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NONLINEAR REGRESSION FUNCTIONS FOR 
FORAGE NUTRIENT DISAPPEARANCE FROM BAGS 

INCUBATED IN THE RUMEN 

W. J. E. Potts, USDNARS and University of MD, Dept. of Animal Sciences 
B. P. Glenn, USDNARS 
J. B. Reeves III, USDNARS 
R. A. Erdman, University of MD, Dept. of Animal Sciences 

ABSTRACT 

Seven nonlinear regression functions are compared for fitting rumen in situ 
disappearance data. The standard function is based on a simple one-compartment 
model. In addition, we consider a time lag modification, a two-compartment 
model, and functions based on underlying probability models for degradation 
time. The empirical suitability of the seven regression functions are assessed using 
two in situ experiments involving forages fed to dairy cows. A function based on 
the loglogistic distribution is shown to have empirical and theoretical advantages. 

Key words: Compartment model, hazard function, loglogistic distribution, 
nonlinear regression, sigmoidal curve. 

1 INTRODUCTION 

Rumen in situ experiments are widely used to evaluate feed quality (0rskov 
and McDonald 1979, Nocek 1988). Porous, artificial-fiber bags, containing feed, 
are incubated in the rumen of a fistulated animal for a range of times. The bags 
are deposited successively and withdrawn as a group so that each has incubated 
for a different time. After withdrawal, the percent disappearance is determined 
for a particular component of the feed, such as crude protein, neutral detergent 
fiber, or total dry matter. Thus, the experiment generates a time course of percent 
disappearance values (Figure 1). 

Rumen in situ experiments usually consists of several animal X feed 
combinations, with a disappearance time course measured on each. The standard 
strategy for analyzing this repeated measures data is univariate analysis of variance 
on certain nutritionally important features of the time course, such as the limiting 
percent disappearance (total degradability). A nonlinear curve is fit to each 
individual time course, and the nutritionally important features are estimated from 
the parameters of the regression function. 

The focus of this paper is the different regression functions used to fit each 
disappearance time course. We compared seven regression functions: 
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The G 1 function (1) was originally proposed by 0rskov and McDonald (1979) 
for in situ crude protein disappearance. The so-called Gm family of models, of 
which the G 1 model is a special case, was developed for digesta passage in 
ruminants (Matis, Wehrly, and Ellis 1989; Pond et al 1988). 0rskov and 
McDonald (1979) recognized that other functions might be required to describe 
the degradation time course, and McDonald (1981) incorporated a time lag, 
resulting in the Gl-lag function (2). The GIGI function (3) is a simple extension 
of the Gm family. It was proposed for in situ residue (or equivalently, 
disappearance) by Van Milgen, Murphy, and Berger (1991). The Weibull function 
and loglogistic function (a.k.a. the Morgan-Mercer-Flodin curve) have not 
previously been applied to rumen in situ data (Seber and Wild 1989). 

2 GRAPHS OF THE REGRESSION FUNCTIONS 

The graph of each of the seven regression functions, (1)-(7), increases from an 
intercept at (0, a) to an upper horizontal asymptote at a+b (Figure 1). The 
parameter a is interpreted as the instantaneously degradable percentage (soluble 
or filterable), b is the slowly degraded percentage, and 100-(a+b) is the 
undegradable percentage. 

The chief difference in the shape of the seven curves is their ability to 
accommodate sigmoidal trends. The G 1 curve is not sigmoidal; it increases at a 
constantly decreasing rate, with a maximum rate of increase at time zero. 
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The G1-lag CUlve has a flat phase between 0 and d followed by an increasing 
phase. The transition between the two phases is not smooth, that is, the derivative 
of D(t) is not continuous at d. 

The G1G1, G2, and G3 curves are sigmoidal, but somewhat restricted in 
shape. The proportion of the total increase which occurs prior to the inflection 
point, (D(injlection point) - a)/b, must be less than .264 for the G1G1 curve. For 
G2 and G3, the proportion exactly equals .264 and .323, respectively. 

