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MODELLING WITHIN-PLANT SPATIAL DEPENDENCIES OF COTTON 

YIELD 

E. B. Moserl , R. E. Macchiavelli2, and D. J. Boquet3 

IDept. Experimental Statistics and Louisiana Ag. Exper. Sta., Louisiana State 
University and LSU Ag. Center, Baton Rouge, LA 70803-5606, 2Dept. Experimental 
Statistics, LSU, and 3Louisiana Ag. Exper. Sta., Northeast Research Sta., P.O. Box 
438, St. Joseph, LA 71366 

Abstract 

In field experiments during 1987-1990, cotton plants were grown under 8 different levels 
of nitrogen application to assess the impact of nitrogen fertilization on the fruiting and 
yield distribution of cotton within the plant (Boquet et al. 1993).lr.dividual boll weights 
and average seedcotton yield were determined at each fruiting site fur each main-stem 
node along the plant. Various models of dependence and independence are possible to 
explain and account for the dependencies of the yields among the sites and nodes of the 
plant. Here we investigate models of total yield per node and yield per node adjusted for 
the number of sites using several models for the spatial dependence among the nodes. 
Typical univariate models would either assume a simple homogeneous error structure or a 
compound symmetry error structure among the nodes, leading to the split-plot-type mod
els. A multivariate unstructured approach ignores obvious spatial dependencies among the 
nodes. Spatial models and ante-dependence models permit a parsimonious summary of the 
error structure and are compared with the compound symmetry and multivariate models. 

Keywords: Geostatistics, Spatial Models, Variogram, Repeated Measures 

1. Introduction 

The capability to model and test hypotheses concerning repeated measures data has 
advanced rapidly over the past 1 ° years due primarily to the development of fast comput
ing hardware with large storage availability and to software development to handle the 
non-linear optimizations necessary for the estimation of model parameters. Previously, 
analysis of continuous repeated measures data made certain assumptions about the corre
lation or covariance structure among the set of repeated measurements, such as indepen
dence among measurements, equal correlations among the set of repeated measurements, 
which is also known as compound symmetry, or a completely unstructured dependence, 
which is the general multivariate analysis of repeated measures (see e.g., Crowder and 
Hand 1990, Moser et al. 1990, Lindsey 1993). The independence model might be appro
priate if the measurements are made sufficiently far apart in space or time such that a 
dependence among them is very minor. This, however, is usually counter to the reasons 
for designing an experiment or study using repeated measurements. The compound sym
metry model specifies a dependency structure but also assumes that the correlation among 
measurements made close in time or space have the same correlation as measurements 
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made far apart in time or space. This model might be appropriate for split-plot designed 
experiments where randomization leads to equal correlations among the treatment levels 
within main-plot units. This also includes some repeated measures experiments where 
time or space is not the repeated measures factor. However, most repeated measures 
experiments have restricted randomization since time or space cannot be reordered, and 
the dependence is related to the separation of the measurements in time or space. Lastly, 
the unstructured case handles any dependencies that might be present, including indepen
dence and compound symmetry as special cases, but at the same time does not exploit any 
structure that might be present in the ordering and spacing of the measurements. This can 
be important for several reasons. First, the number of independent observations or subjects 
in the experiment may be small relative to the number of parameters to be estimated in the 
unstructured case leading to low power for testing hypotheses about treatment effects. 
Second, the number of repeated measures (points in time or space) may be larger than the 
number of independent subjects leading to a singular estimated variance-covariance 
matrix and no tests of hypotheses about the treatment effects. 

This paper will explore alternatives to the traditional repeated measures models as pre
sented above and will look at criteria for choosing among them. These alternative models 
specify structures for the covariance matrix, and therefore, impose structure on the corre
lations among the set of repeated measurements, or they specify structure for the concen
tration matrix (inverse of the covariance matrix), which imposes structure on the partial 
correlations among the set of repeated measurements. These models typically use few 
parameters for the specification of the dependence and heterogeneity structure, especially 
compared with the unstructured multivariate model, and so lose fewer degrees of freedom 
while providing a parsimonious model for the association among the set of repeated mea
surements. 

