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FITTING BOLE-VOLUME EQUATIONS 

TO SPATIALLY CORRELATED WITHIN-TREE DATA 

Timothy G. Gregoire and Oliver Schabenberger 

College of Forestry and Wildlife Resources 

Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061-0324 U. S. A. 

Abstract 

Equations to predict the volume of an individual tree bole between stump height 

and the height at which its diameter has tapered to a specified minimum are common 

in forestry. When fitting such a regression equation, a sample of trees which span the 

range of sizes needed for eventual application of the equation is selected. Bole diameter 

is measured at ascending heights on the bole. Each tree, therefore, contributes multiple 

measurements to the data fitted to the equation. In contrast to past practice, we model 

these data in a manner which accounts for the likely spatial correlation among 

measurements within a tree. The resulting mixed-effects nonlinear model is fitted by 

REML and also by generalized estimating equations (GEE). Results from the two 

approaches are nearly identical, which suggests that the computationally less demanding 

GEE may be acceptable as a routine alternative to a fully parameterized approach. 

Keywords: nonlinear modeling, mixed-effects models, REML, GEE. 

Introduction 

When trees are harvested for eventual conversion into wood and fiber products, the 

felled trees are delimbed and their tips are severed at a point above which the bole 

diameter is too small to convert to a merchantable product economically. For purposes 

of forest inventory and planning, it is useful to have bole-volume equations to predict 

the volume of trees while standing, regardless of whether they eventually will be 

harvested. Typically, a linear or nonlinear regression model is fitted to a cross-section 

of trees for this purpose, using stem basal diameter and some measure of stem height as 
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covariates with each measure of bole volume. Of course, the merchantable volume of 

the bole depends, too, on the upper-bole diameter which establishes the merchantability 

limit. Because this limit varies depending on the anticipated end-use product, it has 

changed over time in accordance with technological advances in milling and with 

changing economic value of the raw material. 

In the past it has been common practice to fit a new bole-volume equation, as 

required, in response to changes in the upper-bole merchantability limit. A recent 

trend has been to include the upper-bole diameter limit as an additional covariate in 

the volume equation, thereby making it possible to use a single equation to predict 

merchantable volume to any upper-bole diameter. 

To illustrate the modeling task, we have graphed the cumulative volume in two 

sweet gum (Liquidambar styraciflua L.) trees between stump height to stem tip versus 

the diameter of the bole, as measured at roughly 3 foot intervals (Figure 1). Even when 

comparing just these two trees, it is immediately obvious that cumulative volume to a 

specified upper diameter, say d) varies among trees principally due to the differences in 

their basal diameters, D, and stem height, H. The modeling task is to adequately 

express cumulative volume as a function of d, D, and H. In forestry parlance, D is 

known as diameter-at-breast-height, and it is this diameter which is used to compute a 

tree's basal area, i.e., its cross-sectional area at breast height. Thus, D=O for a tree 

shorter than breast height, yet it has finite bole volume. 

In Figure 2 we show the empirical volume functions after standardizing both axes 

to a 0-1 scale, which serves to emphasize the similarity of cumulative bole volume to 

cumulative distribution functions in general. While the diameter of a tree bole tapers 

with increasing height above ground, the taper is neither smooth nor monotonic, and it 

may vary greatly among trees, again as evidenced by comparing just the two trees 

shown in the graphs. It is worthwhile to note, too, that these empirical cumulative 

volume functions display a general sigmoidal shape, which is characteristic of many 

biological growth functions (Seber and Wild, 1989). Inasmuch as the diameter of a 

stem at a particular height depends jointly upon stand density and tree age, the 

interpretation of cumulative volume as a growth curve seems reasonable. 

