binary recursive partitioning of 0 is done in such a way that the within 
node variability in observed response is minimized. That is, the added residual variance 
of the two descendent nodes is less than the residual variance in the original ancestor. 

If we let Ok be that subset of 0 represented in the JCh node, then the value of the 
predictor function for node k is the mean of the observed responses in that node, that is 
f(xlx E Ok) = y(x) =y(tk)' In this way, the regression surface is approximated by a step 
function (see Figure 2). 
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The residual sums of squares (or deviance) associated with f(x), for the sample (Yi' Xi) i = 

1, 2, ... , n is 

n 

R (j) = L (Y i _f(X))2 (1) 
i~l 

For node tj of tree T, define the associated residual sums of squares or residual deviance 
as: 

n 

(2) 

where I ( .) is the indicator function. The residual sums of squares for tree T is the sum 

of all terminal node-associated sums of squares. That is, if tj * ,j = 1, 2, ... , k* are the 
terminal nodes of tree T (see Figure 1), then 

k' n 

R (T) = L L I(xi € t/)(Yi _y(t/))2 (3) 
j=l i=l 

The measure of improvement obselVed by splitting node tj into nodes tj' and tj" is given by 

Using this measure of improvement, the best split at a node is that split which most 
successfully separates the high response values from the low ones. That is, for a 
successful split, y(tj I) < y(tj) < y(tj /I) and R (unsplit tree) > R (split tree). 

Candidates for splits are defined through the individual components of X. Let X be 

composed of p components, that is the itk obselVation is x~ = {xii' X i2' ..• , xip }. For an 

ordinal, intelVal or ratio component, say X e' splits can be created as 

tj 1 = {Y i : x fi < X O} 

t/I = {Y i : x ei > x O} 

for each obselVed value of XO in the domain of Xe. Similarly, if Xeis a nominal scale 

variable with obselVed levels Ce = {Cel' Cn ' ... , CeL}, then splits are created as 

(4) 

(5) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1995/proceedings/16



Applied Statistics in Agriculture 

(6) 

For each subset Ok' the split, which maximizes the improvement in residual sums of 
squares is chosen from among all possible splits across all components. In this way, each 
component is examined at each opportunity to split. This partitioning of 0 is usually 
performed until either 1) each terminal node has fewer than a prespecified number of 
observations (usually 5) or 2) the variability in each terminal node is less than some 
small value, usually defined to be 1% of the variance of the root node. This results in a 
tree which is much larger than the data can support. As with over-specification in 
multiple linear regression, the final predictor function is over-optimistic in that the 
estimate of residual variance is much smaller than it should be. 

To correct for over-optimistic trees, the maximum-sized tree is pruned back to a smaller 
tree. Our objective is to simplify the tree without significantly sacrificing goodness-of-fit. 
The pruning process produces a nested sequence of trees determined by recursively 
snipping off the least important branches. Importance is measured by a cost-complexity 
index 

Ra = R(1) + a ITI (7) 

where I T I = number of nodes in tree T, and a is the cost-complexity parameter. For a 
given value of a, the optimal subtree minimizes the cost-complexity index. Optimal 
subtree residual variance decreases and tree size increases monotonically as a decreases. 
Venables and Ripley (1994) use Mallow's Cp statistic to suggest using ex = Kfj2 

where a2 is the residual mean square for the maximum size tree and K is a value 
between 2 and 6. 

Supplemental information on optimal tree size is obtained by examination of tree 
prediction error using a 10-fold cross-validation process. Here the data are divided into 
10 roughly equal parts and a tree is developed using 9 parts with prediction error 
(residual variances) computed on the tenth part. This is done in the 10 possible ways, 
with prediction error averaged for optimal subtrees for specified values of a. A plot of 
prediction error by optimal subtree size is not necessarily monotonically decreasing but 
trees with minimum prediction error are candidates for optimal tree. 

3.0 Data 

The Florida Everglades Agricultural Area (EAA) supports the production on 155,000 ha 
of organic (muck) soils and 27,000 ha of mineral (sand) soil. From 1983 through 1989, 
14 major yield trials were held on commercial lands in the EAA. For this study soil test 
information was collected from the 148 untreated (control) plots associated with these 
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studies (Korndorfer et al 1995). Plot soils were sampled one month after initial planting 
and at the beginning of each ratoon crop. A ratoon crop is the new sugarcane produced 
from the root mass or stool which remain in the ground after the previous years growth 
has been cut off. Up to three ratoon crops may be grown on the same roots. 

The predictor variables for this study were: 

Continuous Variables 
K level of potassium in the soil 
pH pH level of the soil 
Mg level of soil magnesium 
Pw level of phosphorus extracted from the soil using water 
Pa level of phosphorus extracted from the soil using a dilute acid 

Classification Variables 
Sname soil type name (Pahokee, Terra Ceia, Tonng, Lauderhill and 

Okeelanta) 
Cult variety id code (61620, 681026, 701133, and 742004) 
Crop 1 = 18t year plant growth 

2 = 18t ratoon growth 
3 = 2nd ratoon growth 
4 = 3rd ratoon growth 

The response variable was sugarcane yield for the plot measured in tons cane per acre, 
denoted TPA. 

