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APPLICATIONS OF ESTIMABLE FUNCTIONS IN 
AGRICULTURAL RESEARCH WITH SPECIAL EMPHASIS ON THE 

GLM PROCEDURE OF SAS. 

L.Munyakazi ,R.L. Hintz, and B.D. Selby 
Monsanto Company 

Abstract 

An understanding of estimable functions is essential when using an 
overparameterized linear model. The most attractive features of these functions are their 
invariance property to the solution vector and their wide range of practical applications 
in agricultural research. This study reviews some of the ways that estimable functions can 
be used by the agricultural scientist. 

(KEY WORDS: Estimable function, regression coefficients, carryover, direct and 
permanent effects, sum-to-zero and set-to-zero restrictions). 

Introduction 

Many agricultural experiments that are originally designed to generate balanced 
data result in collected data that are unbalanced. It is also the case that many experiments 
are intrinsically unbalanced due to research or financial constraints placed on data 
collection. Because the majority of agricultural researchers use linear models for 
parameter estimation and hypothesis testing of data that are often unbalanced, it is 
necessary that a knowledge of the use of estimable functions is cultivated. 

The use of estimable functions is the main ingredient in overspecified or 
overparameterized linear model parameter estimation and hypothesis testing. From a well 
defined linear model, various statistics can be derived from the model form of estimable 
function, and the appropriate use of corresponding coefficients. 

The definition of an estimable function is based on its invariance property to the 
solution vector. From Searle (1987) any function k'j3, i.e, k=any vector and fJ=vector of 
parameters, for which k'j3°, i.e,fJo=solution vector ofparameter estimates, is invariant to 
jfJ is said to be an estimable function; and is estimated by k'j3°. Consequently, it is 
expected that scientists analyzing the same data for the same purpose of estimation and 
hypothesis testing should obtain identical results regardless the generalized inverse they 
use. 

It is the purpose of this paper to show that estimable functions can be used in 
many different applications of agricultural research. Examples are provided to (1) test for 
heterogeneity of the random interaction variance, and (2) to relate the usual orthogonal 
contrasts in a class GLM and their corresponding regression coefficients. The polynomial 
contrasts will be used to construct a response surface through adjusted treatment means. 
Finally, we present useful techniques to (3) perform a single degree of freedom test for 
interaction in a balanced unreplicated experiment (4) and to estimate residual (first-order 
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272 Kansas State University 

carryover), direct, and permanent effects in designs balanced for residual effects and (5) 
coefficients to derive estimates of within and of between experimental units in a crossover 
experiment. In each case, an example is given in the appendixes. 

1. Heterogeneity of the Interaction Variance 

Often, the agricultural scientist wants to obtain valuable information about a 
product by repeating the same experiment in different sites or places. The idea is to 
recommend application of the product to a larger population of places or to measure the 
effect of varying external influences or conditions. Regardless the purpose of the 
experiment, the analysis of the results of such a series of experiments always presents 
statistical challenges. 

The model that is commonly used to analyze such data is a mixed model of the 
form: 

y = x~ + Zp + £ (1) 

where X~ represents the fixed effects portion of the model, Zp represents the random 
portion and E the residuals. One of the challenges when analyzing the data using model 
(1) with the GLM procedure of SAS is the assessment of the interaction magnitude 
contained in p. More specifically, if a treatment made of 5 different levels of application, 
0, 40, 80, 120 and 160 units is tested in 6 different places, the different sources of 
variation are: treatment (fixed effect of ~), places and treatment*places (random effects 
of p), and experimental error (E). 

In many instances, it is necessary to test whether the components of the interaction 
treatment*places variance a 21 are homogeneous i.e, a2

1 is a constant. One solution is to 
partition the interaction into components 0 21' a 2

2, •• , , aLp that extract all or almost all 
the useful information. This approach requires use of estimable functions. We use the 
example of Cochran and Cox (1957, p548) to illustrate thc concept. 

The orthogonal partition of the interaction is obtained by multiplying the vector 
of the full coefficients (extended to contain interaction terms) of treatment contrasts, K" 
with the full coefficients of the random effect contrasts, Kw More specifically, in the 
example of Table 2, K, represents the first four treatment contrasts (linear,quadratic and 
deviations contrasts), whereas K" represents the next four deviations denoted "Places (i­

last t. 
The resulting variances may be tested for their homogeneity in the usual manner. 

When the null hypothesis is rejected, i.e, the interaction variance is heterogeneous, then 
the component of the treatment sum of squares is tested against its own interaction with 
the random factor (Cochran and Cox, 1957; Kempthorne, 1952; Milliken and Ash, 
personal communication). 
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2. Orthogonal Contrasts and Regression Coefficients 

The types of experiments in which the application is simple are those resulting in 
balanced data with the treatment levels quantitative and equally spaced. It is possible to 
use combinations of the orthogonal polynomials to find the corresponding regression 
parameter estimates within the same run of GLM. The example used to illustrate the 
mechanics of relating dose levels defined as class variables to regression coefficients is 
from Steel and Torde (1980, p366). The effect of five row spacings was tested on Ottawa 
Mandarin soybeans in six blocks of a randomized block design (Appendix IJ. 

