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Obtaining Models for Alfalfa, Sorghum, and Wheat Residue Decomposition 
H. H. Schomberg, USDA-ARS, Conservation and Production Laboratory, Bushland, TX 

T. W. Popham, USDA-ARS, Southern Plains Area, Biometrician, Stillwater, OK. 

ABSTRACT 
Crop residues provide an economical means for controlling wind and water erosion 

in addition to being a valuable source of plant nutrients. As residues decompose they lose 
nutrients, mass and the ability to protect the soil surface from erosive forces. The 
research was designed to evaluate rates of residue decomposition of sorghum, wheat and 
alfalfa on the soil surface and buried, in five soil moisture regimes. Moisture was applied 
to soil by line source irrigation and bags containing crop residues were retrieved and 
analyzed across time. Thus, observations were repeated in both space and time. 

Wieder and Lang (1982) reported that mass-loss over time was modeled well by 
the negative exponential. Because residue can be divided into fast (labile) and slow 
(recalcitrant) decomposing fractions, the double exponential is suggested. Assuming the 
ratio of labile to recalcitrant is constant for. a crop regardless of soil moisture, and 
whether on the surface or buried, it would be sufficient for each crop to fit a set of 
simultaneous non-linear functions with three parameters, a constantA (proportion labile) 
over all equations with different kl'S (labile fraction decomposition rates) and ~'s 
(recalcitrant decomposition rates) for soil moisture levels and whether buried or 
unburied. 

For alfalfa the results were consistent with the above theory. For wheat and 
sorghum data holding A constant over all environments resulted in k' s > O. Convergence 
of the estimations process could not be obtained when forcing k's ~ O. The single 
exponential provided a satisfactory model of decomposition, but without the advantage of 
separating the residues into labile and recalcitrant fractions. The inability to obtain 
estimates using the double exponential apparently resulted from an insufficient 
observation period. The recalcitrant fraction of the surface residues of these crops had 
not disappeared after more than a year. 

INTRODUCTION 
Crop residue is considered a valuable resource in conservation tillage cropping 

systems (Unger and McCalla, 1980). Residues provide nutrients to subsequent crops and 
when left on the soil surface protect soils from wind and water erosion. Microbial 
decomposition of crop residues releases nutrients but also decreases soil cover (Parr and 
Papendick, 1978). USDA-ARS scientists are involved in developing new technologies 
for predicting soil loss from wind and water (Foster, 1991; Hagen, 1991; Laflen et al., 
1991). The new systems are daily time step simulation models using multiple submodels 
to predict changes in soil physical and chemical properties, climate, vegetation and soil 
loss due to erosion. Because soil cover is a critical component of the soil loss process, 
accurate estimates of cover provided by crop residues are needed for modeling of erosion. 

Microbial activity in decomposing residues is controlled by substrate availability, 
temperature, and water potential (Stott et al., 1986). Laboratory studies show that water 
and temperature have a greater effect during early stages of decomposition when soluble 
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C and N compounds are readily available (Stott et al., 1986), but C and N availability 
become major limiting factors during later stages (Knapp et al., 1983). Relationships 
developed for temperature and water influences on decomposition rates in the laboratory 
have been used to predict residue decomposition in the field (Stroo et al., 1989). 

Wieder and Lang (1982) listed definitions of the decomposition process: residue 
mass present at time t , Y = f (t) ; absolute decomposition rate, By / Bt; and relative 
decomposition rate, BY / BtY. 
Potential functions for modeling the decomposition process. 

Linear, Y = C + kt ; the implicit assumption of a constant decomposition rate 
is known to be inappropriate. 

Ouadratic, Y = C + kJ t + k2 t 2 ; Wieder and Lang (1982) state, "If the 
objective of curvefitting is to obtain estimates of decay constants or to derive empirical 
expressions of the subsequent modeling of organic matter accumulation, it is imperative 
that the model be fitted with the restriction that at time t=O all of the initial litter is 
present." It is almost certain that the intercept will not be fitted so that all residue is 
present at t=O. 

Asymptotic, Y = C + ( 1 - C) e -kt ; similar to single exponential discussed 
below, it has the capability of estimating the fraction which remains when no further 
decomposition takes place. However, it is assumed that residues of crops disappear 
completely if observation continues for a sufficient length of time. 

Power, Y = Ct k , k < C; this function has the appropriate form but goes to 
infinity for time = 0 which is undesirable because we wish to have all residue present at 
t=O. 

