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BAYESIAN INFERENCE ON V ARIANCE COMPONENTS 
IN GENERALIZED LINEAR MIXED MODELS: 
AN EVALUATION OF DIFFERENT METHODS 

Robert 1. Tempelman 
Department of Experimental Statistics 

Louisiana State University Agricultural Center 
Baton Rouge, LA 

ABSTRACT 

Generalized linear mixed models are now popular in the animal breeding and biostatistics 
literature as these models allow inference on fixed and random effects for the exponential family 
of data distributions. In animal breeding, particular attention is directed towards variances of the 
random effects. We investigate three methods for marginal inference on variance components in 
binary data, including (1) the conventional expectation-maximization (EM) type algorithm, (2) 
Laplace's method, and (3) "exact" Gibbs sampling methods. A simulation study involving probit 
animal models was used to compare the modal estimates computed under the three methods. It 
was found that EM estimates were badly biased downwards in comparison to Laplacian 
estimates. An application of all methods within a repeated measures probit analysis of mastitis 
incidence in dairy cows suggests that Laplacian and Gibbs sampling posterior marginal modes 
are somewhat congruent in moderately sized data sets, although the tail of the posterior density 
was lighter for the Laplacian approximation. 

1 Introduction 
Mixed effects and repeated measures models are increasingly important for statistical 

inference in agricultural research. This is in part due to continued use of traditional experimental 
designs, such as split plot designs, along with recent consideration of designs involving 
potentially complex error structures (e.g. autocorrelated residuals, spatial analysis, etc.). Animal 
breeders, in particular, have recognized mixed models as the base technology for inference on 
correlated polygenic random effects for economically important traits in livestock (Henderson, 
1984). 

Although commercial software for linear mixed models is readily available, hypothesis 
testing on fixed and random effects require Gaussian distributional assumptions on the model 
residuals. This somewhat negates their use on categorical or discrete fertility and fitness traits, 
often observed in animal and plant research. Mixed effects parameterizations for the exponential 
family of sampling distributions have been addressed in the development of generalized linear 
mixed models or GLMM (Breslow and Clayton, 1993; Stroup and Kachman, 1994). GLMM 
defines a "link" function of the expected value of each observation to be a linear combination of 
the location parameters, specifically the fixed and random effects. 

A GLMM allowing statistical inference on location parameters in ordinal categorical data 
for animal breeding applications was proposed by Gianola and Foulley (1983) and Harville and 
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Mee (1984). This GLMM was called the threshold mixed model in deference to Wright (1934), 
who postulated an underlying normal distribution for liabilities rendered discrete on an observed 
scale via fixed thresholds. This postulate can be shown to be equivalent to presuming a probit 
link for the expected probability of a particular response; hence the threshold model is often 
called a pro bit mixed model. Recent threshold mixed model applications in animal breeding are 
further discussed in Foulley et al. (1990). 

A contentious issue in the implementation of GLMM for ordinal categorical data has 
been the estimation of variances of the random effects. Maximum likelihood estimation (MLE) 
of variance components requires integration of the random effects in order to derive the marginal 
likelihood of the data. Exact approaches based on numerical quadrature (Anderson and Aitken, 
1985) are computationally unfeasible for most data situations in animal breeding. Approximate 
marginal inference on variance components has often been considered, in part due to the analogy 
drawn between Bayesian marginal inference and restricted maximum likelihood estimation 
(REML) in linear mixed models (Harville, 1974). Some animal breeders prefer the term 
maximum marginal likelihood (MML) to REML in order to distinguish between non-Gaussian 
and Gaussian data situations for marginal inference on variance components (Foulley et at., 
1990). 