4.0 Analysis 

Data were input and managed using SAS (SAS Institute Inc. 1991). Tree regression 
analysis computations were performed using S-Plus (Clark and Pregibon, 1991; Venables 
and Ripley, 1994, Breiman et al 1984). 

Site yields (TPA) were first modified to remove year-to-year variability in overall yield by 
computing the deviation of site yield to average annual yield, and adding this to the yield 
averaged over all sites and years. In this way, year was treated as an extraneous source 
of variation and removed prior to model building. 
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With only 148 obselVations, the full tree is not very large. Using the stopping rules 
discussed in section 2, the full tree (Figure 3) has 21 terminal nodes and explains 
approximately 81% of total variability in the year mean adjusted yield. Starting at the 
top of the diagram in Figure 3, the full 148 plots are divided based on what the obselVed 
value of Pa was less than 13.076 ppm (to the left branch) or greater than or equal to 
13.076 ppm (to the right branch). The overall mean value for TPA is 48.5 tons. After 
the split, the obselVations in the left branch have mean 39.2 tons and the right branch 
has mean 54.8. The value in parenthesis is the deviance of the node, hence the initial 
tree has deviance 22520 whereas, after the split, the left node deviance is 3671 and the 
right node deviance is 10110. Thus the improvement for this split is 8739 from (eq. 4). 
The residual mean deviance for the maximum tree is 28.04. 

The quality of this fit is illustrated by a plot of obselVed TPA versus predicted TPA just 
as one would do in regression analysis. The discreteness of the prediction function is 
evident in Figure 4. A plot of residuals versus predicted values, Figure 5, indicates no 
obvious outliers although there are a couple of points which are not predicted very well. 

Tree deviance as a function of optimal tree size for specified values of the complexity 
parameter is plotted in Figure 6. Using the suggestion of Venables and Ripley and 
selecting K = 6 we have the optimal a computed as 68.2 = 6x28.04 = 168.24. This 
translates into an optimal tree size of 10 nodes. This suggestion of 10 nodes in the 
optimal tree is further supported by the cross-validation deviance plot, Figure 7, which 
shows a minimum deviance at 10 nodes. 

The best 10-node tree is given in Figure 8. The residual mean deviance for this tree is 
35.42, and the fraction of total variability explained is 75.4%. Plots of obselVed versus 
predicted (Figure 9) and residual versus predicted (Figure 10) are provided for 
comparison with similar graphs (Figures 4 and 5) for the full tree. 

5.0 Discussion and Summary 

Variables which are used in the initial tree splits usually have the greatest impact on the 
response. In this case, the acid extracted soil phosphorus level was important as a 
predictor of yield (TPA). Further, it seems that in low phosphorus sites, crops beyond 
the first ratoon (Crop = 3 or 4) show lower yields than do earlier crops. For higher 
phosphorus areas, soil potassium are important, but the yield differences are not as large. 
Further examination of the tree suggest situations where yields from low levels of one 
soil nutrient may be increased by higher levels of another nutrient. 

The tree shown in Figure 8 presents a predictor function quite unlike what would be 
expected from a general linear model. The tree shows complex interactions and variable 
relationships which would be difficult to obselVe from a multiple regression. To find the 
predicted value for a new obselVation, the obselVation is "dropped" down the tree until it 
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settles into a node. The mean value for that node is the predicted value for the 
observation. If the new observation has a missing value for a predictor variable in the 
decision path, the predicted value becomes the mean of the last node attained. 

Results from a tree regression are difficult to extrapolate beyond the domain of the 
existing data. If the underlying relationships are truly continuous and polynomial in the 
quantitative predictor variables and the effects of qualitative factors are global, tree 
regression will produce an over-parameterized model which may not predict as well as an 
appropriate polynomial. 

The utility of tree regression methods in the analysis of crop nutrition/yield data is 
suggested by this study. For example, the final model suggests (assuming the biology 
minimally supports cause and effect, as it does in this case) that by getting the acid-based 
soil phosphorus level above 13.076 ppm one might expect a much better yield. In 
addition, if soil K were low (less than 54.5 ppm), getting soil P above 38.5 ppm might be 
expected to provide an additional yield increase. The cost of amending the soil to reach 
these levels can be compared to the expected benefits in increased sugarcane yield. 
Similarly, cultivar changes and whether to replant after year 2 can all be examined 
through this model. 

It is still too early to know how this information can be used in developing 
recommendations from a soil testing lab. Traditionally, recommendations have been 
based on a decision rule which looks at the nutrients separately. The tree regression 
results indicate that the decision to supplement one nutrient (say Mg) might depend on 
the levels of other nutrients (Pa and K). Multivariate decision rules of this type have the 
potential to save growers the cost of amendments in situations where the full benefit of 
the amendment may not be realized in increased yield. 
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