Sincle Exponential, Y = e-kt ; mass loss from plant residues, expressed as 
fraction of the initial mass remaining, is best represented and analyzed as negative 
exponential equations Wieder and Lang (1982). The first order rate loss equation, 
estimates mass remaining at time t, as a function of the initial mass, time, and the crop 
specific decomposition rate coefficient k (Olsen, 1963; Jenny, 1949). The underlying 
assumption is that absolute decomposition rate decreases linearly as the substrate 
remaining declines (Wieder and Lang, 1982). This assumption follows intuitively from 
the fact that soluble compounds such as sugars, starches, and proteins decompose rapidly 
while cellulose, lignin, and waxes are more resistant to decomposition. Over time, 
differences in decomposition between the residue components will result in remaining 
material having greater resistance to microbial activity. 

Differences in decomposition rates between residue components have led to development 
of models that partition the biomass between labile (rapid, 6 months to 1 year) and 
recalcitrant (slow, greater than 1 year) decomposable fractions. Total decomposition can 
be represented by the double exponential, where A represents the labile fraction of the 
initial material with rate coefficient kJ , (I-A) represents the recalcitrant fraction with 
decomposition rate k2' and the labile and recalcitrant fractions sum to one. 
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where p = surface or buried, and w = moisture levels 1, ... ,5. An advantage of using the 
double exponential model; by defining the proportions of slow and fast decomposing 
material, differences between k values for residues decomposing in multiple environments 
can be used to evaluate environmental effects on decomposition (Wieder and Lang, 1982, 
Wieder et al., 1983). Mass loss comparisons between residue treatments can be made 
using covariance analysis (Snedecor and Cochran, 1978; Wieder and Lang, 1982) by log­
transformation with a non-fixed intercept. With repeated measures data, if response 
curves are developed to describe effects over time, the parameters can then be analyzed 
by analysis of variance to compare treatment effects (Littell, 1989). 

Water and temperature relationships developed in laboratory studies should be 
evaluated with data collected under field conditions for applicability to long-term 
prediction. Multilocation studies specifically designed to sample a range of environments 
increase the time required for plot establishment, maintenance, and data collection, and 
require duplication of climate monitoring equipment. The line-source sprinkler system 
(hereafter designated line-source) was originally developed to study interactions of water 
stress with secondary factors such as fertility or genotype on crop growth (Hanks et al., 
1976). The line-source provides a continuous gradient of water perpendicular to the 
irrigation line across a plot area. The numerous environments thus created can be used 
for evaluating at one location the influence of water on microbial activity. 

Water level treatments in line-source studies may be repeated parallel to the line­
source in blocks, but usually only one line-source is used and there is no true replication 
of this main effect. Problems of statistical analysis of line-source data have been 
addressed by Hanks et al., (1980), Johnson et al., (1983), and more recently by 
Fernandez (1991) who suggests that repeated measures analysis provides a more robust 
approach compared to the multivariate approach presented by Johnson et al., (1983). 

Our objective was to evaluate use of the double exponential model to quantify 
environmental influences on residue decomposition as indicated by Wieder and Lang 
(1982) and to compare its utility to the single exponential model. We proposed to 
evaluate changes in k values (differences in decomposition) across water treatments and 
placements using regression analysis. 

MATERIALS AND METHODS 
Field Experiment (Data collection). The data were collected from a line-source 

experiment on decomposition and N dynamics of buried or surface-placed alfalfa, 
(Medicago sativa L.), grain sorghum [Sorghum bicolor (L.) Moench], and winter wheat 
(Iriticum aestivum L.) residues over a 12-mo period (Schomberg et al., 1994). Crop 
residues in fiberglass bags were placed on the surface or buried at 120 mm in Pullman 
clay loam (fine, mixed, thermic Torrertic Paleustoll) at Bushland, TX. Water regime 
treatments were created by placing the bagged residues at five distances perpendicular 
to the line-source in 3 blocks. The buried and surface placements gave us essentially ten 
water regimes for residue decomposition. Irrigation was applied frequently during the 
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summer and fall. One bag of residue from each plot was collected at each sampling date 
(7 dates) during the year for determination of ash free dry weight remaining. 