The mathematical expression of the two-way classification model is: 

Y, 'k = U + P' + U + !>k IJ J" I IJ 
(1) 

i = 1 ,2, ... ,t; j = 1,2, ... , r 

where u is the overall mean, u j are unknown fixed parameters, Pj and Cijk are independent 
normally distributed random variables with zero mean and variances 0 2 p and 0 2 E' 

respectively. It is assumed that the 't' treatment levels are equally spaced and there is one 
observation in each of the 'rt' cells. The null hypothesis of equal means is formulated as: 

When the null hypothesis is rejected at a specified alpha level, researchers 
typically investigate further for a linear and/or quadratic response in the data through the 
use of orthogonal contrasts. The question of relating the results of the contrasts to 
corresponding regression coefficients is often asked. A simple relationship between the 
linear trend and the regression coefficients can be formulated as: 

L = (A *C)/(d *I;C 2) 13 J ,I ! 
(2) 

and Ll3o= Y -X*L!31 (3) 

-
where the values are either constants (A, d, X), easily estimable (the overall mean, Y) or 
intrinsically estimable contrasts of the means or totals such as the orthogonal contrasts 
(see Table 15.11 of Steel and Torrie, 1980). Combinations of the coefficients C i , in the 
manner of (2) and (3) result in L* = {L13o,L13 ! } such that L*~o = ~ where ~o IS any 
solution of model (l) and ~={~o,~J is the vector of the regression coefficients. 
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274 Kansas State University 

To illustrate the mechanics of above equations, the coefficients for Lf30 and Lf31 are 
derived for the soybean example: 

I D 
n i 
t v 

Effect Parameter e Block Spacing i 
r s 
c I II III IV V VI I II III IV V 0 

e r 
p 
t 

L~I = C j 0 0 0 0 0 0 0 -2 -1 0 1 2 60 

Y = mean yield 60 10 10 10 10 10 10 12 12 12 12 12 60 

-
X*L~I = 30*L~1 0 0 0 0 0 0 0 -60 -30 0 30 60 60 

- -*L 
L~o = Y-X ~1 60 10 10 10 10 10 10 72 42 12 -18 -48 60 

The divisor of Lf31 is d*:!: 51Cj = 6*(4+ 1 +0+ 1 +4)=60. The values of A, d, X are 1, 6, and 
30, respectively. To compute Lf3o' mathematical operations between vectors are performed 
on coefficients within the same parameter. Appendices CIa) and (Ib) provide the derivation 
of L* for various response surfaces from the simplest with one dependent variable (la) to 
the complex with two variables, including their quadratic and interactions terms (Ib). The 
details that lead to these coefficients can be obtained from the first author. 

3. Tukey's single-degree-of-freedom test 

The basic idea of Tukey's test is to evaluate the merit of adding an interaction 
term in a model of main effects when no replicate is available (Tukey, 1949). It is based 
on partitioning the experimental error of the additive model 

Y = II + 't j + ~j + ')'ij (4) 

with no interaction into two components, one associated with nonadditivity sum of 
squares (SSN) and another associated with the remaining sum of squares (SSR). 

The traditional approach requires many runs of GLM (Shiferaw and Griffin, 1986). 
With the use of estimable functions, the number of steps is reduced to two. First, from 
the additive model, one needs to derive a new solution vector that satisfy the sum-to-zero 
restriction on the parameters instead of the default set-fo-zero restriction. The solution 
given by the GLM procedure has the last parameter set-to-zero ('tZast=O and ~last=O). To 
convert it to a sum-to-zero solution, each 't i and each ~j are assigned an integer, say 1, 
and the others are assigned an equal weight, -1/(t-1), and -lI(b-l) respectively such that 
L'ti=O and L~j=O. 

The next step is to merge the new column estimates, say 't* and ~*, by each of the 
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two factors, with the existing data and run a covariance analysis with the product of the 
two columns l*W as the covariate. The test for the covariate is the Tukey's single-degree­
of-freedom for non-additivity. The data for this example are from Milliken and Johnson 
(1989) and are reported in Appendix It 

4. Estimation of direct, residual, and permanent effect 

Crossover trials are frequently used by researchers from many fields, In 
experiments with residual effects, partial confounding exists between effects in the model. 
Consequently, in the case of a model that contains all class effects, using LSMEANS 
statement within GLM results in non-estimability of the fixed effects. This is especially 
true for overparameterized models which do not yield a unique solution but rather a 
biased vector based on the default set-fa-zero restrictions on certain (last) parameters. 
In this instance the use of estimable functions with appropriate coefficients (see appendix 
IlIa) leads to appropriate treatment comparisons since the expected difference between any 
two treatments contains a component associated with the residual difference of the same 
effects. Kempthome (1957) stated that this comparison is the sole advantage of balancing 
with regard to the preceding treatment since "we are not measuring a linear combination 
of the direct effects of one treatment and the residual effects of the others." Another 
common method that also relies on restrictions imposed on the elements of the 
parameter vector is the sum-to-zero restrictions. This method yields a full rank model (see 
appendix III,,). 