To amplify what was stated above, the goal is to express cumulative bole volume 

as a smooth curve while allowing for fluctuations within and among trees as much as 

possible, yet allowing for the curve's applicability to all trees of the species with similar 

morphological characteristics. The primary objective is to provide an equation to 

predict the bole volume of a standing tree to a stipulated upper-bole diameter, based on 

easily obtained measurements of its basal diameter and total height. 
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Customary Model 

While forest researchers have fitted a number of equations to date for this purpose, 

we initially consider the equation presented by Amateis and Burkhart (1987) as an 

example, because it or slight variations of it appear to be the most commonly used. 

where 

Vd = E[Vd] + € 

= VoR + € 

V d = bole volume to upper-bole diameter, d 

V 0 = total bole volume 

= bO + b1X 

R = 1 + b2 db3jDb4 

X = D2H 

and D is diameter at breast height (4.5 feet aboveground), H is height of the tree, as 

defined earlier. 

(1) 

The expression for total bole volume, VO' has had widespread use in forestry. The 

adjoining term, R, expresses the ratio of merchantable to total bole volume. Its 

construction ensures that R= 1 when d=O at the tree tip, thereby providing that 

V d = Vo at that point. 

Typically the two components of V d' namely Vo and R, have been fitted 

separately. It is reasonable to assume that the joint estimation of its parameters would 

be more efficient and provide more efficient predictions of V d. The data to which the 

model is fitted comprise a selection of, say n, trees, each of which is felled and measured 

at various intervals along the bole. That is, for the ith tree, i=l, ... ,n, there are mi 

measurements of bole diameter at various heights along the bole, culminating at the tip. 

The volume of each bole section is computed and cumulated to provide the volume 

from ground (or stump height) to the top of the section. The correlation among 

measurements on the bole has always been ignored, - a fact which provided the 

impetus to our effort. 

A parsimonious way to model within-tree correlation directly is as a continuous 

autocorrelation, namely 

(2) 
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where Sijk is some distance metric separating the jth and kth measurements on the ith 

tree bole, and p is the autocorrelation parameter to be estimated. Diggle (1988), among 

others, has suggested such an approach when observations are unequally spaced, as they 

are in this setting. While this approach accounts for the likely serial correlation of 

measurements along the tree bole, the coefficients of the model retain an interpretation 

in terms of average behavior; i.e. the cumulative volume for an individual tree can be 

fitted only as precisely, as the tree's taper coincides with the average in the population 

under scrutiny. 

To model an individual tree's growth pattern more closely while retaining 

generality, an alternative approach is to let one or more of the parameters vary 

randomly among trees. It is assumed that the effect of the within-tree correlation on 

the marginal covariance will be adequately modeled by the random effects structure 

(Lindstrom and Bates, 1990). With the random parameters approach, one allows each 

subject tree to depart from the population average, essentially fitting the model indivi

dually to each tree. Jones (1990) noted that modeling the covariance structure directly 

or through random parameters indirectly will often be equally effective in accounting for 

serial correlation among the measurements. Gregoire, Schabenberger, and Barrett 

(1994) encountered this, too, in an earlier investigation unrelated to the present one. 

By assuming one or both parameters of V 0 are random, the correlations among 

observations taken along a tree bole will be a function of d, the metameter on which 

serial correlation likely depends. For this reason, we adopted the random parameters 

approach in the present work. 

Mixed-effects Model 
Starting from the fixed-effects model, (1), we allowed for the possibility that bo, 

b l , or both were random. To account for inflection in the observed trend of cumulative 

volume, we replaced R in (1) by 

R _ t!32 + ( !33t /2 

- 1 + (!33t/2 

where t = 1- diD. This is a particular form of a curve that Seber and Wild (1989) 

attribute to Morgan et al. (1975), who studied growth response to nutritional uptake. 

Note that (3) collapses to unity at d= 0, thereby preserving V d = Vo at the tip of the 

bole. The respecified model is 

(3) 
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(4) 

where 10 ~ N(O, a5), 11 ~ N( 0, ai), COV(/O"l)=O; /3k' k=0, ... ,3, are fixed para

meters; €ij ~ N( 0, a 2'); and E[€ij€ik] = 0 for all distinct pairs, j,k = 1, ... ,mi' To 

complete the specification, we assume observations from distinct trees are mutually 

uncorrelated. For notational convenience, we re-express (4) as 

(5) 

where Q represents the set of covariates, X, d, D; fJ = [/30' ... , /33]'; and 'Y = [10' 11]'. 