2. The Data Set 

Field experiments were conducted during 1987 to 1990 at the Northeast Research Station 
near St. Joseph, LA, a unit of the Louisiana Agricultural Experiment Station, Louisiana 
Agricultural Center, to study the effects of nitrogen fertilization (NRATE) on fruiting and 
yield distribution of cotton within the plant (Boquet et al. 1993). Many studies have 
focused on the effects of fertilizer nitrogen rates on total cotton yields or average boll 
weights per plant. This study was undertaken to learn more about how in-field nitrogen 
fertilization affects the distribution of cotton within a plant. 

The experimental design was a randomized complete block with four blocks containing 
eight NRATE levels. Individual plots consisted of eight, 19-m long rows with a 1 m inter
row spacing. The treatments were preplant NRATE levels of 0,28,56,84, 112, 140, and 

168 kg ha- 1, NRATE=1,2, ... ,7, and a preplant plus sidedress application of 56 + 56 kg 

nitrogen ha-1, NRATE=9. All fertilizer treatments were maintained on the same plots for 
the four years of the study. Twenty randomly selected plants within each plot were identi
fied during mid-July and during harvest time these plants were hand-harvested and the 
location of the boll on the plant was recorded. Boll location was identified according to the 
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sympodial branch number, referred to as NODE in this paper, and to the fruiting site 
within the branch (FS) (see Munroe and Farbrother 1969). Average boll weight was deter
mined by dividing the total seedcotton weight by the actual number of bolls harvested at a 
given fruiting site on a given plot. For the purposes of this paper, an average was com
puted for each NODE and the effect of fruiting site within NODE was ignored. In the orig
inal analysis by Boquet et al. (1993) a strip-plot model using compound symmetry 
structures was used to consider both FS and NODE, but where NODE had been compos
ited to 1 of 3 plant horizons. Only the 1990 data are used here. 

3. Covariance and Concentration Matrix Structures 

Statistical analysis and modelling were accomplished using SAS software including 
PROC MIXED in SAS/STAT (SAS Institute 1992) and PROC IML in SASIIML (SAS 
Institute 1989). PROC MIXED can fit a variety of covariance structures using maximum 
likelihood (ML) or restricted maximum likelihood (REML) and was used to fit all but the 
ante-dependence structures. We modelled the data as 

Y .. = II +'t.+ A +E .. 
-I} r: -I t:) -lj 

(1) 

where Yij is a vector of the average boll weights on the 11 NODEs, e- is the overall mean 

vector, 't. is the vector of effects of the ith level of NRATE, i = 1 ... 8, A. is the vector of 
-I ~ 

the l·th block effect, ,. = 1 ... 4, and E .. is the vector of residuals from the ith NRATE 
-I} 

level of the jth block. This gives an 11 x 11 covariance matrix for the Var(Yi) and 

Va r( E .. ) . Notice that in this model we are using a narrow inference space for the blocks so 
-lj 

they appear like a fixed effect in the analysis. We will be assuming that 

Y .. - NII(II + 'to + A., L), which implies E .. - NII(O, L). We could also write the above 
-I} r: -I t:} -I}_ 

multivariate model as a univariate model 

(2) 

where the Oil are the subject or plant residuals, v k is the effect of the kth node, 

k = 8 ... 18, and now Ei)k are the residuals from each node within plants. PROC MIXED 

uses the model (2) formulation and fits the Oil using the "SUBJECT=" option of the 

REPEATED statement. The REPEATED statement is also used to impose a covariance 
structure on the Ei)k using the "TYPE=" option (SAS Institute 1992). 

Let I be an 11 x 11 identity matrix and let J be an 11 x 11 matrix with all elements 1. 