A third alternative for estimating the parameters of interest is to combine the 
previous two, generally by restricting only the (class) residual to sum-to-zero. This 
method is easier to implement, it allows the LSMEANS statement to be estimable for the 
direct effects, and therefore does not require to provide own coefficients, and at the same 
time provides correct carryover differences as slopes in the solution vector (see appendix 
IIIc)' The data used to illustrate the example is from Cochran and Cox (1957 p135). Three 
rations were tested for their effects on fat corrected milk yield. The milk was collected 
from each cow at the end of a six week period. The basic design was an orthogonal 3X3 
latin square. Cows were assigned to square based on their preliminary production: cows 
with similar corrected milk production were grouped in sequence of three. Then within 
each sequence, a randomly chosen square had its columns randomly assigned to cows. 
Three different statistical models were used according to the restrictions on the model 
parameters. 

s. Estimates of within and between carryover differences 

When carryover designs use two sizes of experimental units (ED), two error terms, 
and two levels of analysis (between and within EU), the GLM procedure of SAS fails to 
provide an adequate analysis. Among the three possible estimates of carryover differences, 
two of them, the within and the belween differences can easily be obtained within GLM. 
The estimates of the within experimental unit are obtained as in the section described 
above (Section 4). 
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The estimates of the between experimental unit carryover differences are obtained 
by comparison of whole size (EU) means, For illustration purpose, we use the data from 
a three-period crossover design with three treatrnents (Milliken and Johnson, 1984 p447). 
The statistical model includes sequence effect (<1), experimental unit within sequence (11), 
treatment effect Ca, b, and c), carryover effect (eI» , period effect (II) and the residuals (£). 

To obtain thc between-experimental-unit estimates of carryover differences, one 
needs to fit the experimental unit mean modeL It follows that the estimates of the 
carryover difference between, say eI>" and <Pc' is given by 

(4) 

Since each sequence mean is estimable, by the rule of combination of estimable 
functions, eI> a - eI> c is also estimable (Searle 1971. 1987). Other comparisons can be made 
in a similar fashion (see Table 1 and appendix IV). It remains however, that if the 
coefficients lead to estimability for the entire model including the random effect, then the 
standard-error of the between difference will be based solely on the estimated MSE, 0 2£ 

instead of the estimate of 02
0+ 0\. 

One solution is to utilize the mixed model procedure, PROC MIXED of SAS 
where the RANDOM statement is used to specify the random portion of the modeL The 
coefficients corresponding to the random effects in each ESTIMATE statement will be 
assigned to zero automatically (broad inference space). The narrow inference space 
standard error is .708. The broad inference space standard error is 2.27 (Milliken and 
Jonhson, 1984, give a standard error of 2.34). 

Authors Note: Copies of SAS output for all examples can be requested from Dr. Louis 
Munyakazi, Monsanto Company, Mail Zone BB2D, 700 Chesterfield Village Parkway, 
St. Louis, Mo. 63198. 
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Table 1. Coefficients of between carryover differences in the sequence model. 

Between Differences 

Sequence Model <I>a vs <I>b <I>a vs <I>c 

u1 = 8*+ 113 (<I>a + <I>b) 0 1.5 

U z = 8*+ 113 (<I>a + <I>J 1.5 0 

u3 = 8*+ 1/3 (<I>a + <I>b) 0 1.5 

u4 = 8*+ 113 (<I>b + <I>c) -1.5 -1.5 

u5 = 8*+ 113 (<I>a + <I>J 1.5 0 

u6 = 8*+ 1/3 (<I>b + <I>c) -1.5 -1.5 
I I 

........ _ .... """ .... ilILIi .. I ...... _ .... ~ . ..::J I .... Lu .......... _ ,JiOA\ " ~~ • _~_~ .... ::J , ... _........... ...._ ... I ,...~~t: ............... I ............. ~ ...... _ ......... \ I ,.... 7 .... 11 .... _ .... 

<I>b vs <I>c 

1.5 

-1.5 

1.5 

0 

-1.5 

0 

N 

~ 

~ 
~ 
~ 
\::i 
~ 

~ 
~. 

2:l 
~. 

II 
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Table 2. Coefficients for TREAT*PLACES Variance Interaction Test 
--------- - - - - - - - - - - - - - - - - - - - - - - - - .. 

. -- - - - - - .... - -----------.---- ... - - - - - .. -- - - - -_._-_.----------- ---------

Effect Treatment contrasts Places (i-last) Linear*Places Quadratic*Places ~ 
------------------------- -

--,--------._- ----------- ., - - - - ., - - - - -

Linear Quadratic Deviations (1- 5) (2 - 5) (3 - 5) (4 - 5) Linear*(i 5 ) Quadratic*(i ~ ) '"\S -. -. 
~ 

TREAT 0 -2 2 -1 1 0 0 0 0 0 0 0 0 0 0 () 0 ~ 

40 -1 -1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 ~ 
80 0 - 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 

120 1 ·1 - 2 -4 0 0 0 0 0 0 0 0 0 0 0 0 
~ ..... 