The Weibull and loglogistic curves have the flexibility to take either strictly 
concave-down or sigmoidal shapes depending on the parameter d. When d ~ 1 
they are both concave down. When d > 1 they are both sigmoidal. The proportion 
of the total increase which occurs prior to the inflection point can take on a wide 
range of values. The proportion for the Weibull curve is 1-exp(l/d-1) which 
must be less than l-l/e ;::::::.632. For the loglogistic curve, the proportion is 
1f2(1-1/d) which must be less than .5. 

3 THEORETICAL DERIVATION OF THE REGRESSION FUNCTIONS 

PROBABIUIT MODELS FOR DEGRADATION TIME 

The expected value of the slowly degradable percentage that has degraded by 
time t can be derived by assuming that the feed is composed of discrete units 
which degrade independently. Let the unobserved random variable, T, be the time 
at which that an independent, discrete unit degrades. Then the expected percent 
degraded by t is 

D(l) = a+b·F(l) (8) 

where a is the expected value of the instantaneously degradable component, and 
F(t) = Prob(T~t) is the cumulative distribution function of T. The regression 
functions, (1)-(7), correspond to different probability distributions for T. 

The Gm family is derived from (8) by assuming that T has an Erlang 
distribution with scale parameter lie and shape parameter m. The Erlang 
distribution is a special case of the gamma distribution where the shape parameter 
is a positive integer. The G 1 function (1) follows from assuming that T has an 
exponential distribution which is a special case of the Erlang (gamma) distribution 
where the shape parameter equals 1. Under the Erlang model, the mean 
degradation time is mle. 

The Weibull function (6) is derived from (8) by assuming that T has a Weibull 
distribution with scale parameter c and shape parameter d (Cox and Oakes 1984). 
The exponential distribution is also a special case of the Weibull distribution 
where d = 1. Under the Weibull model, the median degradation time is 
(In(2))l!dle (Figure 1). 
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The loglogistic function (7) is derived from (8) by assuming that T has a 
loglogistic distribution (Cox and Oakes 1984), that is, In(]) has a logistic 
distribution with location parameter -InC e) and scale parameter lid. Under the 
loglogistic model, the median degradation time is lie (Figure 1). 

COMPARTMENT MODELS 

The G I-lag (2) and GIG 1 (3) functions do not correspond to familiar 
distributions. The G 1 function (1) is usually derived by modeling degradation as a 
one-compartment system. Let X(t) be the percentage of degradable material 
remaining in the compartment at time t. Let D(t) be the percentage of degraded 
material that has degraded (in the system exterior). The compartment model is 
represented by the system of first-order, linear differential equations 

dX(t) = -cX(t) 
dt 

dD(t) cX{t) 
dt 

X(O) = b 

(9) 

D(O) = a . 

The parameter c is the transfer coefficient. The parameters b and a are the initial 
percentages in the system and system exterior. Solving (9) for D(t) gives the Gl 
function. The G I-lag model is a modification of (9) to incorporate a time lag, d 

dX(t) _ {o if t$: d 
Xed) = b d t - -cX(t) otherwise 

dD(t) _ {o if t$: d 
D(d) d t - cX(t) otherwise a. 

The GIGI model (Van Milgen, Murphy, and Berger 1991) has two 
compartments: a lag compartment and a digestion compartment. Initially, all the 
slowly degradable material is in the lag compartment. It transfers into the 
digestion compartment and then out of the system. 
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d L(t) = _ d L( t) 
dt 

d X(t) = d L( t) - c X( t) 
dt 

dD(t) = cX(t) 
dt 

Kansas State University 

L(O) = b 

X(O) = 0 

D(O) = a 

where L(t) is the percentage remaining in the lag compartment, and X(t) is the 
percentage remaining in the digestion compartment. The G2 model is a special 
case of the GIG 1 model where c = d. Similarly, The G3 model can be 
represented as a three-compartment system with equal transfer coefficients. 

THE HAZARD FUNCTION 

The hazard function provides a link between the probability models and the 
compartment systems. The hazard function 

h(t) = lim P(t~ T<t+<ll T~t) 
11-">0 <l 

is the probability a discrete unit degrades at time t, provided that it has survived 
as long as t (Cox and Oakes 1984). It measures the instantaneous proneness of an 
independent, discrete unit of feed to degrade. 