Several models for the covariance, Var(E .. ) = L, or concentration matrix, L-I , structure 
-lj 

were tried including simple, 

2 
L = Ci I, (3) 
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compound symmetry, 

2 
L = 0" 1+ SJ, (4) 

and completely unstructured, 

0"1,1 0"1,2 ... 0"1,11 

L= 0"2,2 ... 0"2, 11 (5) 

which are the structures discussed earlier. We also fit the first-order autoregressive struc
ture, 

L = _11_ 
1- p2 

2 10 
1 P P ... P 

1 P p9 

1 

(6) 

where p is the first-order autocorrelation parameter. Since this is a model of conditional 

independence, the concentration matrix (L-1 ) has a very insightful structure, 

1 -p 0 0 0 

1 
1 + p2 -p 0 0 

L-1 = - 0 0 (7) 
11 

1 + p2 _p 

1 

which has as the first minor diagonal -p and all other minor diagonals are zero. The zeros 
imply conditional independence between those measurements given the intermediate 

measurements. The Cholesky decomposition L-1 = A' A has the structure 

~ 0 o ... 0 0 

1 -p 1 o ... 0 0 
A = - 0 -p 1 ... 0 0' (8) 

JTJ 
0 0 o ... -p 1 
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which we will show for the fitted data. 

The rth-order ante-dependence structures can also be defined in terms of the Cholesky 

decomposition L-1 = A'A. Define A to have elements a ij such that 

j = i 
i-ri <5:j<i 

elsewhere 

for i, j = 1 ... 11 . For a constant-order ante-dependence model of order s, 

(9) 

ri = min(i - 1, s) , while a variable-order ante-dependence model (Macchiavelli and 

Arnold 1994) is only restricted such that 0 <5: ri <5: i-I. The concentration matrix for the 

ante-dependence model looks very similar to that of the autoregressive structure except 
that the parameters along the main diagonal and along the minor diagonals are not con
strained to be the same. Here we assumed that the dependence was such that lower nodes 
were affecting boll weights higher on the plant but the model will fit exactly the same if 
we assume the dependence is from top to bottom. The ante-dependence model does 
require, however, that the ordering of the nodes from top to bottom or bottom to top be 
preserved. Although PROC MIXED does not fit the general ante-dependence structures, 
they can be fit using conditional regression methods (see Macchiavelli 1992, Macchiavelli 
and Arnold 1994) and then the estimated covariance parameters used by PROC MIXED 
for testing. 

Both the autoregressive model and the ante-dependence model permit a smooth decay of 
the dependence among the repeated measurements with increasing distance or time. The 
ante-dependence model, however, permits different conditional variances and partial asso
ciations at each time period. This permits modelling of unequally spaced time periods or 
locations, while the autoregressive model will require equal spacing due to the homoge
neous parameter structure. The ante-dependence model is also nice in that it gives us a rea
sonable way of incorporating time-varying covariates in the covariance structure 
(Macchiavelli and Moser 1994). 

Spatial models from geostatistics were also fit as these too provide explanations of the 
covariance structure as a function of the distance or time separating repeated measure
ments. Let dij be the distance between two nodes i and j where we define dij == Ii - jl , and 

let (Jij be the i,jth element of L. The geostatistical or spatial covariance structures fit 

included the linear structure 

(Jij = (J2 (1 - adi) 

for adij <5: 2 and zero otherwise, the linear log 

(10) 

(11) 
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for alog(di) ::; 2 and zero otherwise, the exponential 

(12) 

the Gaussian 

(j .. = (j2 (exp(-d~./a2)) , 
lJ lJ 

(13) 

the spherical 

(j .. = (j2 (1 - (3d .. ) / (2a) - d~./ (2a3) ) 
lJ lJ lJ 

(14) 

for dij ::; a and zero otherwise, and the power law model 

(15) 

For the exponential, Gaussian, and spherical models, the parameter (j2 is called the sill 

and a is called the range using geostatistical nomenclature. We can also add a nugget 

parameter 9 2 to each spatial structure using the LOCAL option of the REPEATED state
ment in PROC MIXED. Although PROC MIXED of SAS/STAT can fit each of these spa
tial models, macros written in SASIIML were also used to provide some diagnostic 
information for these spatial models. 