160 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
-. 
"'" ..... -. () 

PLACES 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 U "'" 
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -. 
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

;::: 

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 (] 0 ~ 

6 0 0 0 0 ·1 -1 ·1 - 1 0 0 0 0 0 0 0 0 Oq ....., -. 
TREAT* 0 2 .4 .4 ... 2 2 2 0 0 0 .8 0 0 0 .8 0 0 0 

() 
:;::: 

PLACES 0 3 .4 .4 - .2 .2 0 . 2 0 0 0 -.8 0 0 0 .8 0 0 "-..... 
0 4 .4 .4 -.2 2 0 0 .2 (I 0 0 .8 0 0 0 .8 0 :;::: 

0 5 - .4 .4 - .2 ,2 0 0 0 .2 0 0 (I - .8 0 (I 0 .8 ~ 
0 6 -.4 .4 - 2 2 2 2 .2 -.2 .8 .8 8 8 - .8· .8 .. 8 .8 

40 2 -.2 - .2 .4 .8 2 0 0 0 .4 0 0 0 .4 () 0 0 

40 -.2 ... 2 .4 8 0 .2 0 () 0 - .4 0 0 0 4 0 0 

40 4 -.2 - .2 .4 8 0 0 .2 0 0 0 4 0 0 0 4 0 

40 5 -.2 - ,2 .4 8 0 0 0 .2 0 0 0 .4- 0 (I () ,4 

40 6 .2 .2 .4 .8 .. ~ ::I -.2 -,2 .4 .4- 4 4 ,4 4 .4 4 

80 2 0 - .4 0 1.2 .2 0 0 0 0 0 C 0 - 8 0 0 0 

80 3 0 - .4 0 1 " () 2 0 0 0 0 0 0 0 8 n 0 
.~ 

80 4 0 ... 4 0 1 2 0 0 .2 0 0 0 0 (] 0 0 .8 r: 
80 5 0 - .4 0 1.2 () 0 0 .2 () 0 0 0 0 0 0 - .8 

80 6 0 -.4 0 1 2 .2 2 - 2 - .2 0 0 (I 0 .8 8 8 .8 

120 2 .2 -,2 .4 8 2 0 (I (I .4 0 0 0 4 0 0 (} 

120 3 .2 -.2 -.4 8 0 .2 0 (I 0 .4 (I () (I - .4 0 () 

120 4 .2 - .2 - .4 - 8 0 0 .2 0 0 0 4 0 0 0 - 4 0 

120 5 .2 - .2 - .4 .8 0 0 0 .2 0 0 0 .4- 0 0 0 4 

120 6 .2 -.2 - . 4 8 2 .2 - ,2 -.2 .4 .4 4 4 .4 .4 .4 4-

160 2 .4 .4 .2 .2 .2 0 0 0 .8 0 (I 0 8 0 0 0 

160 3 .4 .4 .2 2 0 .2 0 0 0 .8 0 0 0 8 0 0 

160 4 .4 .4 .2 .2 0 0 .2 0 0 0 .8 0 0 0 8 0 

160 5 .4 .4 .2 .2 0 0 0 .2 0 0 0 8 0 0 () .8 

160 6 .4 .4 .2 .2 .2 -.2 - .2 - .2 _ .. 8 -.8 8 -.8 8 8 8 ·8 
- - - - - - ... _. -, -, -, - - -

- - - - - - - - - _. - - - - - - - - - - - - - .. -------- . - - - -- - - - - ,- - - - - - - "-

N 

~ 
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Appendix Ia 
Title 'Data is from Steel and Torrie 2nd Ed. p366'; 

Form of the equations: Y ~ /30 + /3,X and Y ~ /30 + /3,X + /3,x' 
(X =spacing) 

options Is=125; 
data one; 
do block=l to 6; 
do spacing=18 to 42 

input yield 
output;end;end; 

by 6; 
@; 

cards; 
33.6 
37.1 
34.1 
34.6 
35.4 
36.1 

31. 1 
34.5 
30.5 
32.7 
30.7 
30.3 

33.0 
29.5 
29.2 
30.7 
30.7 
27.9 

28.4 
29.9 
31. 6 
32.3 
28.1 
26.9 

31. 4 
28.3 
28.9 
28.6 
29.6 
33.4 

proc glm data=one outstat=s; 
class block spacing; 