A common MML algorithm for variance component estimation in threshold mixed 
models is the "expectation-maximization" (EM) type algorithm proposed by Stiratelli et al. 
(1984). A multivariate normal assumption on the conditional distribution of the random effects 
is used to approximate the expectation step. This approximation has been blamed for poor 
frequency properties of the EM-type algorithm for variance component estimation in threshold 
sire models (Hoeschele et at., 1987). Furthermore, the EM-algorithm is computationally onerous 
for large animal breeding data sets, thereby leading Hoeschele et al. (1987) to anticipate 
optimization methods analogous to derivative-free REML (Graser et at., 1987) for variance 
component estimation in threshold mixed models. Tempelman and Gianola (1993) derived such 
an algorithm for a Poisson GLMM by applying Laplace's method to the estimation of variances 
of random effects. In an erroneous proof, they claimed that Laplace's method and the EM-type 
algorithm should lead to identical MML estimates of variance components for all GLMM. 
However, in an simulation study involving probit mixed models with uncorrelated random 
effects, Tempelman (1994) found that Laplace's approximation led to seemingly unbiased 
estimates of variance components, in direct contrast to badly downward biased estimates 
computed under the EM-type approximation. No research on assessing bias properties in probit 
mixed models with a priori correlated random effects has been pursued, using either the EM or 
Laplace's method. Inference on correlated random effects has become increasingly popularized 
due to the widespread use of the" animal" model in animal breeding (Henderson, 1984) 

Gibbs sampling is currently touted as a computationally feasible method to obtain both 
likelihood (McCulloch, 1994) and Bayesian marginal inference (Albert and Chib, 1993) on 
variances of random effects in probit mixed models. This method which generates correlated 
samples of the parameters from the joint posterior density is simulation intensive. One 
requirement for Gibbs sampling is the ability to obtain samples from each parameter's full 
conditional distribution; i.e. the conditional distribution of each parameter given every other 
parameter in the model and the data. Inference based on Gibbs sampling is naturally subject to 

o 

87 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1995/proceedings/8



88 Kansas State University 

Monte Carlo sampling error; however, this error can be controlled by increasing the length of the 
sampling chain. Unfortunately, computing costs using Gibbs sampling can be high relative to 
either the EM-type or Laplace's methods, particularly if the sampler mixes too slowly around the 
parameter space (Smith and Roberts, 1993). Slow mixing would be anticipated if parameters are 
highly correlated a priori, such as genetic effects in animal models (Wang et al., 1994). 
Therefore, an assessment of those situations in which approximate methods may lead to reliable 
inference is desirable. Furthermore, approximate methods may provide good starting values that 
are crucial for the convergence of the Gibbs sampler. 

The first objective of this paper was to further extend the work of Tempelman (1994) and 
compare Laplace and EM-type methods for variance component estimation in probit animal 
models. Secondly, the degree of congruency between inference due to Laplacian and Gibbs 
sampling methods in probit mixed models is assessed. Finally, an application of all methods to a 
dataset involving binary records on mastitis incidence in dairy cows is presented. 

2 Theory 
In the threshold or probit mixed model, a linear combination of identified risk factors J.1j 

(i.e. levels of fixed and random effects) plus random Gaussian noise ej - N(O,o;) determine an 

underlying continuous random liability Ij for each animal j, such that 
Ij = J.1j +ej ; j E {l,2, ... ,n} 

The observed ordinal response Yj = k is defined by the ordinal category bordered by two adjacent 
threshold points tk-l and tk in which Ij is located. The response Yj can take on anyone of K 
possible outcomes delimited by the K + 1 threshold points in t = [to tl ... t K _1 tK J' where to < 

t1 < ... < tK-1 < tK with to = - 00 and tK = 00. To allow full rank estimability of the parameters, one 
additional level in t is constrained to 0. The probability that a response on individual j falls into 
any category k can be written: 

~, = Pr(l} = kl,u], t) = Pr(t,_, <I] <t,I,u] , t) = <If' : ~] ) -4>( t,-,;,u] ) [2.1] 

where <1>(.) denotes the standard normal cumulative distribution function. Here 

J.1. = w'11 = x'J'~ + z'Ju where ~ denotes the px1 vector of fixed effects and u denotes the qx1 
J 1 

vector of random effects and x~ and Z'j are known incidence row vectors. For economy of 

notation, we let 11 = [W u'], denote the vector of location parameters and w'. = [x'. z'.]. In 
1 J J 

Bayesian linear models, fixed effects are typically defined as those location parameters with flat 

uniform priors (i.e., P(f3i) DC constant; -00 < f3i < 00; i=1,2, ... ,p) whereas random effects are 

characterized by informative priors. Note that 0; is not identifiable in [2.1]; therefore we let 0; 
= 1 without any loss in generality. 

The likelihood of the data is the product of one-trial multinomial distributions such that, 
except for a constant, the log-likelihood can be written: 

lnp(yle) = LLl(Yj = k)ln(Pjk) [2.2] 
j k 
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where 1(.) denotes the indicator function and 9 = [t' 11']'. 