Model Fitting. The fraction of initial mass remaining at each harvest date was 
used to estimate parameters of the double exponential model using the MODEL procedure 
in SAS\ETS (SAS Inst. Inc., 1988). Ten equations (simultaneous double-exponential), 
one for each water regime-placement combination were fit for each crop residue, 
separately, using the SUR option of PROC MODEL. The independent variable was 
number of days in the field (t) and the dependent variable was fraction of biomass 
remaining (Y). Estimation of readily decomposable (A) and resistant (l-A) fractions were 
obtained by simultaneous estimation across all ten decomposition environments while the 
parameters kz and k2 were fit for each environment (water regime-placement). The fixed 
intercept single exponential k values were also estimated using PROC MODEL. 

Analysis of Variance. The influence of water treatments on decomposition rate 
coefficients (kls) were evaluated as repeated measures using the total amount of water 
applied to each water regime as quantitative factors. In a line-source sprinkler experiment 
irrigation levels are systematically arranged without randomization (repetition in space) 
and valid univariate tests of irrigation effects are available only when certain conditions 
are met (Fernandez, 1991). Repeated measures analysis is used to evaluate treatment 
effects where the data are collected from the same sample units at several points in time 
or space (Littell, 1989). Because the k values are rates over time the repeated measures 
model does not include time. It does have crop residue type and placement as main 
effects, the interaction of crop residue type with placement, with water (irrigation level) 
as a repeated effect and all the interactions of water with main effects crop residue type 
and placement. The repeated measures analysis provides an evaluation of the interactions 
(linear, quadratic, cubic) between water, crop residue type, and placement. Linear 
regressions were developed describing the effect of cumulative water on rate of residue 
decomposition where significant interactions were indicated. 

RESULTS 
Parameter estimates were made for the double exponential model for each water 

regime, crop and placement. The fitting process and results were different between the 
three residue types. 

Alfalfa were easily fit by the double exponential model. The rapidly 
decomposable fraction was estimated as 0.78 of the residue (Table 1). In most cases, the 
rate of decomposition for the readily decomposable fraction was approximately ten times 
faster than that of the resistant fraction. For surface residues in the third and fourth water 
regimes, the faster decomposition rate was estimated for the 1-A fraction or the smaller 
of the two decomposable fractions. Although this result is greatly different from the other 
placements, it might be expected if the fitting process identified the fraction of residue 
that is water soluble and therefore subject to leaching. Why this occurred with only these 
two locations and not for wetter water regimes is unclear and unexpected. Perhaps in the 
wetter regimes rapid decomposition and leaching occurred simultaneously thereby 
masking the result found with the third and fourth water regimes. Adjusted R2 values for 
all alfalfa data were greater than .92; with buried residue the adjusted R2 values were 
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greater than .95. 
Sorghum surface residues had greatly different patterns of decomposition from the 

buried residues (Figs. 1 and 2). Buried residue decomposition followed closely an 
exponential while the surface residues had a more linear loss of biomass. The 
simultaneous double exponential model failed to accommodate this wide difference in 
decomposition patterns (Table 1). Model convergence occurred at 0.7 but none of the 
k/s were significant. The labile fraction was estimated as .80. 

We hypothesized from the observed decomposition patterns of surface and buried 
residues that estimation of the surface decomposition rates of the recalcitrant fraction 
(surface k/s) might be overly influencing estimation of the other parameters. Since 
surface k2' s were not significantly different from zero, we re-estimated the model 
parameters by fixing surface k2'S=0. This resulted in model convergence at O.oool. 
However, the buried decomposition rates of the recalcitrant fraction (buried k2'S) 
remained not significantly different from zero. The adjusted R2 for the surface residues 
increased from .44 to .78 averaged across the five water regimes. Although estimates 
of the buried k2' s changed, the adjusted R2 did not. Estimates of labile fraction decreased 
to 0.76 when surface k2'S=0. 

The sorghum data were fitted a third time with the restriction that both the surface 
and buried k2'S=0. There was little change, except the estimate of the labile fraction 
increased to .86. 

Graphic representation of the data using the three double exponential models and 
the single exponential model gave additional insight into the adequacy of the different 
models (Figs 1 and 2). There was good agreement between observed and predicted data 
for the buried sorghum residue decomposition with all three variations of the double 
exponential model. The double exponential closely estimates the mean of the observed 
data at each sampling date even when the k/ s are set equal to zero. The single 
exponential model under-predicted biomass loss during the early sample period while it 
over-predicted biomass loss near the end of the sampling period. The double exponential 
model gave a more realistic imitation of biomass loss by identifying a slowly 
decomposable fraction or in the case of this experiment a non-decomposable fraction. 