model yield=spacing block; 
random block; 
*--------- computation of Overall Trends ----------------------* 
estimate 'Linear' spacing -12 -6 0 6 12; 
estimate 'Quadrat' spacing 2 -1 -2 -1 2; 
estimate 'Cubic' spacing -6 12 0 -12 6; 
estimate 'Quartic' spacing 6 -24 36 -24 6; 
*--------- Computation of Contrast Sums of Squares ------------*; 
contrast 'SS Linear' spacing -2 -1 0 1 2; 
contrast 'SS Quadratic' spacing 2 -1 -2 -1 2' 
contrast 'ss Cubic' spacing -1 2 0 -2 1; 
contrast 'ss Quartic' spacing 1 -4 6 -4 1; 
contrast 'Total SS' spacing -2 -1 0 1 2, 

spacing 2 -1 -2 -1 2, 
spacing -1 2 0 -2 1, 
spacing 1 -4 6 -4 1; 

estimate 'Y-mean' intercept 30 spacing 6 6 6 6 6 block 5 5 5 5 5 5 
/divisor~30; 

*--------- Computation of Polynomial 1st degree ---------------*; 
estimate 'Beta 0' intercept 60 

spacing 72 42 12 -18 -48 block 10 10 10 10 10 10 /divisor=60; 
estimate 'Beta l' spacing -2 -1 0 1 2 /divisor=60; 
contrast 'Beta 0' intercept 60 

spacing 72 42 12 -18 -48 block 10 10 10 10 10 10 ; 
contrast 'Beta l' spacing -2 -1 0 1 2 ; 
*--------- Computation of polynomial 2nd degree ---------------*; 
estimate 'Beta 0' intercept 11.025 

spacing 49.455 -10.395 -34.02 -21.42 27.405 
block 1.8375 1.8375 1.8375 1.8375 1.8375 1.8375 

/divisor=11.025; 
estimate 'Beta l' spacing -820.8 309.6 720 410.4 -619.2/divisor=3024; 
estimate 'Beta 2' spacing 12 -6 -12 -6 12/divisor=3024; 
contrast 'Beta 0' intercept 11.025 

spacing 49.455 -10.395 -34.02 -21.42 27.405 
block 1.8375 1.8375 1.8375 1.8375 1.8375 1.8375 

contrast 'Beta l' spacing -820.8 309.6 720 410.4 -619.2; 
contrast 'Beta 2' spacing 12 -6 -12 -6 12; 
run; 
proc print data=s label noobs split='*'; 

var _source __ type_ df ss f prob; 
label 

run; 

_source_='source*Of Variation' 
_type_ ='Type*Of Sum Squares' 

df='Degrees*Of Freedom' 
ss='Sum*Of Squares' 

f='F_value*(MSsource/MSE), 
prob='Probability*pr > F' 
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Appendix Ib 
* - - - - - - - - - - - - - - - - - - - - - - ~ - - - - -, - - - - - - - - - - - - - - - - - .- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*-- Construct a response surface through the treatment means 
* - - using the concept of estimable functions wi t.hin GLM procedure 
*-- This is an extension of the second degree curve through the means * _____________________________________________________ --------------------------------------- ______ 0 

data one;input Days 
do blocks=l to 4 

input shoots @ 
output; end 

cards; 
3 01S.7 
3 4 9.8 
3 8 7.9 
10 0 18.0 
10 4 13.6 
10 8 8.8 

14.6 
14.6 
10.3 
17.4 
10.6 

8.2 

16.S 
11.9 
9.7 

lS.l 
11.8 
11.3 

Rates @; 

14.7 
12.4 

9.6 
14.4 
13.3 
11.2 

Form of the equation: Y = 130 + J3 ,X, + J3,x,' + J33X, + J34X, + J34X,' + J35X,X, 
(X, =rates and X, = days) 

proc glm;class rates days blocks; 
model shoots=blocks rates*days; 
estimate 'Q LinRat , rates*days -1 -1 0 0 1 l' 
estimate 'Q LinDays , rates*days -1 1 -1 1 -1 1; 
estimate 'Q QuaRat , rates*days 1 1 -2 -2 1 1 ; 
estimate 'Q LinRat LinDay' rates*days 1 -1 0 0 -1 1; 
estimate 'Q QuRate LinDay' rat.es *days -1 1 2 -2 -1 1; 
estimate 'Coeficient BS , rates*days -1 1 2 -2 -1 1jdivisor=224; 
estimate 'Coeficient B4 , rates*days 3 -3 -4 4 1 -1jdivisor=56; 
estimate 'Coeficient B3 , rates*days -6 6 0 0 0 Ojdivisor=42; 
estimate 'Coeficient B2 , rates*days 10 -3 -20 6 10 -3jdivisor=224; 
estimate 'Coeficient B1 , rates*days -30 9 40 -12 -10 3jdivisor=56; 
estimate 'Coeficient BO , intercept 84 blocks 21 21 21 21 

rates*days 120 -36 0 0 0 Ojdivisor=84; 
title1 'Estimable functions and Response Surface' ; 
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Appendix II 
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - i 

*-- Codes for Tukey's single degree-of-freedom test for non-additivity 
*-- using GLM (or MIXED) procedure of SAS 
*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
options nodate nonumber; 
data one;input temp @; 

do humidity=20 to 80 by 20; 
input height @; 

end; 
cards; 

output; 