Let p(uIG) denote the prior density of the random effects whereby ulG - N(O,G). For 

additive genetic effects in an animal model, G = Ao;, where A is a known matrix of additive 

genetic relationships among animals (Henderson, 1976). The existence of non-zero prior 
correlations contrasts with specifications in many other hierarchical models such as split plot 
designs, conditionally independent hieararchical models (Albert, 1988), or simple sire models 

(Tempelman, 1994); in these cases, G=Io; with I as the identity matrix. We presume joint flat 

priors for t, ~ and 0; ; i.e. 

p(~,t,a~) = p(~)p(t)p(a~) DC c 

where c denotes a constant. Letting t} = [9' a:]' denote the vector of all parameters and 

L( t}1 y) denote the log joint posterior density of all parameters, we find that 

L(t}1 y) = In(p(t}1 y)) = In p(yl 9) + In p(uIG) 

u' A-Iu q 
= LL1(Yj = k)ln(P;k)- 2 --In(a:) + canst. 

j k 2a u 2 

[2.3] 

where canst. denotes an arbitrary constant. Note that the marginal density of the variance 
component can be expressed as: 

2 p(t}ly) 
p(a )y) = (91 2 ) [2.4] 

p au'y 

where p( t}1 y) is the joint posterior density of the full parameter set and p( 91 a:, y) is the density 

of the location parameters conditional on the variances of the random effects. Define: 

eu = l~: J = Arg, maxp(eIO";,y) [2.5] 

to be the joint mode of p( 91 a:, y) and 

H =[-a 2 In p (t}IY)] =[-a 2 In p(9Ia:,y)] 
a ~~' _ ~~' 

a=a rr a=9 rr 

[2.6] 

to be the negative Hessian or information matrix of the full joint posterior density with respect to 

9 and evaluated at 9 = 9a . 

Laplace's method involves approximating both the numerator and the denominator in 

[2.4] by a second order Taylor series expansion about 9er. It can be seen (Tempelman and 

Gianola, 1993) that the Laplacian approximation of the marginal density of the variance 
component is: 

( 2) (- 2 )1- 1-1/2 p a)y DC p 9a,auly Ha [2.7] 

In other words, using [2.6], the log marginal density of the variance components in threshold 
mixed models can be written, except for a constant, by 
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- 'A -1- 1 
L( a:ly) = In p( a:ly) = L L l(Y; = k ) In (Pjk ) - U a 2 U a - q In( a: )-lnIHal [2.8] 

j k a 2a u 2 2 

where (Pjk)a = <I>(t: - x~~a - Z';Ua ) - <I>(t:_1 - x~~a - z~Ua). Any optimization routine (e.g. 

see Meyer, 1989) could be used to compute the mode of L( a: I y) . 

A set of iterative Newton Raphson equations is used to compute Sa' i.e. 

[H] [S[t+l]_S[tJ]=[dlogp(Sla:,y)] 
a 9=9[1] as 

9=9[1] 

[2.9] 

where t denotes the Newton Raphson iteration conditional on a;;. The set of equations in [2.9] 

can be seen to resemble Henderson's mixed model equations with Hcr as the mixed model 
coefficient matrix. For ease of computation, Gianola and Foulley (1983) advocated using the 
expected information or E(Ha), rather than the observed information Hcr' as the coefficient 

y 

- -
matrix for Fisher scoring computation of Sa' While Sa should be generally identical whether the 

E(Ha) or Hcr is used, these two matrices are nevertheless different for probit link GLMM and 
y 

may lead to slightly different inferences on a;; based on [2.7]. Asymptotic inference based on 

E(Ha) should be inferior to that based on Hcr, in agreement with conventional wisdom (Efron 
y 

and Hinckley, 1978). 
The expectation step of the EM -type algorithm for computing MML of a;; is based on 

approximating the conditional density of the random effects by a multivariate Gaussian 
distribution: 

ula:,y - N(ua,C uu ) 

(Foulley et aI., 1990) where Cuu is the block diagonal component of [Ha r corresponding to 

the random effects; if Fisher scoring is used then Cuu is the respective block diagonal component 

of [E(Ha)r' The EM algorithm can be rewritten in terms of the following iterative algorithm 

for a;;: 
2[m+l] [ii'aA -IUa + tr(A -ICuu)fm] 

au = -=------------=--
q 

where m denotes iteration number. Iteration continues until the difference between a 2 [m+l] and 
u 

2[m] " b""l II a u IS ar Itran y sma . 