4. Results 

The observed correlation matrix of residuals from the multivariate model is presented in 
Table 1 (upper triangle) and suggests some interesting relationships among the nodal boll 
weights. It appears that there is generally a positive association among the residuals of 
adjacent nodes while residuals separated a great distance have little linear association. The 
partial correlations given intermediate nodes (Table 1, lower triangle) also suggest that 
much of the dependency among nodes can be explained by their relationship with nearby 
nodes. However, if we look at the rows corresponding to nodes 14 through 17 we see that 
the partial correlations indicate that dependencies for these nodes can extend to the lowest 
nodes. This suggests a variable order ante-dependence model. 

The Cholesky decomposition of the concentration matrix (Table 2) indicates that a condi
tional independence model accounting for first-order relationships is probably needed and 
that the conditional variances are not highly unequal. Note that many off-diagonal ele
ments in the lower-triangle are near zero suggesting that some type of conditional inde
pendence model could be appropriate. The table of partial correlations given intermediate 
values (Table 1, lower triangle) is a better device for helping with the model selection as 
the concentration matrix gives partial covariances given all other nodes. The observed 
concentration matrix, however, could be useful in examining model fit. 
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To help choose among the covariance structures, penalized likelihood criteria were used. 
The Akaike's AIC and Schwarz's BIC criteria were shown by Macchiavelli (1992) to be 
useful for selecting the order of ante-dependence and have been used routinely for model 
selection in general. We can write these criteria in the form 

(16) 

where k indexes the model under consideration, dk is the number of covariance parame

ters in the kth model, 10gLk is the log-likelihood evaluated at the maximum likelihood 

estimates, and c(n) = 2 for AIC and c(n) = logn for BIC. For this data set n = 32, 
which is the number of independent observations in the data set (the number of plots or 
"plants"). The values for AlC and BIC for the various models fit are given in Table 3. The 
variable-order ante-dependence model appearing in the table is the BIC-optimal one 
among all variable-order ante-dependence models. Note that the values ofBIC reported by 
PROC MIXED differ from those reported here as the formula used therein takes n to be 
the total number of observations used in the analysis rather than the number of indepen
dent observations. Also note that the ordering of the models based upon the information 
criteria does not need to be the same as the penalties are quite different. To help discrimi
nate among the various spatial models the empirical semi-variogram was constructed 
using SASIIML routines (Figure 1). The figure confirms that any of the spatial models that 
include a nugget effect could be appropriate, although one might wish to force some 
asymptote (the sill) on these data. We also examined plots of residuals as a function of the 
fixed effects to look for any outliers or other troublesome features. We did encounter some 
numerical problems with PROC MIXED in the estimation and stability of the parameters 
for some of the models, but we believe that the likelihood values reported are reasonably 
accurate. 

The linear with nugget spatial structure was used to compute least-squares means and to 
test model reduction hypotheses. This model was selected based upon the BIC criterion 
but other structures could also have been used (see the discussion below). The overall tests 
for the fixed effects hypotheses indicate that an interaction between NRATE and NODE is 
occurring although the F value is not very large (Table 4). To further investigate these 
effects, various fixed-effects models were constructed for fitting linear and quadratic terms 
for NRATE, NODE, and their interaction. Quasi-Type II hypotheses were constructed by 
using the HTYPE=1 option on the PROC MIXED MODEL statement, appropriate order
ing of the model effects, and then making several runs under different orderings. These 
results are given in Table 4 under the Type I F column. Although they are labelled under 
the TYPE I F column, the NRATE terms were fitted following NODE, and the NODE 
terms were fit after the NRATE term using separate runs resulting in the quasi-Type II 
hypotheses. Otherwise, the order is as listed. Note also that in this version of PROC 
MIXED, the denominator degrees of freedom for the spatial factors are not reduced by the 
between-subjects degrees of freedom. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/19