50 12.3 19.6 25.7 30.4 
60 13.7 16.9 27.0 31.5 
70 17.8 20.0 26.3 35.9 
80 12.1 17.4 36.9 43.4 
90 6.9 18.8 35.0 53.0 

proc mixed;class temp humidity; 
model height=temp humidity; 
make 'Estimate' out=estim; 
*----------- The GLM SOLUTION satisfies set-to-zero ---------------------; 
*-- restriction . We need a SUM-TO-ZERO restriction solution 
*--Thus we use estimable functions to reconstruct such a solution 
*---The new variables are additional data to be added to the original 
* - - - - - - - - - - - - - - - - - - - data set (data one) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ; 
*------ The following estimates are also estimable in GLM procedure 
*------ We only take advantage of the 'make' statement in the MIXED 
estimate 'T* 50' temp.8 -.2 -.2 - 2 -.2; 
estimate 'T* 60' temp -.2.8 -.2 -.2 -.2; 
estimate 'T* 70' temp -.2 C.2 .8 -.2 -.2; 
estimate 'T* 80' temp -.2 -.2 -.2 .8 -,2; 
estimate 'T* 90' temp -.2 -.2 -,2 -.2 .8; 
estimate 'B* 20' humidity .75 -.25 -.25 -.25; 
estimate 'B* 40' humidity -.25 .75 -.25 -.25; 
estimate 'B* 60' humidity -.25 -.25 .75 -.25; 
estimate 'B* 80' humidity -.25 -.25 -.25 .75; 

data temp(keep=parm est) hum(keep=parm est); 
set estim; 

if parm ge 'T* 50' then output temp; 
else output hum; 

data temp(rename=(est=that»;set temp; 
length temp 8.; 
temp=substr(parm,8,2); 
proc sort;by temp; 
data hum(rename=(est=hhat»;set hum; 
length humidity 8.; 
humidity=substr(parm,8,2); 
proc sort;by humidity; 
proc sort data=one; 

by humidity; 
data two;merge one hum; 

by humidity; 
proc sort;by temp; 
data add(drop=parm);merge two temp; 
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by temp; 
proc glm; class temp humidity; 
model height=temp humidity that*hhat/ssl ss2 ss3 ss4; 
estimate 'L estimate' That*hhat 1; 
contrast 'SSN Non Add' That*hhat 1; 
Titlel ' Tukey' 's single degree-of-freedom test for non-additivity'; 

proc glm; class temp humidity; 
model height=temp humidity that*humidity/ss3; 
estimate 'Mean THAT*Humidity' that*humidity .25 .25 .25 -.75; 
estimate 'Gamma l' that*humidity 1 0 0 -1; 
estimate 'Gamma 2' that*humidity 0 1 0 -1; 
estimate 'Gamma 3' that*humidity 0 0 1 -1; 
estimate 'Estimate Gamma1' that*humidity .75 -.25 -.25 -.25; 
estimate 'Estimate Gamma2' that*humidity -.25 .75 -.25 -.25; 
estimate 'Estimate Gamma 3 , that*humidity -.25 -.25 .75 -.25; 
estimate 'Estimate Gamma4' that*humidity -.25 -.25 -.25 .75; 
contrast 'SSHo' that*humidity 1 0 0 -1, 

that*humidity 0 1 0 -1, 
that*humidity 0 0 1 -1; 

Titlel 'Mandel"s test of interaction. Lines for each level Humidity'; 
Title2 'That is Mandel"s model with Temperature as the Baseline'; 
model height=temp humidity hhat*temp/ss3; 
estimate 'Mean HHAT*Temp' hhat*temp .2 .2 .2 .2 -.8; 
estimate 'Gamma l' hhat*temp 1 0 0 0 -1; 
estimate 'Gamma 2' hhat*temp 0 1 0 0 -1; 
estimate 'Gamma 3' hhat*temp 0 0 1 0 -1; 
estimate 'Gamma 4' hhat*temp 0 0 0 1 -1; 
estimate 'Estimate Gamma 1 , hhat*temp .8 -.2 
estimate 'Estimate Gamma 2 , hhat*temp -.2 .8 
estimate 'Estimate Gamma3' hhat*temp -.2 -.2 
estimate 'Estimate Gamma4' hhat*temp -.2 -.2 
estimate 'Estimate Gamma 5 , hhat*temp -.2 -.2 
contrast 'SSHo' hhat*temp 1 0 0 0 -1, 

hhat*temp 0 1 0 0 -1, 
hhat*temp 0 0 1 0 -1, 
hhat*temp 0 0 0 1 -1; 

-.2 
- .2 

.8 
-.2 

- . 2 
- .2 
- .2 

- .2 -
.8 

2 

- .2 
-.2 
- .2 
- .2 

.8; 