Estimates of model parameters for surface residues were similar between all four 
models for most of the water regimes. Residues in the second water regime had 
uncharacteristic estimates of k2 relative to all other treatments (Table 1 and Fig. 2). 
Difference between the kJ ' s among the four models were small. These results contrast 
with those from the buried residues primarily due to the limited biomass loss that 
occurred from the surface residues. A greater period of time would have been required 
for surface residues to lose the same amount of biomass as the buried residues. 

Wheat results were similar to model fitting results with sorghum (Figs. 3 and 4). 
Estimated buried and surface k2'S were not significantly different from zero, with the 
surface k2's<0. Negative values indicated a trend of the resistant fraction to increase 
which may have been due to a limitation of the residue cleaning process, or may be 
attributed to accumulation of microbial biomass within the residues. Examination of 
residues at each harvest indicated an accumulation of fungal hyphae in both surface and 
buried residues. This microbial biomass was not removable from the residues. A second 
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contribution may have been variability in estimation of ash free dry weight due to 
accumulation of soil and the sample size used for the ashing process. These effects should 
have been about equal for all residues except wheat residue on the soil surface 
accumulated soil inside the straw to a greater extent than sorghum or alfalfa. Adjusted 
RZ values were in the range of .77 to .99. The estimate of the labile fraction was 0.84. 

Model parameters were fit a second time with kz I s equal to zero. Buried kz I S were 
significantly different from zero. Adjusted RZ values changed very little while estimates 
of the labile fraction decreased to 0.64, which was less than expected. Since the buried 
kz I S were not significantly different from zero in the first parameter estimation, a third 
estimation of model parameters was evaluated with all kZ's equal to zero. Again, RZ 
values changed very little. However, estimation of the labile fraction was a more 
reasonable 0.86. 

DISCUSSION 
A primary objective was to quantify the influence of water regime on residue 

decomposition rates. The modeling results gave us three options for further evaluation 
of water regime effects on residue decomposition. 

(1) Regress water applied vs the double exponential kl I S for the model where all 
k' s were calculated and predict kz from kl • This was not appealing since the kz I S were not 
significantly different from zero for 2/3 of our data and any relationship developed would 
be suspect. 

(2) Regress water applied vs the double exponential kl I s where only the kl I S were 
fit. This seemed logical since the graphs of the observed and predicted values indicated 
a better fit for the buried data when the double exponential model was used compared to 
the single exponential model. 

(3) Regress water applied vs the single exponential k/s. This approach is 
presented in Schomberg et al (1994). The approach is conservative in that only one 
parameter is derived from the data. 

We pursued option two, where a labile fraction, A, is simultaneously estimated 
across environments for each residue. The A values from model 3 in table 1 were used 
for wheat and sorghum while an A value of 0.92 was calculated for alfalfa. New kl IS 

were determined for each crop by placement by water regime by replication using the 
OLS option in PROC MODEL. Water regime and placement effects on kl were 
evaluated by repeated measures analysis (water regime is the repeated variable). Where 
significant water regime effects were determined, regression was used to quantify the 
relationship between water applied and kl • 

The repeated measures analysis indicated the data did not conform to the 
conditions requIred for univariate analysis. The multivariate, and linear and quadratic 
contrast output from the repeated measures analysis were used to evaluate water regime 
interactions with crop and placement. A significant three way interaction was present 
which the contrast analysis indicated was linear. Regression parameters relating water 
applied versus decomposition rate, kl' are given in Table 2. Model parameters are given 
for the double and single exponential models. The slopes and intercepts were significant 
for all crops and placements when using k values from the single exponential model. 
This was not the case for the double exponential model where the intercepts were not 
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values changed very little. However, estimation of the labile fraction was a more 
reasonable 0.86. 

DISCUSSION 
A primary objective was to quantify the influence of water regime on residue 

decomposition rates. The modeling results gave us three options for further evaluation 
of water regime effects on residue decomposition. 

(1) Regress water applied vs the double exponential kl I S for the model where all 
k' s were calculated and predict kz from kl • This was not appealing since the kz I S were not 
significantly different from zero for 2/3 of our data and any relationship developed would 
be suspect. 

(2) Regress water applied vs the double exponential kl I s where only the kl I S were 
fit. This seemed logical since the graphs of the observed and predicted values indicated 
a better fit for the buried data when the double exponential model was used compared to 
the single exponential model. 