Gibbs sampling has been seen to be particularly amenable for use in probit mixed models 
(Albert and Chib, 1993). This is because the full conditional distributions of all parameters are 
easily characterized by augmenting the parameter set by the latent variables or liabilities 

I = [II 12 ... In]' described previously. Details on generating Gibbs samples for all 
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parameters in probit mixed models for animal breeding applications are provided by Sorensen et 
ai (1995). 

The extension of all methods described above to handle multiple sources of random 
effects, i.e. more than one variance component, is relatively straightforward. 

3 Simulation study 
3.1 Laplace versus EM estimation of variance components 

An animal model was used to generate binary data; e.g. incidence of clinical mastitis in 
dairy cows. Data for 1280 dams and their female offspring were generated from Bernoulli 

distributions with parameters Pijk = <1>(17 ijk) where 

17 ijk = J.1 + Ii + h j + a k 

Here J.l is the overall mean,fi = -1+ 0.5(i-l) for i=I,2, ... ,5 denotes a fixed effect with five levels, 
h = {hj} - N(O.Ia;) is a 64 x 1 vector of herd effects, and a = {ak} - N(O,Ao:) is a 1344 x 1 

vector of random additive genetic effects. The Bernoulli parameter Pijk denotes the expected 

probability of non-infection for the individual ijk with location parameter 17ijk • The base 

population consisted of 64 unrelated sires without records and 256 dams with records. Dams 
were nested within herd, each herd containing 4 dams. Sires were randomly mated to dams to 
generate 1024 progeny, where each progeny was located in the same herd as her dam. That is, 
the only across herd genetic connections were that due to sire; this roughly characterizes the 
current mating situation in North American dairy cattle populations. Levels of the fixed effect 
were randomly assigned to both dams and progeny in generating the records. Three populations 
pertaining to different values of 0: were considered: Population I. 0:=0.20; Population II. 

0: =0.60; and Population III. 0: = 1.00. For all populations, a; =0.40. Each of these populations 

were further considered at four different environments or values of the overall mean J.l: 
J.l = <1>-1 (0.50), J.l = <1>-1 (0.65), J.l = <1>-1 (0.80) and J.l = <1>-1 (0.95). These different values of J.l 

represent different levels of overall liability or expected rates of infection (i.e. corresponding to 
-50%, -35%, -20% and -5% rates of infection, respectively, ignoring the influence of random 
effects on the overall incidence). MML estimates of the variance components were computed 
using three different approximate methods: (1) the EM-method based on the inverse expected 

information matrix [E(Hcr)f ' (2) the EM-method based on the inverse observed information 

matrix [fIaT l and (3) Laplace's method. Fifty replicates of each population for each of the four 

different values for J.l were used to assess the empirical bias and empirical relative error (root 
mean square error) of the estimates. 

3.2 Laplace versus Gibbs sampling inference on variance components 
In linear animal models, it has been found that Gibbs sampling is particularly 

computationally intensive due to the high correlations between successive draws of Gibbs 
samples (Wang et ai., 1994). High correlations necessitates a very large number of draws in 
order to generate an effectively large number of independent samples. This problem is 
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particularly intensified with Gibbs sampling in probit mixed models (Sorensen et ai., 1995). 
Therefore to limit computing costs, only two datasets based on the simulation procedure 
described in the previous section were investigated. The overall mean considered in both datasets 
was J.1 = <1>-1(0.80). The first dataset (Dataset I) was generated with a genetic variance ~ = 0.20 

while the second dataset (Dataset II) was generated with~=1.00. For both datasets, ~ = 0.40 
and was presumed known in order to allow a direct comparison of marginal inference on ~. A 