Applied Statistics in Agriculture 253 

The least-squares means were used to understand some of the effects highlighted in the 
previous section. We used adjusted means due to the unbalanced nature of yields over the 
fruiting locations on a plant. We did not consider absence of yield at a location on a plot to 
be zero yield. This component will be modelled in a separate analysis. Plots of the interac
tion least-squares means certainly indicate the presence of interactions but the general 
main effect trends seem to hold (Figures 2 and 3). It is easy to see why there is a signifi
cant interaction lack-of-fit from fitting linear and quadratic polynomials as the NRATE 
effect is not well modelled by these terms (Figures 2 and 4). The problems appear particu
larly important at the 5th, 6th, and 7th NRATE levels corresponding with 112, 140, and 

168 kg ha -1. These highest levels of nitrogen may be changing the way the fruiting on the 
plant responds with increasing nitrogen. See Boquet et al. (1993) for a discussion of these 
effects. The main effect of NODE appears suitable for modelling with simple polynomials 
and supports the fixed effects tests reported earlier (Figure 5). 

5. Discussion 

The most immediate result that we get from the model selection analysis is that any model 
of independence is not good. These models have zeros in off-diagonal positions in L 

while conditional independence models have zeros in off-diagonal positions in L-l. The 
best fitting model using the AIC criterion was the variable-order ante-dependence model. 
Note that AIC, however, does not impose as strong of a penalty as BIC. When BIC is used 
the best fitting models appear to be the linear with nugget and Gaussian with nugget spa
tial covariance structures. However, using BIC, all spatial structures with a nugget fit 
about equally well and the variable-order ante-dependence model also fit well. Using AIC 
all ante-dependence models with order larger than zero fit reasonably well. Also note that 
the autoregressive model does not fit especially well and may suggest that a heterogeneous 
structure might be more appropriate. A test comparing two models using AIC is possible 
(see Linhart 1988), but requires knowledge of the asymptotic covariance matrix of param
eter estimates. We used the AIC and BIC criteria as measures of fit as opposed to tests, per 
se. We believe that additional criteria should also be used. The variogram structures and 
conditional independence structures each imply different aspects of the biology of the 
fruiting of cotton and so selection of a model should also consider the biological implica
tions of the model. These considerations will be explored further in later work. 

Some interesting information derived from the variable-order ante-dependence model is 
the result that low order nodes (low on the plant) have very local dependencies, while 
nodes located higher up on the plant have dependencies all the way to the bottom or near 
the bottom of the plant. We will investigate this result further in terms of the physiology of 
the cotton plant. The dependencies may be related to the way in which the cotton plant 
adds bolls as it grows. Note that the spatial models, although they appear to fit well, make 
an assumption of a covariance process that does not depend upon the node but depends 
only upon the distance between nodes (stationarity). Thus, if the dependencies change 
with the location, the ante-dependence models might be more appropriate and would cer
tainly be much more flexible. More work is needed here to determine whether or not the 
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variable-order ante-dependence models are fitting signal or noise. For the spatial models, 
we have assumed that the distance between nodes is given by the difference between the 
node numbers. Distances might better be determined in terms of the plant's physiology. 
An advantage of the ante-dependence model is that it uses only the orderings of the nodes 
and does not require that the distance between nodes be explicitly determined. Lastly, we 
have not included the effects of the years of sampling since only 1 year was analyzed for 
this paper. In addition, the REP effect could be handled as a random component in a mixed 
models approach. The more interesting addition, however, will be adapting these methods 
to handle 2 repeated measures factors, the NODE and the fruiting sites within nodes. 