(3) Regress water applied vs the single exponential k/s. This approach is 
presented in Schomberg et al (1994). The approach is conservative in that only one 
parameter is derived from the data. 

We pursued option two, where a labile fraction, A, is simultaneously estimated 
across environments for each residue. The A values from model 3 in table 1 were used 
for wheat and sorghum while an A value of 0.92 was calculated for alfalfa. New kl IS 

were determined for each crop by placement by water regime by replication using the 
OLS option in PROC MODEL. Water regime and placement effects on kl were 
evaluated by repeated measures analysis (water regime is the repeated variable). Where 
significant water regime effects were determined, regression was used to quantify the 
relationship between water applied and kl • 

The repeated measures analysis indicated the data did not conform to the 
conditions requIred for univariate analysis. The multivariate, and linear and quadratic 
contrast output from the repeated measures analysis were used to evaluate water regime 
interactions with crop and placement. A significant three way interaction was present 
which the contrast analysis indicated was linear. Regression parameters relating water 
applied versus decomposition rate, kl' are given in Table 2. Model parameters are given 
for the double and single exponential models. The slopes and intercepts were significant 
for all crops and placements when using k values from the single exponential model. 
This was not the case for the double exponential model where the intercepts were not 
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significant for alfalfa buried, sorghum buried, and sorghum surface. In theory, the 
decomposition rate should be zero when no water is applied; however, the smallest water 
treatment in this study received 3lO mm water and so further extrapolation below this 
value would be discouraged. Both sets of data indicate that decomposition increases with 
the amount of water and the influence was greater for buried residues. Relative 
differences between k values from the two models are small and are consistent between 
residue types. Water effects on surface and buried residues were confounded to degree 
with the water treatments since buried residues are in an environment that dries more 
slowly than that of the surface placed residues. 

The proposed evaluation of environmental influences was limited in this analysis 
by several factors. The greatest factor being the limited time period that was allowed for 
the decomposition of surface residues. Fitting of the double exponential was not possible 
with the surface residue until it was modified to accommodate the data. Partitioning the 
residues between fast and slow decomposition components, however gave a better fit of 
the data. The regression analysis helped determine a meaningful relationship between 
water application and residue decomposition rate but this information needs further 
evaluation with other data sets before it is used in the modeling of residue decomposition. 
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Table 2. Relationship between seasonal mm of water received (water) and decomposition rate coefficient (k) for buried and surface 

crop residues where k = Bo + B, * water(mm). 

Treatment Bo B, SEBo 

SINGLE EXPONENTIAL MODEL mass = exp( -k*t) 

BURIED 

Alfalfa .0056 50.5*10'" 0.0031 

Sorghum .0017 11.3*10'" 0.0010 

Wheat .0031 10.2"'10'" 0.0011 

SURFACE 

Alfalfa .00370 5.6*10-6 0.00047 

Sorghum .00019 2.5*10'" 0.00033 

Wheat .00049 2.1*10'" 0.00021 

DOUBLE EXPONENTIAL MODEL mass=A"'exp(-kl"'t)+ (l-A)*exp(O*t). 

BURIED 

Alfalfa .0084 60.4"'10-6 0.0044 

Sorghum .0025 15.1*10'" 0.0015 

Wheat .0042 14.7*10'" 0.0016 

SURFACE 

Alfalfa .00436 6.6*10-6 0.00055 

Sorghum .00025 2.8*10-6 0.00037 

Wheat .00065 2.4*10'" 0.00024 

Standard error of Bo (rnterce.l't). 
All Single exponential Bo sigmficant at P < 0.05. 
Double exponential alfalfa surface, wheat buried and wheat surface Bo significant at P 

Standard error of B,. 
All B, (slope) significant at P < .0001. 

SEB, R' 

6.2*10.6 0.83 

2.1*10.6 0.69 

2.2*10-6 0.62 

1.0"'10-6 0.73 

0.7*10-6 0.51 

0.4"'10'" 0.66 

8.5*10'" 0.80 

2.8*10-6 0.69 

3.1*10-6 0.63 

1.1*10-6 0.75 

0.7*10-6 0.54 

0.5*10-6 0.67 

< .05 
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Figure 1. Sorghum, water regime 2, buried. Small circles are 

observations, lines are indicated fitted functions. 
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