proper prior yet highly dispersed inverted gamma density on ~ was used for both data sets. In 
the Dataset I, the prior mean and standard deviation on ~ was 0.075 and 2.23, respectively. In 
Dataset II, the prior mean and standard deviation on ~ was 0.75 and 23.69, respectively. Proper 
prior densities on variance components in a non-Gaussian GLMM may be required to allow a 
proper full joint posterior density. A total of 5,000 samples from each conditional distribution in 
a Gibbs cycle was generated before samples were collected. This ensures the necessary "bum­
in" required for convergence to the equilibrium joint distribution in the Gibbs sampler (Smith 
and Roberts, 1993). For Dataset I, 200,000 samples were generated with every second sample 
saved for a total of 100,000 Gibbs samples. This was necessary to generate an effectively large 
enough number of samples due to the stickiness of the chain, particularly when variance 
components are small. For Dataset II, 100,000 samples were generated with every second 
sample saved for a total of 50,000 Gibbs samples. Both sampling strategies were used to 
economically compromise computing time with hard disk space. Posterior densities were 
generated using the "Rao-Blackwellization" method (Smith and Roberts, 1993). 

4 Results 
4.1 Laplace versus EM estimation of variance components 

In all cases, the EM-method based on expected information led to variance component 
estimates with slightly more empirical relative bias and relative error than the EM-method based 
on observed information. As both EM methods performed poorly compared to Laplace's 
method, results for the EM-method based on expected information are not presented. 
Furthermore, as the relative performance of all methods did not vary greatly over all three 
populations, only graphical results for Population II were presented. 

Empirical relative biases and empirical relative errors of the two approximate methods for 
variance component estimates are given in Figures 1 and 2, respectively, for Population II. In 
general, the relative biases for Laplace estimates of ~ were negative but small, except for 
Population III where the relative biases were as large as (-20%). In contrast, estimates of ~ 
under the EM method showed large negative bias ((-15%)-(-45%» that generally increased with 
~ (i.e. from Population I to Population III). There was no trend in relative biases for ~ 

estimates over increasing <I>(Il) (i.e. decreasing incidence rates) for either EM or Laplace's 
method within each population, except perhaps for an unexpected decrease in bias for Laplacian 
estimates at the most extreme incidence level (<I>(Il)=.95) within the first two populations. The 
differences between relative errors of ~ estimates for the two methods remained somewhat 

constant over increasing <I>(Il) within each population; however, they widened as the true values 
of ~ increased. 
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Estimates of genetic variance were always characterized by larger relative bias and 
relative error than estimates of herd variance. Laplace estimates of ~ were biased by (-20%)-(-

50%) with absolute bias increasing with ~. Relative biases on EM based estimates of ~ were 

substantially larger than Laplacian estimates, ranging from (-50%)-(-80%), and also increased in 
absolute measure with ~. Relative biases were somewhat proportional to <I>(~) or increasing 

extremity in incidence rates. Larger relative errors for estimates of ~ were also associated with 

larger <I>(~) for both methods although relative errors showed no trend with ~. Nevertheless, 
Laplace's method generally yielded estimates with 20-30% less relative error than EM. 

4.2 Laplacian versus Gibbs sampling inference on variance components 
Figure 3 shows the posterior densities of the genetic variance component for Dataset I 

(~ = 0.20) under both Laplacian and Gibbs sampling inference. In addition, the prior density 

used in deriving both posterior inferences is shown for comparison. The modes (-0.03) of both 
posterior densities are virtually identical and may have been strongly influenced by the prior 
density on ~, which has a mode at 0.025. However, the right tail of the posterior density under 

Gibbs sampling was much heavier than that derived under Laplacian integration. This heavier 
tail resulted in a large posterior mean (relative to the posterior mode) of 0.119 and a posterior 
standard deviation of 0.102 under Gibbs sampling. A flat uniform prior on ~ was used to 

further assess the impact of the informative and proper inverted gamma prior on the posterior 
density computed under Laplace's method. This density is also shown in Figure 3. This density 
is much more dispersed than the other posterior densities and shows a mode near 0.18. Since a 
seemingly highly dispersed prior influences the posterior density relative to a flat prior 
specification, this data is perhaps not too informative for sharp inference on ~. 

Figure 4 displays posterior marginal inferences for DataSet II (~ = 1.00). The Laplacian 
modal estimates under both informative and flat priors are highly biased downwards; this is 
consistent with the increasing relative bias of modal estimates found with larger values of ~ in 

the simulation study results of Section 4.1. It further appears that there is a relatively minor 
effect of the prior on posterior inference. This is again shown in the two Laplacian posterior 
densities where the difference in the two modes was relatively small. The posterior density 
generated under Gibbs sampling had a mode near 0.90, a mean of 0.973 ± a posterior standard 
deviation of 0.363. 