All the regression functions, including the Weibull and loglogistic, can be 
derived from a one-compartment system where the transfer coefficient is a 
function of time. In particular, when the transfer coefficient equals the hazard 
function of the corresponding probability distribution 

(Matis 1984). 

dX(t) = -h(t) X(t) 
dt 

dD(t) = h(t) X(t) 
dt 

X(O) = b 

D(O) = a 

The hazard function is a standard way of distinguishing different survival 
distributions. The hazard function for the exponential distribution (corresponding 
to the G 1 function) is constant, indicating that the proneness to degrade is 
independent of the time a unit of material has been in the rumen (Figure 2). The 
hazard corresponding to the G I-lag function is discontinuous: It is initially zero 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/16



Applied Statistics in Agriculture 207 

and then constant. The hazard corresponding to the GIG 1 function increases to 
an asymptote. The hazard function for the Erlang distribution (corresponding to 
the G2 and G3 function) increases to an asymptote. The hazard function for the 
Weibull distribution can be constant, decreasing, or increasing. The hazard 
function for the loglogistic distribution is either decreasing or 
nonmonotonic-increasing to a maximum and then gradually decreasing to zero. 

The constant hazard of the exponential distribution is biologically 
unreasonable. When feed enters the rumen, there is an early stage of reduced 
degradation while microbial attachment and colonization occurs. The G2 and G3 
models with increasing hazards were developed and seem reasonable for passage 
of particles from the rumen, where as time increases the particle size reduces and 
the particles mix throughout the rumen, so that the chance of passage increases. 
An increasing hazard for degradation, however, might be less realistic. Forage may 
become increasingly lignified the longer it remains in the rumen. Consequently, 
after some initial stage, the proportion of the remaining feed that is more difficult 
to digest might increase with time. This process indicates a nonmonotonic hazard 
similar to that of the loglogistic distribution. A nonmonotonic hazard may be less 
reasonable for feedstuffs, other than forages. 

The nonmonotonic hazard of the loglogistic model, in addition to providing 
insight into the process of degradation in the rumen, suggests features of the 
degradation process which may be important for summarizing feeds quality. For 
instance, the quantity (d-l)l/d/c is the time when the hazard is maximum. 

4 FITTING THE REGRESSION FUNCTIONS TO DATA 

The seven regression functions were fitted to 168 time courses. The 168 time 
courses came from two experiments involving dairy cows. The first experiment 
contributed 72 time courses for three response variables: crude protein, neutral 
detergent fiber, and total dry matter. The experiment involved two cows and six 
forages (alfalfa and orchardgrass at three stages of maturity), arranged in a 
crossover design. For each cow x period x feed combination, the percent 
disappearance was measured at 0, 2, 6, 12, 18, 24, 36, 48, and 72 hours of 
incubation. 

The second experiment contributed 96 time courses for two response variables: 
organic matter and neutral detergent fiber. The experiment involved two cows and 
12 feeds (alfalfa and switchgrass at 2 stages of maturity treated with 3 levels of 
sodium hydroxide) arranged in a crossover design. For each cow x period x feed 
combination, the percent disappearance was measured at 3, 6, 15, 24, 48, 72, and 
96 hours of incubation. 

Ordinary nonlinear least squares was used to fit each of the seven regression 
functions to the 168 time courses. The estimates were determined using the 
Gauss-Newton method (Seber and Wild 1989). Weighted least squares, where the 
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weights are inversely proportional to a function of D(t)[IOO-D(t)], often is more 
efficient for percentage responses. But since the disappearance percentages 
usually ranged between 10% and 90%, the gain in efficiency was minimal. 

The difference between the fitted values of the different regression functions 
was generally small. The loglogistic function (7) had the smallest or next to 
smallest mean square error (MSE) in 44% of the 168 time courses. Moreover, it 
had the largest or next to largest MSE in only 11 % of cases. The fit of the 
Wei bull function (6) was comparable to, but rarely better than, the loglogistic 
function. 

The G I-lag function (2) fit nearly as well as the loglogistic. It had the smallest 
or next to smallest MSE in 38% of the cases and largest or next to largest in 13%. 
A denser placement of time points around the nonsmooth change of phase might 
reveal lack of fit. 