Methods 

A number of methods have been proposed to fit mixed-effects nonlinear models, 

notably by Sheiner and Beal (1980), Lindstrom and Bates (1990), Vonesh and Carter 

(1992), and Davidian and Gallant (1993). In Davidian and Gallant's approach, no 

parametric assumption is made about the form of the random effects distribution, 

except that it is smooth. They develop maximum likelihood estimation of the fixed 

parameters together with the density of the random effects, using a series expansion 

derived from the smoothness assumption coupled with quadrature to compute the 

likelihood. Vonesh and Carter consider a model where the random effects enter linearly 

into f(Q; /3, 'Y), and they use iteratively reweighted least squares to obtain consistent 

estimators of fJ and the covariance parameters. Davidian and Giltinan (1993) use a 

similar method to fit heteroscedastic random coefficient models. Another approach is to 

approximate the marginal distribution of the response vector by expanding f(Q; fJ, 'Y) in 

a first-order Taylor series, as did Sheiner and Beal, and Lindstrom and Bates. 

A first-order Taylor expansion of our model, (4), around the values fJ*, 'Y* gives 

the approximating linear function as 

where 

(6) 
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zij = [ ~~~) , ... , ~~~)] 

a = (3 - (3* 

and 

T = , - ,*. 
The derivative expressions signify the partial derivative with respect to the indicated 

parameter, evaluated at the starred value. For notational convenience, we have omitted 

showing the dependence of f( • ) on (3, ,. 

When dealing with random effects, a choice has to be made whether to expand 

around their expected values or around their current BLUPs. Sheiner and Beal (1992) 

adopted the former; while Lindstrom and Bates (1990) adopted the latter. To date, 

there is little consensus as to the relative merits of the competing approaches. We 

examined both. 

The expansion of (4) effectively converts it to the linear mixed-model for 

longitudinal data popularized by Laird and Ware (1982). Therefore, it is comparatively 

easy to fit owing to the ready availability of computer code tailored to this task. We 

chose Proc Mixed of SAS and obtained the empirical BL UP of I and the REML 

estimates of the unknown parameters, in an iterative fashion. Our iterative solution is 

outlined as follows: 

Step 

o 

1 

2 

Task 

Obtain initial values (3* and ,* to start the iteration. 

With (3* and ,*, evaluate Y dij' Zij' Wij for each observation. 

Fit (6) with Proc Mixed to obtain estimates of a, T, and 

~=cov( T), which are denoted by a, r, and ii. 
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Obtain updated estimates fJ* and solutions '1* from the 

current estimates ii, T, and Li. 

Repeat Steps 1, 2, 3 until the change in the observed 

likelihood or the covariance matrix Li is inconsequential. 

The matrix and macro programming languages of SAS were used extensively to 

implement this algorithm, in addition to Proc Mixed. 

Finally, we took two approaches to step O. In the first, we fitted the fixed-effects 

version of (4) by nonlinear least squares. The resulting estimates of fJ were used as 

initial values, fJ*, while '1* was set to zero. In the second approach, we fitted model (4) 

using generalized estimating equations (GEE) with an expansion around '1*= E['Y] =0 

and moment estimation for~. We discuss the GEE approach more fully in the next 

section. 

Regardless of the method used in step 0, the outlined procedure constitutes a 

nested iterative algorithm in steps 1-3: the outer iteration comprises steps 1 through 3, 

the inner iteration step 2. 

Generalized Estimating Equations 

An estimating function-based approach (Godambe 1960) has been promoted for the 

analysis of longitudinal quantal response data by Liang and Zeger (1986). It is based on 

an estimating function which involves only the first two marginal moments of the 

response distribution, and it is semi-parametric in that higher-order moments are 

unspecified. Zeger, Liang and Albert (1988) demonstrated the applicability of this 

approach to generalized linear mixed models, again focusing on quantal responses. This 

section briefly discusses how the estimating equations can be utilized for non-linear 

continuous response models. 