5 An Application 
Binary data on mastitis teat infection by Streptococcus agalactiae in dairy cows from the 

Hill Farm Research Station near Homer, LA., a unit of the Louisiana Agricultural Experiment 
Station, Louisiana Agricultural Center, was collected to determine the efficacy of a teat 
germicide in preventing clinical mastitis. Two diagonally opposite teats on each of 130 cows 
were dipped full length with the germicidal teat dip with the remaining two teats serving as 
un dipped controls. The generalized linear mixed model corresponding to the expected incidence 
rate Pijk of mastitis for the ijkth experimental unit was: 
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J.l denotes the overall mean on the underlying continuous liability scale, 
't'i denotes the fixed effect of ith treatment (dipped versus not dipped), i E {1,2}, 
lj denotes the fixed effect of jth teat location on udder (front versus back), j E {1,2}, 
't'lij denotes the interaction of the ith treatment with the jth location effect, and 
ck denotes the random effect of cow k, k E {1,2, ... ,130}. 
As pedigree information was not available, it was presumed that the cow effects were 

identically and independently normally distributed with mean 0 and variance a;. Since 
observations for all teats were taken, there were four repeated measurements for each cow. The 
posterior marginal density of a; was computed using Laplace's method and Gibbs sampling. 
Two inverted gamma priors on a; were considered. The prior mean and standard deviation 

under the first prior (Prior I) was 0.25 and 249, respectively. The second prior (Prior II) was 
based on a mean and standard deviation of 0.75 and 749. Any substantial difference in the shape 
of the posterior densities using these two different priors is suggestive of little information 
provided by the data likelihood. An initial 5000 Gibbs samples were drawn and discarded. Then 
100,000 Gibbs samples were further generated with every 5th sample saved for a total of 20,000 
samples. 

The posterior density of cow variance under Prior I is given in Figure 5. The modal 
estimates of the two posterior densities are quite similar (0.10-0.20) and appear to be 
substantially influenced by the prior mode. The Gibbs density, nevertheless, has a heavier right 
tail; leading to a posterior mean of 0.343 ± a standard deviation of 0.277. Figure 6 shows the 
influence of Prior II on the posterior inference. Both posterior modes (0.20-0.30) increased 
appreciably compared to inference under Prior I, even though both priors were highly dispersed. 
Again the Gibbs sampling density was characterized by a heavier tail, reflecting in a large 
posterior mean of 0.529 ± a standard deviation of 0.357. It appears that relatively little 
information on cow variance is provided by the data likelihood, as indicated by the influence of 
vaguely informative priors. 

6 Discussion 
Many algorithms have been proposed for approximate marginal inference on variance 

components in generalized linear mixed models. An exact method based on Gibbs sampling is 
attractive; however, it is computationally intensive and can be easily misused if sampling is not 
adequate and mixing is slow. Approximate methods have generally required a Gaussian 
assumption on the conditional distribution of the random effects. This assumption appears to be 
particularly tenuous for small samples sizes (Breslow and Clayton, 1993; Hoeschele et al., 1987) 
and for large values of the dispersion parameter (Drum and McCullagh, 1993). This latter 
relationship was also seen in this study as differences in point estimates and posterior densities 
between all methods widened with increasing values of the variance components. However, 
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marginal densities also tended toward normality with larger true values of the variance 
components as the data likelihood then seemingly become more informative. 

Wolfinger (1993) recently claimed that Laplacian and EM-based methods lead to 
identical estimates of the joint marginal modes of variance components in generalized linear 
mixed models under quasi-likelihood settings. It is clear, however, from the results of this study 
and that in Tempelman (1994) that this is not true in fully parameterized GLMM's. Laplace's 
method yielded point estimates with smaller relative bias and mean square error than the EM­
based method. Let n denote the sample size. In EM, one Gaussian approximation is invoked 
resulting in an error of approximation term that is proportional to D(n- I12 ). Conversely, two 
approximations are invoked in the Laplacian procedure, one for each of the numerator and the 
denominator of [2.4]. This allows cancellation of some terms thereby resulting in an error of 
approximation that is proportional to D(n- I ) (Tierney and Kadane, 1986). 