Title1 'Mandel"s test of interaction. Lines for each level Temperature'; 
Title2 'That is Mandel"s model with Humidity as the Baseline'; 
*----------- Comparison between Tukey's and Mandel's tests ---------; 
proc glm; class temp humidity; 
model height=temp humidity that*hhat temp*hhat/ss3; 
titlel 'Comparison between Tukey"s and Mandel"s tests'; 
title2 ' , 
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Appendix IlIa 
Codes for Estimation of Direct, Residual and Permanent Effects in GLM 

Data are from Cochran and Cox 1957 (p135)'; 
'Set-to-zero restrictions' 

proc glm;class square trt cow period resid; 
model milk~square Cow(square) period(square) trt resid/ss3 solution; 
estimate 'Direct l' intercept 18 square 9 9 cow(square) 3 3 3 3 3 3 

period(square) 3 3 3 3 3 3 trt 18 0 0 
resid 6 4 4 4/divisor~18; 

estimate 'Direct 2' intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 0 18 0 
resid 6 4 4 4/divisor~18; 

estimate 'Direct 3' intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 0 0 18 
resid 6 4 4 4/divisor~18; 

estimate 'Residu (l+Mean) 'intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 6 6 6 
resid 6 12 0 O/divisor~18; 

estimate 'Residu (2+Mean) 'intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 6 6 6 
resid 6 0 12 O/divisor~18; 

estimate 'Residu (3+Mean) 'intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 6 6 6 
resid 6 0 0 12/divisor~18; 

estimate 'Overall Mean' intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 6 6 6 
resid 6 4 4 4/divisor~18; 

estimate 'Residu 1 alone' resid 0 12 -6 -6/divisor~18; 

estimate 'Residu 2 alone' resid 0 -6 12 -6/divisor~18; 
estimate 'Residu 3 alone' resid 0 -6 -6 12/divisor~18; 

estimate 'Permanent l' intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 18 0 0 
resid 6 16 -2 -2/divisor~18; 

estimate 'Permanent 2' intercept 18 square 9 9 cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 0 18 0 
resid 6 -2 16 -2/divisor~18; 

estimate 'Permanent 3' intercept 18 square 9 9 Cow(square) 3 3 3 3 3 3 
period(square) 3 3 3 3 3 3 trt 0 0 18 
resid 6 -2 -2 16/divisor~18; 

estimate 'Perm. 1-2' trt 18 -18 0 resid 0 18 -18 O/divisor=18; 
estimate 'Direct(1-2)-ReS(1-2)' trt 18 -18 0 resid 0 18 -18 O/divisor~18; 
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Appendix IIIb 
CODES FOR SUM-TO-ZERO RESTRICTIONS 

proc glm; 
model milk=seql cowl cow2 cow4 cowS perl per2 per4 perS trt1 trt2 

resid1 resid2/so1ution; 
estimate 'Overall' intercept 18 seq1 9 cowl 3 cow2 3 cow4 3 cowS 

perl 3 per2 3 per4 3 perS 3 trt1 
trt2 6/divisor=18; 

estimate 'Direct l' intercept 1 trt1 1; 
estimate 'Direct 2' intercept 1 trt2 1; 
estimate 'Direct 3' intercept 1 trt1 -1 trt2 -1; 
estimate 'Direct 1 - 2' trt1 1 trt2 -1; 
estimate 'Direct 1 - 3' trt1 2 trt2 1; 
estimate 'Direct 2 - 3' trt1 1 trt2 2; 
estimate 'Residu l' resid1 1; 
estimate 'Residu 2' resid2 1; 
estimate 'Residu 3' resid1 -1 resid2 -1; 
estimate 'Res 1 - 2' resid1 1 resid2 -1; 
estimate 'Res 1 - 3' resid1 2 resid2 1; 
estimate 'Res 2 - 3' resid1 1 resid2 2; 
estimate 'Permanent l' intercept 1 trt1 1 resid1 1; 
estimate 'Permanent 2' intercept 1 trt2 1 resid2 1; 

3 
6 

estimate 'Permanent 3' intercept 1 trt1 -1 trt2 -1 resid1 -1 resid2 -1; 
estimate 'Perm 1-2' trt1 1 resid1 1 trt2 -1 resid2 -1 
estimate 'Perm 1-3' trt1 2 trt2 1 resid1 2 resid2 1 
estimate 'Perm 2 - 3' trt1 1 trt2 2 resid1 1 resid2 2 
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Appendix I I Ie 
CODES FOR COMBINATION OF SET-TO-ZERO & SUM-TO-ZERO RESTRICTIONS 

proc sort;by cow; 
data two;set one; 
retain last_trt; 
resid1=O; 
resid2=O; 
if period ne 1 then do; 

if 1ast_trt=1 then resid1=1; 
if 1ast_trt=2 then resid2=1; 
if last_trt=3 then do; 

last_trt=trt; 

resid1=-1;resid2=-1; 
end;end; 

drop last_trt persqu; 

title1 'Sum-to-Zero Contraints on the residual effect'; 
title2 'Set-to-Zero contraints on the other effects'; 
title3 'This corresponds to an analysis of covariance'; 
proc glm;class square trt cow period; 

model milk=square cow(square) period(square) trt resid1 resid2/solution; 
lsmeans trt; * Direct effects are estimable 
estimate 'Residu l' resid1 1; 
estimate 'Residu 2' resid2 1; 
estimate 'Residu 3' resid1 -1 resid2 -1; 
estimate 'Residu 1 2' resid1 1 resid2 -1 
estimate 'Residu 1 - 3' resid1 2 resid2 1 
estimate 'Residu 2 - 3' resid1 1 resid2 2 
contrast 'Carryover SS' resid1 2 resid2 1, resid1 1 resid2 2; 