The key idea of Zeger, Liang and Albert (1988) is to approximate the marginal 

moments from the ones conditioned on the random parameters. To do so, we take a 

first-order Taylor-series expansion of (5) around E['Y]= o. Similarly we approximate 

the marginal variance by expanding the right hand side of 

around E['Y]' Consequently, E[V dij] == f(Q; P,O) and 
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where the derivatives are evaluated at E[-y]. Put Yi and pJor the approximated mean 

and expectation (mi xl) vectors, and Vi for the (mi x mi) covariance matrix for the ith 

subject, and let Pi = 8pJ8f3 be the (mix 4) gradient matrix. The generalized 

estimating equations for f31::Y become 

These equations are solved iteratively, and in this application we chose a Newton

Raphson algorithm with Fisher scoring. Since the estimates (j depend on Var( -y), and 

because no distributional assumption was made, a moment estimator is used to update 

E after each iteration. The structure of Vi suggests the following estimators 

(;2 = ~ t (Yi - IJi)'Vi1(Yi - IJi) 
i=1 

E = ~t(LiLi)-1L/i((Yi-lJi)(Yi-IJJ-(;2I) Li(LiLi)-1. 
1=1 

Following the main result in Liang and Zeger (1986), (j will be asymptotically unbiased 

and Gaussian distributed, provided E and (7"2 are estimated consistently. At 

convergence of the algorithm, solutions for the random effects are obtained as in the full 

parametric implementation. 

As an estimation method for step 0, nonlinear least squares produces only 

estimates of the fixed effect parameters. GEE, as an alternative, provide these, plus 

solutions for the random terms in the model, and the variance-covariance matrix,~. If 

the GEE estimates and solutions are reasonable, the following steps 1-3 can be expected 

to converge more rapidly and more reliably than when using solely the fixed effects 

estimates of nonlinear least squares. 

The generalized estimating equations account for the serial dependency in the 

data and individualize the model fit through the BLUP's. If'&' estimates ~ well, the 

estimates and solutions will not differ much from the full parametric implementation. 

As is always the case with moment estimators, this depends heavily on the sample size. 

Asymptotically, the semi-parametric and the parametric approach are equivalent. 
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Thus, provided sample sizes are not too small, GEE constitutes an analytical method in 

its own right that meets the goals of this investigation. Since ~ is a rather simple 

estimator, the algorithm is computationally much less demanding than a maximization 

of a likelihood function with respect to the elements of l!;.. 

Results 

The trees profiled in Figures 1 and 2 were two of 39 trees which were felled and 

measured for the purpose of developing a bole-volume prediction equation for sweetgum 

in the East Texas region. Tree heights (H) ranged from 59 to 107 feet, averaging 91 

feet; tree basal diameters (D) ranged from 5.8 to 29.7 inches, averaging 16.8 inches; and 

their total bole volumes (VO) ranged from 6 to 201 ft 3, averaging 73 ft3. The 

outside-bark diameter of each stem was measured at 3 foot intervals along the felled 

stem and the volume of each three-foot section was computed as the product of its 

length with its average cross-sectional area. There was an average of 24 bole-diameter 

measurements per tree, yielding 951 measurements, in toto. 

The fixed-effects version of (4) was fitted to benchmark the anticipated 

improvement offered by the inclusion of one or more random parameters in the model. 

When (4) was fitted with fixed effects only, -2LR = 7271, where LR denotes the observed 

REML log-likelihood. For this model, 8 2 = 120, and the elements of fJ were all 

estimated to be clearly significant (see Table 1). The deficiencies of this model become 

apparent, however, when the cumulative volume profiles predicted by it are compared 

to the empirical profiles. For the two trees displayed earlier, Figure 3 shows the 

superimposed profiles. Evidently, these two trees accrete more volume in the lower 

portion and less volume in the upper portion of the bole (above breast height) than the 

average tree in the sample. In forestry parlance, this phenomenon is a result of 

differences in tree form. For these two trees, the fitted equation systematically 

underpredicts volume in the very lowest portion of the bole, which may be of little 

consequence because prediction of bole volume in these lower reaches of the bole is 

rarely required. However, the systematic overprediction of volume to merchant ably 

small diameter limits in the upper portion of the bole is consequential and worrisome. 