Our goal in using spatial models for the cotton data are several. First, depending upon how 
far the traditional split-plot models deviate from the compound-symmetry structure, spa
tial models may be much more efficient and provide more powerful tests of hypotheses of 
interest. Second, the spatial models may provide insight into the biology or physiology of 
cotton fruiting by describing the relationships among fruiting sites. Lastly, spatial models 
can be used to make predictions of yields at fruiting locations, where the predictions 
exploit knowledge of yields at lower order nodes. This could be very useful in growth and 
yield models for cotton plants during the growing season. 

6. Summary 

Geostatistical spatial models were fit to repeated measures data of within-plant boll aver
age boll weights, where the spatial locations were taken as the sympodial branch NODE 
along the stem. Generally these models fit well, particularly when compared with standard 
approaches that might use an independence or split-plot model. The Gaussian spatial 
structure including a nugget fit well according to the AIC and BIC information criteria. 
Ante-dependence models were also fit to the same data. These models exploit the ordering 
of the nodes along the plant but make no requirement about their spatial coordinates. 
Fixed-order ante-dependence models did not fit as well as the spatial models, due to the 
larger number of parameters in the models. However, the variable order ante-dependence 
model had the smallest AIC value of all models and also had a competitive BIC value. 
This model indicated that low-order nodes were dependent at most upon previous nodes, 
while nodes much higher on the stem (Node 14 and above) were dependent upon most of 
the lower-order nodes. Thus, the variable order ante-dependence model accounts much 
better for the growth and physiology of the plant than the isotropic spatial models. 
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TABLE 1. Correlations (upper triangle) and partial correlations given 
intermediate nodes (lower triangle) of residuals computed from the multivariate 
model imposing no covariance restrictions. 

Node 8 9 10 11 12 13 14 15 16 17 18 

8 1.00 0.74 0.57 0.34 0.33 0.20 0.55 0.08 0.06 0.13 0.11 

9 0.74 1.00 0.67 0.49 0.21 0.31 0.21 -0.19 0.10 -0.11 -0.02 

10 0.15 0.67 1.00 0.52 0.11 0.15 0.24 -0.09 0.02 0.15 0.15 

11 -0.07 0.22 0.52 1.00 0.32 0.45 0.16 0.12 0.39 0.28 0.20 

12 0.31 0.12 -0.07 0.32 1.00 0.32 0.48 0.44 0.47 0.55 0.31 

13 -0.06 0.20 -0.11 0.39 0.32 1.00 0.40 0.60 0.61 0.32 0.50 

14 0.61 -0.09 0.31 -0.13 0.41 0.40 1.00 0.51 0.43 0.61 0.52 

15 0.34 -0.53 -0.23 -0.28 0.20 0.50 0.51 1.00 0.46 0.68 0.72 

16 -0.28 -0.16 -0.25 0.11 0.29 0.45 0.26 0.46 1.00 0.52 0.31 

17 -0.23 -0.31 0.15 0.36 0.21 -0.41 0.37 0.59 0.52 1.00 0.67 

18 -0.27 0.02 0.10 0.00 -0.17 0.33 0.16 0.50 -0.07 0.68 1.00 

TABLE 2. The Cholesky decomposition A of the rescaled concentration matrix of 
residuals computed from the multivariate model imposing no covariance 

restrictions. Multiply the matrix A' A by 1.73 to get L-l. 