In small samples, posterior marginal densities of the variance components are not 
symmetric but generally skewed positively (see also Wang et ai., 1994). In other words, the 
posterior mean will generally be greater than the posterior mode. The question then arises as to 
which measure one should use for a point estimate of variance. In Bayesian inference, this 
decision depends on the appropriate loss functions which cannot be easily determined. 
Therefore, the visualization of posterior marginal densities and the determination of quantiles 
afforded by Gibbs sampling provide a particularly invaluable supplement to point estimation. In 
this study, "exact" marginal modes due to Gibbs sampling and Laplacian marginal modes were 
similar. However, as noted by Leonard et al. (1994) and by the results in this study, Laplace's 
method may not adequately describe the tail behavior in small data sets. 

Binary data was chosen in this study in order to consider the potentially most nonlinear of 
all cases in GLMM. Sorensen et ai. (1995) recently compared the EM algorithm to Gibbs 
sampling and found little difference between these two procedures for point estimates on 
variance components in a threshold mixed model analysis of hip dysplacia in dogs. However, 
they analyzed a data set consisting of seven possible ordinal categories of response and a sire 
model. Generally, asymptotic inference on variances of uncorrelated random effects could be 
very reliable in threshold mixed models when a large number of ordinal categories exist. 
Conversely, all methods may lead to highly biased modal estimates or highly skewed posterior 
densities as a result of increased nonlinearity in binary data. 

As in Tempelman and Gianola (1993) and Tempelman (1994), the programming strategy 
for Laplacian inference on variance components in GLMM is virtually identical to derivative­
free REML procedures introduced by Graser et ai (1987) and programmed in DFREML for linear 
mixed models by Meyer (1989). In addition to the computing strategies presented by Meyer 
(1989), one must consider the following for GLMM inference on variance components: (1) the 
choice of a link function (2) the sampling density of the data and (3) iterative solution of the 
fixed and random effects. For moderate number of variance components «5), the computational 
advantages of Laplacian over EM inference could be substantial with large dim(S). 

The estimation of fixed and random effects has not been addressed in this paper. 
Generally, mixed model solutions for the fixed and random effects are computed conditionally 
on variance component estimates; from a Bayesian context, this is also known as empirical 
Bayes estimation (Foulley et ai., 1990). The question arises as to the implications of 
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approximate methods of variance component estimation on empirical Bayes estimation versus 
fully Bayesian inference via Gibbs sampling on fixed and random effects in a threshold mixed 
model. This will be addressed in a future study. 

7 Summary 
It seems useful to have approximate methods for marginal inference on variance 

components in GLMM which are not as computationally intensive as Gibbs sampling. Laplacian 
integration leads to modal estimates that are very similar to modal estimates computed under 
Gibbs sampling but which are nevertheless biased downwards when information is sparse as in 
animal models. Furthermore, Laplacian posterior densities are somewhat underdispersed relative 
to the "true" posterior density. The EM approximation used by most animal breeders should not 
be considered for point estimation of variance components in threshold animal models, 
particularly in highly nonlinear situations (i.e. binary data with extreme incidence rates, large 
variance components, and animal model parameterizations). 
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Figure 1: Empirical relative bias (based on 50 replicates) of herd and genetic variance 
component estimates using either Laplace's method or EM in an animal model 
simulation study: ~ =0.60, (J'~ = 0.40 
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Figure 2: Empirical relative error (based on 50 replicates) of herd and genetic variance 
component estimates using either Laplace's method or EM in an animal model 
simulation study: ~=0.60, (J'~ = 0.40 
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Figure 3: Prior and posterior marginal densities of O"~ under Laplace's method and Gibbs 

sampling for Simulated DataSet I (O"~ = 0.40 presumed known; 0": = 0.20) 
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Figure 4: Prior and posterior marginal densities of 0": under Laplace's method and Gibbs 

sampling for Simulated Dataset II ((j~ = 0.40 presumed known; 0": = 1.00) 
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Figure 5: Posterior densities of cow variance using Gibbs sampling and Laplace's method 
for mastitis data under Prior I (prior mean = 0.25; prior standard deviation = 249) 
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Figure 6: Posterior densities of cow variance using Gibbs sampling and Laplacian 
integration for mastitis data under Prior II (prior mean = 0.75; prior standard deviation = 
749) 
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