N 

& 

~ 
~ 

~ 
"" 
~ 
~ 

~ 

~ 
~. 

~ 
~. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/21



Appendix IV 

*--- Approximated degrees of freedom and 'naive' standard errors 
*--- in mixed models with special application to specific contrasts 
*--- in caryover designs and other contrasts that have at least two 
*--- components of variance in their expected mean squares. 
*-- Data from a Three-Period Crossover Design with Three Treatments 
*-- Source: Milliken and Johnson (1984) p 447 
* - - - - - - - - - - ~. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
data one; input period seq trt $ resid unit1-unit6; 

drop unit1-unit6; 
array n unit1-unit6; 

do over n; 
resp=n; unit=_I_; 

output; end; 
cards; 
1 1 a 0 20.1 23.3 23.4 19.7 19.2 22.2 
2 1 b 1 20.3 24.8 24.8 21.3 20.9 22.0 
3 1 c 2 25.6 28.7 28.3 25.7 25.9 26.2 
1 2 a 0 24.7 23.8 23.6 20.2 19.8 21.5 
2 2 c 1 29.4 28.7 26.4 26.2 23.7 25.5 
3 2 b 3 27.5 24.1 25.0 21.4 23.3 20.8 
1 3 b 0 24.3 26.4 19.9 23.9 20.5 21.8 
2 3 a 2 23.2 26.4 23.7 26.8 23.2 23.6 
3 3 c 1 30.1 32.3 25.5 30.8 26.3 29.1 
1 4 b 0 20.9 21.9 22.0 23.3 18.8 24.6 
2 4 c 2 27.5 28.6 27.4 30.7 27.9 29.8 
3 4 a 3 24.3 23.1 24.5 26.6 24.6 26.6 
1 5 c 0 24.0 25.9 25.5 27.9 25.3 25.7 
2 5 a 3 21.8 23.7 22.0 25.4 26.4 24.7 
3 5 b 1 21.6 23.9 23.4 24.4 25.8 24.9 
1 6 c 0 23.2 23.9 28.0 24.6 27.7 21.5 
2 6 b 3 18.9 21.5 25.3 22.7 23.5 18.1 
3 6 a 2 23.8 25.4 28.1 23.8 25.6 22.8 

data one; 
set one end=eof; 
numb+1; 
output; 

* The created design matches the sequence of effects in proc mixed 
* and in proc glm 
proc glmmod outdesign=x noprint; 

class seq trt unit period resid; 
model resp=resid period trt seq unit(seq); 

titlel 'Within and Between Experimental-Units' ; 
Title2 ' Analysis of Variance' ; 
proc glm data=one; 

class seq trt unit period resid; 
model resp=resid period trt seq unit(seq)/ss3; 
*------ Within Experimental-Units Carryover Estimat.es 
estimate 'Within Resid A-B' resid 0 1 -1; 
estimate 'Within Resid A-C' resid 0 1 0 -1; 
estimate 'within Resid B-C' resid 0 0 1 -1; 
*------ Between Experimental-Units Carryover Estimates begins --- ----; 
*- - - - -- - - -- - - -- - -- -- - - summerized form -- -- - - - - - -- -- -- - -- - -" -- - - - --- --
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* -- Differences between 'sequences' represent 2/3 of the actual ------
*--- carryover or residual difference 
*--- Then the desired differences are 3/2 times sequence contrasts----­
estimate 'Between Resid A-B' seq 0 18 0 -18 18 -18 

unit(seq) 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0 0 
-3 -3 -3 -3 -3 -3 3 3 3 3 3 3 -3 -3 -3 -3 -3 -3 

resid 0 12 -12 
/divisor~12; 

estimate 'Between Resid A-C' seq 18 0 18 -18 0 -18 
unit(seq) 3 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 

-3 -3 -3 -3 -3 -3 0 0 0 0 0 0 -3 -3 -3 -3 -3 -3 
resid 0 12 0 -12 

/divisor~12; 

estimate 'Between Resid B-C' seq 18 -18 18 0 -18 
unit(seq) 3 3 3 3 3 3 -3 -3 -3 -3 -3 -3 

3 3 3 3 3 3 0 0 0 0 0 0 -3 -3 -3 -3 -3 -3 
resid 0 0 12 -12 

/divisor~12; 
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