Node 8 9 10 11 12 13 14 15 16 17 18 

8 1.00 

9 -0.44 0.44 

10 -0.01 -0.31 0.46 

11 -0.09 -0.05 -0.23 0.41 

12 0.00 -0.15 0.02 -0.08 0.39 

13 0.20 -0.17 -0.04 -0.25 -0.02 0.45 

14 -0.29 -0.08 -0.10 0.06 -0.06 -0.04 0.30 

15 -0.20 0.11 0.11 0.15 -0.03 -0.14 -0.01 0.31 

16 0.08 0.01 0.07 0.00 -0.03 -0.16 -0.04 -0.05 0.21 

17 0.06 0.14 -0.04 -0.15 -0.11 0.20 -0.11 -0.10 -0.15 0.30 

18 0.09 -0.00 -0.03 -0.00 0.05 -0.10 -0.05 -0.14 0.02 -0.17 0.19 
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TABLE 3. Model selection results for the various covariance structures using the 
Akaike's AIC and Schwarz's BIC information criteria. NC indicates that PROC 
MIXED did not converge and NA in the TYPE column indicates that the 
covariance structure is not available in PROC MIXED. 

Covariance Structure TYPE d~ AIC BIC 
Unstructured UN 66 -810.0 -858.4 
Simple (Independence) SIM 1 -876.6 -877.3 
Compound Symmetry CS 2 -845.9 -847.4 
Autoregressive Order 1 AR(l) 2 -836.8 -838.2 
Ante-dependence Order 0 UN(l) 11 -868.1 -876.2 
Ante-dependence Order 1 NA 21 -826.4 -841.8 
Ante-dependence Order 2 NA 30 -818.5 -840.5 
Ante-dependence Order 6 NA 56 -807.6 -848.6 
Ante-dependence Variable Order NA 43 -799.9 -831.4 
Orders= {OIl 1 1 2 6 7 4 6 3 } 
Spatial Linear SP(LIN) 2 -871.7 -873.2 
Spatial Linear with Nugget SP(LIN) 3 -823.6 -825.8 
Spatial Linear log SP(LINL) 2 NC NC 
Spatial Linear log with Nugget SP(LINL) 3 -827.1 -829.3 
Spatial Exponential SP(EXP) 2 -836.8 -838.3 
Spatial Exponential with Nugget SP(EXP) 3 -825.3 -827.5 
Spatial Gaussian SP(GAU) 2 -850.7 -852.2 
Spatial Gaussian with Nugget SP(GAU) 3 -823.5 -825.7 
Spatial Spherical SP(SPH) 2 -877.6 -879.0 
Spatial Spherical with Nugget SP(SPH) 3 -824.2 -826.4 

TABLE 4. Fixed-effects tests of hypotheses. NDF and DDF are numerator and 
denominator degrees of freedom, respectively. The sidedress NRATE level has 
been removed from the NRATE linear, quadratic, and lack of fit tests. 

Source NDF DDF Type I F Type III F Pr>F 
REP 3 21 20.79 U.UOOU 
NRATE 7 21 3.46 0.0347 

Linear 1 21 0.11 0.7412 
Quadratic 1 21 9.81 0.0019 
Lack of fit 4 21 3.30 0.0117 

NODE 10 255 59.78 0.0000 
Linear 1 255 521.04 0.0000 
Quadratic 1 255 62.89 0.0000 
Lack of fit 8 255 1.06 0.3946 

NRATE*NODE 69 255 1.93 0.0001 
Linear by Linear 1 255 21.69 0.0000 
Linear by Quadratic 1 255 0.00 0.9814 
Quadratic by Linear 1 255 0.03 0.8729 
Quadratic by Quadratic 1 255 0.00 0.9711 
Lack of fit 63 255 1.68 0.0027 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/19



258 Kansas State University 

FIGURE 1. Empirical semi-variogram constructed from the residuals from the 
completely unstructured covariance model. Note that the fixed effects model 
components have been removed (de-trended). 
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FIGURE 2. Interaction of NRATE with NODE as plotted using least-squares boll 
weight means. See the text for NRATE levels. 
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FIGURE 3. Interaction of NRATE with NODE as plotted using least-squares boll 
weight means. NRATE levels are the different lines. 
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FIGURE 4. Main effect of NRATE plotted as least-squares boll weight means. See 
the text for NRATE levels. 
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FIGURE 5. Main effect of NODE plotted using the least-squares boll weight 
means. 
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