The GI function (1) had the smallest or next to smallest MSE in 35% of the 
time courses but the largest or next to largest in 46%. In the time courses with a 
weak sigmoidal trend, the parsimonious G 1 function preformed well. However, 
the parameter d in the Weibull and loglogistic functions was estimated to be 
greater than 1, indicating some sigmoidal behavior, in 78% and 87% of the time 
courses, respectively. 

The estimate of d for the Weibull and loglogistic functions indicated that the 
proportion of the total increase before the inflection point averaged .22. 
Consequently, the G2 function, where the proportion is constrained to be .264, 
often compared favorably with the other functions. The fit of the GIG 1 curve (3) 
usually had a larger MSE than G2, due to the extra parameter. The proportion of 
increase before the inflection point was rarely as large as .32. Consequently, the 
G3 function (5) showed a relatively poor fit. 

CONVERGENCE TROUBLE 

The nonsmooth transition in the G I-lag function (2) can complicate the 
nonlinear least-squares estimation. The least-squares estimation is often troubled 
by multiple minima. The sum-of-squares surface 

is not smooth; the partial derivatives with respect to the parameters b, c, and d 
are not continuous at d=t i • Geometrically, this creates sharp ridges running across 
the surface wherever d equals a time point. Between any two ridges a local 
minimum may occur, particularly between early time points. In this case, the only 
reliable estimation method is a grid search over values of d. 
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Instead of ridges, the nonsmoothness may cause a deep furrow in the sum-of­
squares surface centered around a time point. In this case the least squares 
estimate of d equals that time point. This clearly biases the estimate when the 
true value of d is close to a design point. These furrows occurred on 8% of the 
168 sum-of-squares surfaces. 

When the least-squares estimate of d is less than or equal to the smallest time 
point in the data, the partial derivatives of the regression function with respect to 
a, b, and d are linearly dependent. This generates singularities which undermine 
the standard nonlinear least-squares estimation methods. This can occur when the 
minimum incubation time is zero and the trend is not sigmoidal. This 
phenomenon occurred in 8% of the time courses. 

The four-parameter GIG 1 function (3) was unstable and often degenerated 
into simpler three-parameter functions. The iterative estimation sequence diverged 
in almost half of the time courses. In 9% of the time courses, where the trend was 
not strongly sigmoidal, the residual sum of squares did not have a global 
minimum. In these cases, the least-squares estimate of d was infinite. This 
phenomenon induces the G 1 function 

lim(DGlGl(t)) = a+h(l-exp(-ct)). 
d-oo 

In 36% of the time courses, the parameters c and d of the GIGI function 
approached the same value. The partial derivatives of the GIG 1 regression 
function with respect to c and d are linearly dependent when d ---» c. This 
generates singularities which undermine the standard nonlinear least-squares 
estimation methods. This phenomenon induces the G2 function 

lim (DGlCJ1 (t)) = a + h(l- exp( -ct) (1 + ct)) . 
d-c 

Van Milgen, Murphy, and Berger (1991) found this degeneration of the GIGI 
function in 16% of the time courses they studied. 

5 EFFECTIVE DEGRADABILITY 

One important feature of the rumen in situ disappearance data is the total 
percentage of potentially degradable material in the feed. Degradation, however, 
is overestimated in the in situ experiment, because, under normal conditions, 
some of the bag contents would have passed out of the rumen before they had a 
chance to degrade. The effective degradability, is the limiting degradable 
percentage, corrected for passage. 0rskov and McDonald (1979) calculated 
effective degradability as 
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00 

D(O) + f dD(t) exp( -kt) dt 
o dt 

Kansas State University 

(10) 

where exp( -kt) is the fraction of rumen contents which entered the rumen at 
time zero and had not yet passed at time t. (The parameter, k, is either 
determined from a separate passage experiment, or taken from the literature.) 
The integrand is the degradation rate corrected for passage. The effective 
degradability (10) can be evaluated for the first five of the seven regression 
functions: 

Gl 

Gl-lag 

GIGI 

G2 

G3 

be 
a+--

e+k 

be 
a+- exp(-kd) 

e+k 

bed 
a+-----

(e+k)(d+k) 

be2 
a+---

(e+k)2 

a+---
( e+k)3 

The integral in (10) can not be explicitly solved for the Weibull and loglogistic 
regression functions. The integrals can be evaluated to any degree of precision 
using numerical quadrature. Alternatively, closed form approximations can be 
constructed. The following approximations are the result of changing variables 
from t to D(t) and then applying Simpson's rule on four equally spaced intervals 
between a and a+h. 