The data did not support the inclusion of both 10 and 11 jointly in (4). When 10 

was included and 11 was omitted, -2LR = 6510 under a subject-specific expansion of 

f(Q). The cumulative volume profiles predicted by this model are shown in Figure 4, 

again for the same two trees. The improvement in model performance by inclusion of a 

random intercept is striking. 

Similar improvement was noted when a population-average expansion of f(Q) was 
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used with a random intercept, and when the model was specified with 10 omitted and 

II included. Based on the results exhibited in Table 1, it is arguable whether any of 

the random parameter specifications is superior to the others. 

The above results were obtained with both techniques for obtaining initial values 

(step 0 of the computing algorithm). However the initial values obtained from the 

GEEs were striking in that they were nearly identical to the final estimates obtained at 

convergence (step 4). Indeed, the cumulative volume profiles from the GEE fit of the 

model overlays the fully parametric solutions so much that the two profiles are 

indistinguishable when graphed. This indicates that even with only 39 trees the 

moment estimator in the GEE implementation performed well. If prediction is the 

main purpose of the data analysis and the variances of the random terms are in the 

interior of the parameter space, GEE's alone are fully satisfactory, thereby reducing 

computing time by more than 70% as compared to the full likelihood implementation. 

For the model with a random slope, Var( 11) is very small and the moment estimator 

performs poorer at the boundary of the parameter space. 

Summary Discussion 

This work was motivated by a concern that typical models to predict bole volume 

to any stipulated upper-bole diameter could be improved 1) by estimating the 

parameters jointly; 2) by fitting an equation form that mimicked the empirical 

cumulative volume profiles better, at least by exhibiting an inflection which typifies 

many growth curves; 3) and by accounting for inter-tree differences and/or intra-tree 

similarities. The modeling strategy presented here appears to have accomplished all 

three tasks. 

Follow-up work will require that we apply this strategy more broadly, in order to 

ensure that the advantages apparent when fitting sweet gum data are realized when 

fitting volume equations to data from other species. 

Future work may focus, too, on improving the R term of the model in order to 

rectify the lack-of-fit for lower-bole volumes that is evident in Figure 4. We speculate 

that this lack-of-fit derives chiefly from the fact that at breast height, d= D, which 

forces R= 0 = E[V d]. It may be preferable to stipulate R in such a way that ensures 

E[V dJ= 0 only at d= DS' where DS is bole diameter at stump height. 
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Table 1. Parameter estimates for model (4) under various specifications of fixed and 

random parameters. Estimated standard errors appear in parentheses. 

Specification -2LR 

Fixed effects 7271 

10' subject- 6510 

specific 

10' population- 6513 

averaged 

11' subject
specific 

6467 

11' population- 6470 

averaged 

10' GEE only 

11' GEE only 

13o f3i 132 133 
(72 

6.06 2.10 2.03 4.83 120 

(.783) (.024) (.086) (.098) 

5.14 2.15 2.10 4.79 47 

(2.77) (.071 ) (.054) (.058) 

5.19 2.17 2.09 4.70 47 

(2.79) (.072) (.054) (.058) 

2.32 2.29 2.10 4.79 47 

(.948) (.077) (.054) (.058) 

2.35 2.30 2.09 4.70 47 

(.956) (.078) (.052) (.055) 

5.19 2.16 2.09 4.70 47 

(2.70) (.069) (.054) (.058) 

2.33 2.30 2.09 4.69 46 

(.960) (.079) ( .052) (.055) 

* Values in this column have been multiplied by 103 

** Values in this column have been multiplied by 106 

(72 

° 
(72** 

1 

132 

135 

.911 

.927 

127 

.955 
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Figure L Cumulative volume profiles of two sweetgum 
tree boles. 
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tree boles. The bullets trace the empirical 
profiles, and the dashed lines trace the 
profiles predicted from the IlXed - effects 
version of model (4). 
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tree boles. The bullets trace the empirical 
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predicted from the IlXed - effects version of 
model (4), and the solid lines trace the 
profiles predicted from the random
intercept version of model (4). 
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