Loglogistic 
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The quality of these approximations was evaluated using the SAS/IML 
numerical integration function QUAD (SAS 1991). The approximations of 
effective degradability were within one percentage point of the exact value in 82% 
and 74% of the cases, respectively. 

6 SUMMARY 

The loglogistic function has empirical and theoretical advantages over the 
other six regression functions. It has a flexible shape, gave the best overall fit to 
the experimental data, can be derived from a sensible underlying degradation 
model, and suggests new meaningful parameters. However, effective degradability 
must be calculated numerically or approximated. 

The standard G 1 function provides an erratic fit and implies an unrealistic 
constant hazard. The Gl-lag modification improves the empirical fit at the 
expense of an unrealistic and ill-behaved regression function. The GIGI function 
makes the time lag smooth, but is unstable and often induces the simpler G2 
model. The Gm family of models were originally derived from an underlying 
probability model. The Weibull and loglogistic models are extensions of this 
probability model using different distributions. 

It is not clear that one regression function is satisfactory for modeling in situ 
degradation for all feed types. The probability models for degradation time 
provide a means for developing new functions corresponding to sensible hazard 
rates. 

REFERENCES 

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall. 

Matis, J. H. (1984). A Generalized Approach to Compartmental Modeling Based 
on Retention Time Distributions. In Modeling Ruminant Digestion and 
Metabolism, Proceedings of the Second International Workshop UC Davis, 
editors: Baldwin, R. L. and Bywater, A. C. 

Matis, J. H., Wehrly, T. E., and Ellis, W. C. (1989). Some Generalized Stochastic 
Compartment Models for Digesta Flow. Biometrics 45, 703-720. 

McDonald, I. (1981). A Revised Model for the Estimation of Protein 
Degradability in the Rumen. 1. agric. Sci. Camb. 96, 251-252. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/16



212 Kansas State University 

Nocek, J. E. (1988). In Situ and Other Methods to Estimate Ruminal Protein and 
Digestibility: A Review. J Dairy Sci. 71, 2051-2069. 

0rskov, E. R and McDonald, I. (1979). The Estimation of Protein Degradability 
in the Rumen from Incubation Measurements Weighted according to Passage. 
J. agric. Sci. Camb. 92, 499-503. 

Pond, K. R, Ellis, W. c., Matis, J. R., Ferreiro, R. M., & Sutton, J. D. (1988). 
Compartment Models for Estimating Attributes of Digesta Flow in Cattle. 
British Journal of Nutrition 60, 571-595. 

SAS Technical Report P-220 (1991). SAS/IML Software: Changes and 
Enhancements, Release 6.0727-34. SAS Institute inc. 

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. Wiley. 

Van Milgen, J., Murphy, M. R, and Berger, L. L. (1991). A Compartmental 
Model to Analyze Ruminal Digestion. 1. Dairy Sci. 74, 2515-2529. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/16



Applied Statistics in Agriculture 

Disappearance % 

100 

o~--____ --~----__ ----__ --___ 
o 15 30 45 60 75 

Incubation Time 

Gl-lag 
D(t) ~ { a ts, d 

~ a+b(l~exp(~c(t~d))) t>d 

a+b _____________________ _ 

a 

d 

G2 
D(t) = a+b(l-exp(-ct)(I+ct)) 

a+b --------------------------

a 

Weibull 
D(t) = a+b(l-exp(~(ct)d)) 

a+b 

a 

GI 
D(t) ~ a + b(l ~ exp( ~ct)) 

a+b ----------------------

a 

GIGI 
D(t) = a+b(l~ cexp(~dt) ~ deXp(~ct)) 

c~d 

a+b -----------------------

a 

G3 

D(t) = a+b(l-eXP(-Ct)(I+Ct+ (c;i)) 

213 

a+b ----------------------- __ _ 

a 

Loglogistic ( 1) 
D( t) = a + b 1- ----

1+(ct)d 

a+b 

a+bl 

a 

lie 

Figure 1. In situ disapearance data and graphs of the regression functions. 
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Figure 2. Hazard functions corresponding to the regression models. 
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